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Abstract. We study the first and second variations of volume for Lagrangian

submanifolds in the six-dimensional sphere.

1. Introduction. Let (P, ω) be a symplectic manifold of dimension In. An

^-dimensional submanifold

is called Lagrangian if

By Darboux's theorem P is locally symplectically equivalent to T*Rn. If # is any smooth

function on Rn then

dg:Rn^>T*Rn

defines a (possibly singular) Lagrangian submanifold in T*Rn. Hence the problem of

constructing Lagrangian submanifolds in P is locally trivial. Further, by replacing g by

g 4- ζ where ζ has compact support, one can produce an infinite-dimensional space of

Lagrangian submanifolds which agree with dg(Rn) off a compact set. This situation can

change drastically when P is no longer required to be symplectic, specifically when

dω = Q is no longer required to hold. The six-dimensional sphere is well-known to carry

a nonintegrable almost complex structure with respect to which the standard metric

is Hermitian but not Kahler. With regard to Lagrangian submanifolds in S6 we have

the following remarkable theorem of Ejiri [4].

THEOREM 1.1 (Ejiri). Let i f be a smooth Lagrangian submanifold in S6. Then i f

is minimal

A consequence of Ejiri's theorem and the ellipticity of the equation for minimal

submanifolds is that each component of the space of Lagrangian immersions in S6 is

finite dimensional. Its dimension is bounded by the nullity, i.e. the dimension of the

kernel of the stability operator. We discuss below the relationship of Ejiri's theorem

with the theory of calibrations as developed by Harvey and Lawson [6].

The second variation for minimal Lagrangian submanifolds in Einstein Kahler
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manifolds was developed by Oh and subsequently studied by many authors [9], [2],
[11], [14]. In this case, Hamiltonian variations of the ambient manifold preserve the
property that the submanifold is Lagrangian and the second variation of volume can
be analyzed in the compact case using the spectrum of the Laplacian acting on 1-forms.
In the case of Lagrangian submanifold in the nearly Kahler S6 the Hamiltonian
variations are orthogonal to those variations preserving the property of being Lagrangian
(Lagrangian variations). The stability operator restricted to Hamiltonian variations can
be analyzed using the spectrum of the Laplacian acting on functions while the second
variation for variations orthogonal to the Hamiltonian variations can be studied using
first order operators.

The main results of this paper were obtained while the author was visiting the
Department of Geometry and Topology of the University of Granada. The author
would like to thank that institution for its generous support.

2. Calibrations. Let Xn be a smooth oriented w-manifold and let π: Gk -• X denote
the fibre bundle whose fibre over p e X is the Grassmannian of oriented ^-planes in
TpX. If θeΩk(X), the space of smooth /c-forms on X, then θ defines a map θ: Gk^R
in the obvious way. The comass of θ is defined by

comass(θ): = sup sup <0, π> .
peX πeGκ(X)p

DEFINITION. A calibration θ on X is a smooth, closed differential form of comass 1.

The principal result concerning calibration is the following. If θ is as above, an
oriented fc-dimensional submanifold M in X is called a 0-submanifold if

where TpM denotes the oriented tangent plane at p. If this is the case and M' is any
other oriented fc-submanifold in A ŝuch that M\Mr is a boundary (and dM=dM' if
3M Φ0) then

vol(Af)= ω= ω<vol(Af)
M

and hence M minimizes λ>volume in its homology class.
We let O denote the octonians (Cayley numbers) which are an 8-dimensional

non-commutative, non-associative, normed algebra over the reals. The identification

endows RΊ with the cross product

axb: = Im(b a) a, b e Im O .

We recall that for χeS 6 (l) c R7
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Jχ:TχS
6->TχS

6, a\->χxa

defines a non-integrable almost complex structure on S6(l).
The primary examples of calibrations on R7 were found by Harvey and Lawson

[6]. These are the associative calibration φeΛ3(R7)* defined by

φ(a, ft, c): = <αxft, c> ,

where < , > denotes the usual inner product on RΊ and the coassociative calibration
φeA\RΊY defined by

(1) ψ: = *φ,

where * is the Hodge operator. Let ωχ(a, b): = (Jχa, ft>; a, beTχS
6 denote the Kahler

form of S6.

PROPOSITION 2.1. ForχeS6,
( i ) ωχ = χjφ
(ii) dω = 3φ\s6

(iϋ) (χJψ)(a,b,c) = (axb,Jχc}, a,b,ceTχS
6

(iv) d(χjφ) = 4ω Λω.

PROOF. For a, beTχS
6,

proving (i). The statement (ii) follows from the formula (5.1) of [6]. Since G2<=SΌ(7),
for all <xeG2

oc*φ = α * * φ = * α * φ = * φ = φ ,

from which it follows that

α*(αχJι/O = χJιA, oceG2, χeS6.

Let θ denote the 3-form on S6 defined by

θχ(a, b, c)\ = (axb,χxc} = (ax ft, Jχc} a, ft, c e TχS
6 .

Then since the action of G2 preserves the cross product, we have

Therefore both θ and χjψ are G2-invariant 3-forms on S6 so the equality (iii) need
only be checked at one point, say eu of S6 using a multiplication table for RΊ. This is
left to the reader. To prove (iv), one again uses formula (5.1) of [6] to obtain
d(χ J Φ) = 4ψ IS6. At χ = eγ it is easily checked that ω A ω = φ and the result follows from
the G2-invariance of φ and ω A ω. q.e.d.

Recall that for any submanifold / : M->Sn, the cone CM over M is the manifold
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Mx(0, 1)-»JΓ + 1 , p,t\-+tf(p).

PROPOSITION 2.2. A smooth 3-manifold χ: i f - > S 6 is Lagrangian if and only if the

cone, C<£-+RΊ, is a ψ-subrnanifold.

PROOF. If χ:^^S6 is Lagrangian, then as shown in [4], an orientation on if

can be chosen such that for any pair of orthonormal vectors eί9 e2eTχ££, the set

{eί9 e2, e3: = — J{eγ x e2)} is a positively oriented orthonormal basis for TχJίf. By (iii)

of Proposition 2.1, this means that

(2) (χ J ι/0Ol5 e2, e3) = (e1 x e2, -JJ(e1 x e2)) = 1

on any positively oriented orthonormal basis {eί9 e2, e3) of TχS£. However, if {eί9 e2, e3}

is a positively oriented orthonormal basis of Tχ££, then {χ,eί9 e2, e3} can be regarded

as a positively oriented orthonormal basis of TrχC3f for all r > 0 . It follows that C<£

is a ^-submanifold.

Conversely, if C5£ is a i/^-submanifold then (2) holds for any positively oriented

orthonormal basis {χ, eί9 e2, e3} of TrχCS£. It follows that Je3 is parallel to ex x e2 and

hence Je3 is orthogonal to eu e2 and e3. Therefore e3 is orthogonal to Tx££. By

interchanging ej9j= 1, 2 with e3 one obtains that 5£ is Lagrangian. q.e.d.

COROLLARY 2.3. Ifχ: J?^>S6 is a Lagrangian immersion, then the volume element

on t£ is given by

3. Second variation formula for Lagrangian submanifolds in S6. Let χ:J£-+S6

be a smooth immersion of a Lagrangian submanifold. Let £eΓ(_LJ2?) be the space of

smooth sections of the normal bundle (with compact support if Jδ? is not compact). In

order to consider the second variation of 3-volume, we introduce the following quantities.

Let R denote the curvature tensor of S6 and define

where {eί9 e2, e3} is a local orthonormal frame field on if. If

π : Tse x Tse

is the second fundamental form, define

The second variation of volume is then given by

(3) Λ 2 I ^ Ί = ί Wλξ\
Jse
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Because ^£ is Lagrangian we can write

ς —J v , v t i <*ε

and express the second variation in terms of V. Let Δ : denote the Laplacian acting on

vector fields on J^7, i.e.

3

A1V:=—((δd-\-dδ)V Ϋ = ^ (V̂ V̂  — Vv.e.)K— pV
i = 1

where b and # denote the usual duality operators on ^£ and p is defined by <p F, PF> =

Ric^(F, W). Define

PROPOSITION 3.1.

(4)

where

and ( , ) denotes the L2-inner product of vector fields on if.

PROOF. For A, Be TχS
6 define G(A, B): = AxB-(Ax B, χ>χ. We have

V1/F=7VF+G( , V)

and hence

Using a multiplication table for R'\ (see for example [4]), one sees that each Lagrangian

plane in TS6 is closed under the cross product and is isomorphic to R3 with the usual

vector product. Choosing a basis for Tp5£ such that Vp = \ Vp\e3 gives

t \ G ( e h V)\2 = \ V p \ 2 ( \ e ι x e 3 \ 2 + \ e 2 x e 3 \ 2 ) = 2\Vp\
2.

1

Using Corollary 2.3, we can write

X<JV, V, G(eh V)}=- *dVh(V)= -<curl V, V}
1

and we obtain

(5) | 1 2 2 2

By definition of the adjoint
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(IVJK et ®ej) = </F, l ite, *;)> = <Jej9 U(ei9

using a well-known property of the second fundamental form of a Lagrangian
submanifold, (see (3.5) of [3]). Therefore

j
i,j= 1,2,3 i= 1,2,3

Since S6 has constant curvature 1,

(6) R(A, B)C = (B,C)A-<A,C}B, A,B,CeTS6

from which

(7) (Rξ,ξ)=-3\ξ\2=-3\V\2

follows. From the Gauss equation

(R(A, B)C, E > = <i^(A, B)C, E > + <II(A, C), Π(B, £)> -

and the minimality of ^ , it follows that

(8) <ΪH,ξ>= Σ
i = l , 2 , 3

Combining (3), (5), (7) and (8) gives

, K)-2<curlF, F > - 3 | F | 2 ) * 1

which is the same as (4). q.e.d.

4. Lagrangian-Jacobi fields. Throughout this section χ i ? - ^ 6 will be a
Lagrangian immersion of a closed manifold. The zeros of the stability operator on any
minimal submanifold are called Jacobi fields. On a Lagrangian submanifold in S6, any
variation through Lagrangian submanifolds clearly preserves minimality. Since the
property of being Lagrangian is a first order condition, one expects β to factor.

DEFINITION 4.1. ξeΓ(L£f) will be called a Lagrangian-Jacobi field if

(9) (Lξω)\^0.

Note that (9) is the condition that to first order, the flow of JV restricted to S£
gives a one-parameter family of Lagrangian submanifolds. More generally, it will be
useful to consider the equation

(10) (L J F ω) |^ = ( 3 - A ) * F b , λeR.

PROPOSITION 4.2. Let VGΓT^ solve (10) with λ^O. Then
b
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(ii) δVb=0

(iii) AxV+λ2V=0

(iv) (f + μ)V=0, where μ = λ2-2λ-3

(v) on j£f, Vsolves the steady state Euler equations

d i v F = 0 , d(VjdVb) = 0.

REMARK. A solution of the steady state Euler equations on <£ generates a geodesic

in the group of volume preserving diffeomorphisms of if. We refer the reader to [5]

for details.

PROOF. The equation (i) follows from

using Corollary 2.3. Equation (ii) follows immediately from (i) since δί = — *d*. To

prove (iii), we have by (ii),

A,Vb = ~{dδ + δd)Vb = -δdVb=-*d*dVb= -*d*λ* Vb

= -λ*dVb= -A2** Vb= -λ2Vb .

Equation (iv) follows from (i), (iii) and the definition of β. Finally, (v) follows from

(i) and (ii). q.e.d.

Recall the Hodge decomposition

(11) γ γ

where J f denotes the space of harmonic vector fields. Using the facts that the Laplacian

commutes with both d and δ and that

curl((5τ)* = * dδτ = (* d*)d * τ = (δd * τf

one sees that / preserves the Hodge decomposition. Consequently if VeΓ(TΛ) is

decomposed

using (11) then the second variation can be expressed

(12) δ

Variations of if generated by ξ = JVφ with ^6C°°(«Sf) are called Hamiltonian

variations. In the case of a Lagrangian submanifold in an Einstein-Kahler manifold,

these variations preserve the property that the submanifold is Lagrangian. In the present

case we have shown that if/Fis the variation field of a deformation through Lagrangian

submanifolds, then div V= 0 holds so that
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using the Hodge decomposition. It follows that for Lagrangian submanifolds in S6,

the space of variations through Lagrangian submanifolds is ZΛorthogonal to the space

of Hamiltonian variations.

Define βί to be the restriction of / to {V\δVb = 0}.

LEMMA 4.3.

spectrum(/ 1 )^[-4, oo).

We give two proofs of the lemma below.

PROOF 1. Let Vbe a vector field with δVb = 0. Then

-(V, f,V)= -{VK b

= \\dVb\\2

L2-2(dVb,*Vb)-3\\Vb\\h

> \\dVHh-(\\dVb\\2

L2+\\ ^ | | £ 2 ) - 3 | | Vb\\h

= -4 | |K | |£ 2 .

PROOF 2. Let Cifε denote the truncated cone over S£

Then for every εe(0, 1), CS£t minimizes the 4-volume with respect to its boundary.

Following Simons [13], consider a normal variation of C5£z of the form

where g has compact support in (ε, 1) and ξ is a section of the normal bundle of $£ in

S6. If fc denotes the stability operator of Cifε, then by results of [13],

/ C v = - Λ v , ΛER,

if and only if

where σespectrum(/) and τe{l + (jπ/\ogε)2 \j = 0, 1,2,...}. Since CSfe is minimizing

and hence stable

7 = 0,1,2,...
\logε,

for every ε and hence σ> — 4. q.e.d.

LEMMA 4.4. For μ e ( - 4 , oo) with μ = (λ+ l)(/l-3),

(13) k e r ^ i + μ ) b = ker( —<i+A*)φker( —ί/+(>l —2)*).

PROOF. For divergence free vector fields (β1 + μ) factors
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(14) i

(15)

This shows that the right hand side of (13) is contained in the left hand side. Now

suppose that for some μ> - 4 , (#ί+μ)V=0 and (-d+λ*)Vb: = τφ0. Then

and therefore *τeker( — d+(2 — A)*). Furthermore λφ\ since μ ^ — 4 and then

(2A-2)

follows. q.e.d.

PROPOSITION 4.5. Let χ: i ?->S 6 &e α Lagrangίan immersion of a closed manifold.

Then the nullity of if, Nul(L), and the Morse index satisfy

Nul(JSf) = dim ker(Δ0 + 3) + dim ker( -dί + 3*) + dim ker((S2 + * ) .

Index(^) > X dim ker(Δ0 + λ) + X dim ker( - dί + /I *) + dim H1 ( i f ) .
A<3 -KK3

λ^t 1

(//ere dί and δ2 are respectively the exterior derivative operator restricted to l-forms and

its adjoint.)

5. Circle bundles over complex curves. In this section we apply the results above

to a special class of examples first studied in [3]. We begin with a new proof of a result

of [3].

THEOREM 5.1 (see [3]). Let f:Σ-+P2(4) be a complex curve and let ^Σ^S5 be

the S1 bundle over Σ which is the pull-back of the Hopf fibration. Then after composing

with the totally geodesic inclusion of S5 in S6 given by {x4 = 0}, ££Σ is Lagrangian in S6.

PROOF. Locally / is given by f=[_f] where [F] is a holomorphic, non-zero, C 3

valued function. Then S£Σ is locally given by {eiθF/\F\\eiθeS1} and so the cone over

ifj is locally given by {λF\ λε C*}. This is clearly a complex subvariety of C 3 . Let

j = l , 2 , 3
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denote the Kahler form of C3. Then the form (l/2)ω3 Λ ω 3 calibrates the cone over JŜ .
Using (1) and a multiplication table for /?7, (see for example [4]), one sees that φ is
given by

ψ = aX456Ί -\-dX2s6Ί +"-*2345 + " x l 35 7 ~" " X 4 1 346

where dxijkl: = dx{ A dxj A dxk A dxι. A simple calculation then shows that

— ω 3 Λ ω 3 = ^ | c 3

and so the cone over S£Σ is coassociative. By Proposition (2.2), S£Σ is Lagrangian in S6.

q.e.d.
Let π:S5->P2(4) be the Hopf fibration and let α denote the almost complex

structure of C3. If χ denotes the position vector on S5 c C3, then the vector field Y: = ocχ
on S 5 is tangent to the fibres of π. Let η: = Y^°. Then

dη = 2π*ωp2,

where ωp2 denotes the Kahler form of P2.

The following lemma is well known. We include its proof for completeness.

LEMMA 5.2. The k-th eigenvalues of the Laplacίan on Σ and J£Σ satisfy

λk(J?Σ)<λk(Σ).

PROOF. Let f:Σ-*R be a smooth function. We claim

(16) πJ*{π*f) = Ψf.

Note that

V*f=(π*df)* = (dπ*f)*

and that

Let A e Tp£> with A1Y. Then

since π is a Riemannian submersion. Since π^ is surjective, this proves the claim.
Using (16), we find

d(π */) Λ *jrd(π */) = d(π */) Λ [V^π */] J dV# .

Since $£ is an invariant submanifold of *S5, we have

(17) dV5e = η A — dη = η Aπ*ωΣ
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and so

= -η Λπ*(S7Σf JωΣ)= -η Λπ*(*Σdf).

Therefore

*<?d(π*f) = π*(*Σdf)Λη

and so

d(π */) Λ *<?d(π */) = [π *df /\ π * ( * j ^ ) ] Λ η

= (dfΛ*Σdf)Λη=\\VΣf\\2ωΣΛη.

It follows that

Similarly

and so

2 π | \\VΣf\\2dAΣ=
IΣ

In f2dAΣ=

f2dAΣ

)Σ

Finally, using the max-min characterization of the k-th eigenvalue

λk(JS?)= sup inf
Ui,...,un f-Luj

gives the result. q.e.d.

PROPOSITION 5.3. Let f:Σ^>P2(4) be a compact, complex curve and let φ be an

eigenfunction on Σ with eigenvalue Λ,

AΣφ-\-Λφ = 0 .

Define
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where π\£έ'Σ-+Σ is the projection. Then on 5£Σ,

PROOF. We have

= — λ + (dπ*φ Λη + φdη) — Λ(π*φωΣ)

= — λ+dπ*φ /\η — (2λ± +Λ)(π*φωΣ),

using (17) and the fact that Σ is a complex submanifold of P2. On the other hand,

by (17),

V± JdV<? = (V± Jη)π*ωΣ-η Λ(V± Jπ*ωΣ)

= —λ±π*φωΣ — dπ*φΛη .

The result follows since λ+ solves x2 — 2x — Λ = 0. q.e.d.

Note that if μ+ denotes the eigenvalue of / obtained from Proposition 4.2, then

LEMMA 5.4. The map π* : H\^Σ, R)->Hι(Σ, R) is injective.

PROOF. Let [v] eH1(Σ, R) with π*[v] = 0. Then π*v = df for some smooth function

/ on S£Σ. However

implies that / is S1 -invariant, i.e. there exists a function ft on Σ with π*/i =/. It then

follows that dfγ = v and so [v] = 0 e H\Σ, R). q.e.d.

THEOREM 5.5.

Index(i^) > 1 + 3 X dim ker(ΔΣ + A) + 2 genus(Σ).
0<Λ<3

PROOF. The proof is achieved by combining the previous three results. Each

eigenvalue A on Σ with 0 < / l < 3 contributes 1 to the index by Proposition 5.2 and

contributes 2 to the index by Proposition 5.3. q.e.d.

REMARK 5.6. A result of Yau and Yang [15] states that for any compact, oriented

2-dimensional Riemannian manifold Σ of genus y,

Λ, <
\Σ\

Note that when Σ is a complex curve in P2, \Σ\ = πd where d denotes the degree of

the immersion. It is known that for a fixed value of γ there exist immersions of genus
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γ surfaces into P2 of arbitrarily high degree and hence Λγ can be made arbitrarily
small.
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