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ABSTRACT  

The Spitzer Space Telescope currently operates in the "Beyond Era", over nine years past an original cryogenic mission. 

As the astronomy community continues to advance scientific boundaries and push beyond original specifications, the 

stability of the Infrared Array Camera (IRAC) instrument is paramount. The Instrument Team (IST) monitors the 

pointing accuracy, temperature, and calibration and provides the information in a timely manner to observers.  The 

IRAC IST created a calibration trending web page, available to the general astronomy community, where the team posts 

updates of three most pertinent scientific stability measures of the IRAC data: calibration, bias, and bad pixels. In 

addition, photometry and telescope properties from all the staring observations ( >1500 as of April 2018) are trended to 

examine correlations with changes in the age or thermal properties of the telescope. A long, well-sampled baseline 

established by consistent monitoring outside anomalies and space weather events allows even the smallest changes to be 

detected. 
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1. INTRODUCTION  

NASA’s Spitzer Space Telescope1, one of NASA's Great Observatories, continues to operate past the original cryogenic 

mission concept (2003-2009), executing both a follow-on “Warm” mission (2009-2016) and now into the current 

“Beyond” (2016-present) mission phase. As Spitzer closes out its fifteenth year of operations, the mission continues to 

operate well beyond its initial five-year primary mission due to several optimizations used to overcome challenges. In 

2016, another 2.5-year final extension was awarded with a recent additional 8 months to extend Spitzer operations 

through November 2019. This extension would have allowed Spitzer operations to overlap with the James Webb Space 

Telescope, planned at that time to launch in early 2019. Within this "Beyond" phase, the astronomical community 

continues to advance scientific boundaries from exploring relatively nearby exoplanets to the farthest galaxies. As 

Spitzer is pushed beyond its original specifications, the understanding of the stability of the Infrared Array Camera2 

(IRAC) instrument is paramount.  

 

As the age and orbit of the Spitzer Space Telescope (Figure 1) evolves, the IRAC Instrument Support Team (IST) 

continuously monitors the calibration, bias levels, number of radiation hits, and space weather anomalies. This 

information is continually updated and provided to observers. A calibration trending web page
3 was created, available to 

the general astronomy community, where the team posts roughly biweekly updates on stability measures of the IRAC 

data.  

 

Spitzer/IRAC has a unique calibration program.4,5 In order to convert measured flux on the detector into physical units, 

IRAC has a 2 stage calibration star program.  The primary calibration stars are used to derive the absolute calibration, 

done separately for the cryogenic and the warm mission.  The secondary calibration stars are used to check on a regular 

(daily) basis that the absolute calibration has not changed.  This is critical to science operations because the Spitzer 

observations need to be put into physical units to be compared with other ground and space based facility measurements.  

These calibration stars consist of A and K stars chosen carefully to be devoid of astrophysical variations. The calibration 

program provides absolute photometric uncertainties less than 3%. 

 

In addition to absolute photometric calibration, the IRAC IST designed a dark calibration program for shutterless 

operation. In conventional dark calibration programs, the shutter would be closed to block light from the telescope at 

which time the electronic level of the bias is measured.  Because IRAC does not close it’s shutter, instead, a relatively 
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The flux densities have been measured using aperture photometry corrected for both the location of the center of the star 

with respect to the pixel (pixel phase effect) and the location on the array (array location dependence). The flux densities 

for each star are normalized to the median value for that star. Error bars are calculated as the sigma clipped standard 

deviation in the bins divided by the square root of the number of data points in each bin. The black line at normalized 

flux density = 1.0 is shown to aid the eye in determining what a flat line would look like. All data have been processed 

with pipeline version S19.2. These 21 stars include full array and subarray observations, as well as many different 

exposure times and well depths. These plots are updated weekly as new observations are made. The gap at December 

2015 is from an anomaly, with no obvious effect on the calibration after the instrument was turned back on. 

Over the course of the entire mission, we do see a decrease in sensitivity of IRAC photometry of order 0.1% per year in 

channel 1 and 0.05% per year in channel 2. The suspected cause is radiation damage to the optics, which can be expected 

in the space environment. 

2.2 Bias Stability 

Instead of using a shutter, dark current and bias offsets are calibrated by observing a dark region of the sky ("skydark") 

near the north ecliptic pole every seven days. The resulting image contains both the instrumental bias and dark current as 

well as sky background level which is dominated by zodiacal light.9 Models of zodiacal light contributions are used to 

remove that signature, leaving just an image of the instrumental signatures.  The instrumental signatures can then be 

subtracted from the routine science data, leaving only astrophysical sources. To monitor for any changes in the bias, the 

IST routinely examines the median value of the skydarks after they have been pipeline-processed. The calibration 

skydarks are created in a dedicated pipeline in a similar manner to that of the science data. A median ensemble skydark 

image is created from a dithered suite of eighteen individual images using an outlier rejection and sophisticated spatial 

filtering to reject astronomical objects in the frames. A skydark is created for every frametime once a week and the 

nearest-in-time skydark is used for image calibration. While all frametimes have bias levels monitored, similar trends in 

the background value as a function of time over the mission are seen in all frametimes, so only one frametime is 

currently used for monitoring. The 12s frame time was chosen for its balance between read noise and background noise 

so that changes in the bias level can be seen most clearly. 

For every combined 12s skydark frame, a median value of the array is calculated and plotted with error bars over the 

course of the warm mission (Figure 3).  Error bars are calculated from the Poisson electron noise and readnoise error 

added in quadrature calculated in the processing. The red line traces out the predicted zodiacal variation for each 

wavelength band normalized to the median value of the skydark in Jan 2012 to discern it from any change in the 

skydarks. There does appear to be a slight trend (<0.1%/year) of decreasing bias in both channel 1 and 2.  This could be 

due to a decrease in zodiacal background as the distance of the spacecraft has increased from Earth, or could be due in 

part to a decrease in the sensitivity of the optics as discussed in the photometry. It is hard to discern either from the data. 

Any change in bias in the skydark frames will also appear in the science frames, so it is subtracted out and does not 

cause any change in the overall calibration of the instrument, but the IST continues to monitor it. 

Proc. of SPIE Vol. 10704  1070427-4
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 1/2/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



z
E

340

330

i 320

i
i
? 310

300

290 an 2010 ,

45

40

35

30

25Jan
2010 .

Jan 2011 Jan 2(

i 1.

Jan 2011 Jan 2(

I RAC

)12 Jan 2013 J+
Date

IRAC i

)12 Jan 2013J+
Date

3.6um 12s skyd

an 2014 Jan 20

of Warm Missic

9.5um 12s skyd

an 2014 Jan 20

of Warm Missic

ark

15 Jan 2016Ja
)n

ark

15 Jan 2016 Ja

n 2017 Jan 201

In 2017 Jan 201

I

8

 

 

Figure 3. M

dotted lines 

“new” nomi

value of sky

The two vert

caused the ar

was restored

turn off, or 

temperature 

restored, the 

2.3 Radia

Extra-solar h

affected pixe

statistical ba

saturated pix

expected, wi

intensity is o

 

Medan value of

denote two a

inal level. The

darks in Jan 2

tical lines in th

rrays to reset w

, the dark bias

"safe". After 

of the 4.5 µm

dark bias quic

tion Hits   

high energy pa

els is tracked 

aseline of the 

xels per second

ith less cosmic

ut of phase is t

f the 12s skyd

anomalies in w

e red lines ar

2012 to discer

he plot denote 

with less than 

 levels settled 

recovery, the

m array was b

kly settled to l

articles and co

using the calib

average numb

d (see Figure 4

c rays during 

that the magne

darks plotted o

which the arr

re the shape o

n from any tr

two anomalie

the usual appl

back to level 3

e 3.6 µm arra

below nominal

evel slightly lo

osmic rays are 

bration observ

ber of affected

4). The trend o

the peak of th

tic fields from 

over time sinc

ay was reset. 

of the predicte

rending chang

es, which occur

lied reverse vo

3.2% higher in

ay quickly sett

l for over a w

ower than it wa

the primary s

vations taken w

d pixels per se

observed in IR

he solar activi

the solar wind

ce beginning o

The median 

ed zodiacal va

e in skydark v

rred on 2014-0

oltage across th

n both channel

tled back to t

week while off

as between the 

sources of radi

with IRAC on

econd has bee

RAC data follo

ity. One possi

d sweep away c

of the Warm 

value was ob

ariation norm

values. 

08-02 and 201

he detectors. A

s. The second 

the same high

f. Once its no

anomalies.  

iation hits on I

nce a week. Du

en established 

ows the inverse

ible explanatio

cosmic rays.10  

Mission. The 

served to retu

malized to the 

5-11-28. The 

After normal o

event caused I

her bias, howe

ormal temperat

IRAC. The nu

uring the miss

as approxima

e of the solar c

on that the cos

vertical 

urn to a 

median 

first one 

operation 

IRAC to 

ever the 

ture was 

umber of 

sion, the 

ately 4-6 

cycle, as 

smic ray 

Proc. of SPIE Vol. 10704  1070427-5
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 1/2/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



20

18

16

14

12

10

Cosm c Ray Statistics

I

fCh2

-.-Ch 1

0

10/1/2009 10/1/2010 10/1/2011 9/30/2012 9/30/2013 9/30/2014 9/30/2015 9/29/2016 9/29/2017 9/29/2018

Date of Observation

 

 

The number of cosmic rays affecting an IRAC image is determined from the calibration skydark measurements of 100s 

frametimes taken once a week, using the same techniques as were preformed in the cryogenic mission.11 The dark frames 

consist of 27 individual images taken in a 3x3 mapping pattern in the “Best NEP dark” region chosen at the beginning of 

the mission. This is within the continuous viewing zone and contained no bright sources that would saturate in 100s 

images. A mosaic image is created from the individual frames of the dark field using outlier rejection to remove 

transients. The individual images are registered and compared with the mosaic to determine the affected pixels per 

second using the number of pixels above a cutoff level (after masking brighter stars in the image). The pipeline also has 

an outlier rejection which removes transient pixels and registers them in a mask file. The number of counts in this mask 

file can be compared and match the cosmic ray statistics.  

 

Figure 4. Average number of pixels per second affected by cosmic rays in the calibration 100s skydarks since the 

beginning of the warm mission. The spike in 2012 is due to a solar flare that occurred during the time the dark 

calibrations were being taken.  

Further discussed in Section 3, the IRAC IST actively monitors solar coronal mass ejection (CME) events that can 

sometimes raise the number of affected pixels by a factor of 10-15 due to the large number of high energy particles 

produced. While IRAC images are always constantly monitored, the IST performs even more careful checks of 

image quality for data taken during several days around the predicted impact time of a CME event on the spacecraft 

to determine whether any observations need to be retaken. 

 

3. IMPACTS OF SOLAR FLARES  

A solar flare is a rapid release of energy in the Sun’s corona and can produce energy across the electromagnetic 

spectrum. A coronal mass ejection (CME), usually the consequence of a solar flare C, are high energy particles that 

travel away from the solar surface. As the relationship between flares and CME’s are still an area of active research, the 

terms “flare” and “CME” are used interchangeably in considering the space weather effects on spacecraft.   

Spitzer was designed with radiation-hardened shielding and tested in an environment based on the original five-year 

mission lifetime. It was thought that the instruments might be susceptible to radiation damage from a strong space 

weather event producing protons with energy levels exceeding 100 MeV and particle flux greater than 100 pfu, so the 

prime mission had a directive that commands be issued to place the spacecraft in a standby mode, powering off the 
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masks from all the data for a week long period surrounding the predicted impact are then examined. Not all impacts 

produce a rise in radiation hits on IRAC, but a report is generated to add along with the other systems that are checked. 

As shown in Figure 6, during the February 2014 CMEs, the number of radiation hits per second measured by IRAC rose 

to over 60 shortly after predicted impact. The observations on IRAC are taken with a variety of exposure times, therefore 

the 12s, 30s, and 100s exposure time frame data are uses to gain a good statistical measure of the radiation hits per 

second. The GOES 13 never measured to 100MeV particles rise above 100 pfu and leveled off, while the number of 

radiation hits measured on IRAC fell quickly within the 24 hours after the maximum. This is most likely due to the 

different locations of the Spitzer and Earth orbits. As Spitzer has drifted farther away from Earth, GOES data are no 

longer directly indicative of the environment directly around the Spitzer spacecraft, but the inclusion of Spitzer 

ephemerides in the models has provided the information needed to directly monitor and trend the solar flare timing.   

 

4. HIGH PRECISION PHOTOMETRY 

Time series observations are used on IRAC to observe temporal variations in relative photometry on timescales from a 

few hours up to more than 20 days for exoplanets, brown dwarfs, and the Active Galactic Nuclei at the Galactic center.  

The first exoplanet observations employed a dithering strategy (intermittently shifting the position of a target on a 

detector array), but observers quickly discovered that the main systematic limiting the precision of photometry is 

changes in position coupled with intrapixel gain variations. The Spitzer Science Center now recommends continuous 

staring without internal re-pointing for any high precision time series observations. The source is placed on a well-

characterized “sweet-spot” on a region of the least responsivity variation6.  It was found the systematics in telescope 

motions and pointing could be characterized in short term drift, long term (>2hr) drift, cloud size, and position 

oscillations which are trended using an archive of every staring observation8. Here we discuss two noted trends that are 

are correlated and seem to have changes associated with the increasing orbit of Spitzer. 

 
4.1 Pointing Oscillations  

The timescale of interesting features in exoplanet observations is of order one hour.  Coincidentally, the battery heater 

originally cycled on roughly one-hour timescales as well.  This heater cycling leads to thermal-mechanical variations, 

which cause ~0.03” position changes of science targets on the IRAC detectors, or a “pointing wobble”.  Because the gain 

varies significantly (several percent compared to hundred parts per million fluctuations from exoplanets) as a function of 

position within a pixel, the resulting gain variations on timescales that are scientifically interesting can be a chief source 

of correlated noise, and thereby make it very difficult to disentangle science from instrument performance.  In response, 

the Spitzer engineering team tightened the heater deadband so that it cycled on a period of approximately 40 minutes 

resulting in a pointing fluctuation of <0.015 arcsec. Separating the instrumental and planetary transit timescales and 

reducing the amplitude of fluctuations, led to increased photometric precision. 

 

4.2 Increasing Pitch Angles  

As the Spitzer mission traveled farther from the Earth in its orbit, the geometry of Spitzer, Earth and the Sun created a 

challenge. The pitch angle is the angle between the normal vector of the solar array and Sun direction vector as seen by 

Spitzer with zero degrees defined as solar panels directly facing the Sun. The spacecraft had to exceed a pitch angle of 

30 degrees for downlinks in November 2013. In January 2016 the pitch angle of 40 degrees was exceeded. As the 

mission operations continue, there is a concern that as pitch angles increased, more area might be exposed to possible 

heating due to light falling on the spacecraft underneath the solar panel. This was coupled with the thermal and power 

constraints due to smaller percentage of illumination upon the solar panels, as well. In anticipation of ever increasing 

pitch angles, operational “toe-dips” were performed approximately 9-12 months before a milestone positon angle of 

42.5, 45.5, and 48.5 degrees were reached, respectively. The spacecraft would pitch over at the desired angle and dwell 

for a given time to test battery usage and recharging. The spacecraft would then return to a pitch angle of 0 degrees to 

recharge the battery. The IRAC IST took advantage of these engineering tests and placed an observation directly after 

the engineering test that contained an 8-10 hour staring observation of a standard star.  
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