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Abstract

We used high-precision radial velocity measurements of FGKM stars to determine the occurrence of giant planets
as a function of orbital separation spanning 0.03–30 au. Giant planets are more prevalent at orbital distances of
1–10 au compared to orbits interior or exterior of this range. The increase in planet occurrence at ∼1 au by a factor
of ∼4 is highly statistically significant. A fall-off in giant planet occurrence at larger orbital distances is favored
over models with flat or increasing occurrence. We measure -

+14.1 1.8
2.0 giant planets per 100 stars with semimajor

axes of 2–8 au and -
+8.9 2.4
3.0 giant planets per 100 stars in the range 8–32 au, a decrease in occurrence with increasing

orbital separation that is significant at the ∼2σ level. We find that the occurrence rate of sub-Jovian planets (0.1–1
Jupiter masses) is also enhanced for 1–10 au orbits. This suggests that lower-mass planets may share the formation
or migration mechanisms that drive the increased prevalence near the water–ice line for their Jovian counterparts.
Our measurements of cold gas giant occurrence are consistent with the latest results from direct imaging surveys
and gravitational lensing surveys despite different stellar samples. We corroborate previous findings that giant
planet occurrence increases with stellar mass and metallicity.

Unified Astronomy Thesaurus concepts: Exoplanets (498); Exoplanet astronomy (486); Exoplanet catalogs (488);
Surveys (1671); Radial velocity (1332); Exoplanet detection methods (489); Extrasolar gaseous planets (2172);
Extrasolar gaseous giant planets (509)

1. Introduction

Expanding and characterizing the population of known

exoplanets with measured masses and orbital periods is crucial

to painting a more complete picture of planet formation and

evolution. A census of diverse exoplanets sheds light on worlds

radically different from Earth and can provide insight into how

these planets—and those orbiting the Sun—formed. Ground-

based radial velocity (RV) surveys measure the Doppler shifts

of stellar spectra to discover exoplanets and characterize their

orbits and masses. These surveys have provided landmark

discoveries that shaped our understanding of the formation and

architectures of other worlds (e.g., Mayor & Queloz 1995;

Marcy et al. 2002; Tamuz et al. 2008).

Doppler planet searches take time to accumulate the time

series measurements that trace out planetary orbits. The Keck

Planet Survey (Cumming et al. 2008) used 8 years of RVs from

Keck–HIRES (Vogt et al. 1994) to make the first broad

measurement of giant planet occurrence ( M i Msin 0.1 J).

This survey discovered an increase in the abundance of giant

planets for orbits near the water–ice line and found that about

10% of Sunlike stars have giant planets with a semimajor axes

of <3 au. The survey only reported planet detections for orbital

periods shorter than 2000 days, the observational baseline of

the survey. Extrapolating based on the detection of partial

orbits, Cumming et al. (2008) estimated that ∼20% of such

stars have a giant planet orbiting within 20 au.
Other teams of astronomers have surveyed the northern and

southern skies in parallel with the Keck search. Mayor et al.

(2011) used 8 years of precise HARPS RVs supplemented by

additional RVs from CORALIE to measure occurrence patterns
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in the population of giant planets that are similar to those
described above. They found that the planet mass function is
“bottom heavy.” That is, low-mass planets (0.3–30 M⊕) are
significantly more common than giant planets, a finding
consistent with measurements from Keck Observatory by
Howard et al. (2010). Since then, the HARPS team has
continued to discover increasingly longer-period and lower-
mass planets (Udry et al. 2017; Rickman et al. 2019). Two
other “legacy” planet searches have contributed significantly to
our knowledge of giant planets. Wittenmyer et al. (2020a) used
data from a subset of the stars surveyed by the 18 year Anglo-
Australian Planet Search, which has also uncovered a number
of cold giant planets (Wittenmyer et al. 2017; Kane et al. 2019),
to measure a significant increase in giant planet occurrence at
∼1 au and a constant occurrence for orbits in the range
∼1–6 au. Similarly, the McDonald Observatory planet search
has been operating for more than 20 years using the 2.7 m
Harlan J. Smith Telescope, and has contributed valuable
discoveries of long-period giant planets (e.g., Robertson et al.
2012; Endl et al. 2016; Blunt et al. 2019).

We are now in the fourth decade of Doppler planet searches.
As we begin to discover planets with orbital periods
comparable to Saturn’s, we can answer questions that require
a rigorous accounting of giant planets spanning a large range of
orbital distances. What is the mass versus semimajor axis
distribution of planets out to 10 au? How abundant are cold gas
giants beyond the water–ice line, and what can this abundance
tell us about planet formation across protoplanetary disks?

The California Legacy Survey (CLS; Rosenthal et al. 2021)
is uniquely suited for this work. As an unbiased radial velocity
survey of 719 stars over three decades, the CLS is an excellent
sample for a variety of occurrence measurements, particularly
for cold gas giants. In this paper, we explore giant planet
occurrence as a function of orbital separation. In Section 2, we
review the star and planet catalog of the CLS. In Section 3, we
describe our methods for computing planet occurrence.
Section 4 describes the patterns of planet occurrence that we
observe in the sample. In Section 5, we discuss our findings
and their context. We summarize our work in Section 6.

2. Survey Review

The CLS is a Doppler search for planets orbiting a well-
defined sample of nearby FGKM stars conducted by the
California Planet Search team (Howard et al. 2010). Paper I in
this series (Rosenthal et al. 2021) describes the CLS in detail,
including the stellar sample, the search methodology, and the
resulting planet sample upon which this paper and forthcoming
works in the CLS paper series build. The CLS stellar sample
was selected specifically to make the measurements reported
here—planet occurrence measurements, especially of giant
planets with orbits out to 10 au and beyond—and it
approximates a random sample of nearby stars. In particular,
stars were selected for CLS observations independent of
whether planets were known to orbit them. Stars were also
selected independent of their metallicity or other factors that
might make them more or less likely to harbor planets.

CLS builds on Doppler measurements from the Keck Planet
Search (Cumming et al. 2008), a touchstone Doppler survey of
585 stars observed with HIRES at the W. M. Keck Observatory
during 1996–2004. We continued to observe those stars and an
additional 134 stars at Keck Observatory through 2020. CLS
also includes observations of a subset of these stars made with

the Hamilton spectrometer at Lick Observatory during
1988–2011, high-cadence Keck–HIRES observations of 235
magnetically inactive stars as part of the Eta-Earth Survey
(Howard et al. 2010), and high-cadence Lick–APF observa-
tions of 135 of those stars (Fulton et al. 2016; Hirsch et al.
2021). The average star has been observed for 22 years and has
71 RVs with a precision of ∼2 m s−1 . While these stars do not
have homogeneous observing histories, our search methodol-
ogy accounts for this by incorporating the search completeness
of each star’s individual data set. (A Doppler survey that is
completely homogeneous in the number, precision, and
temporal spacing of measurements is infeasible given the three
decade history of this planet search—indeed, this survey spans
an era longer than the time during which extrasolar planets
orbiting Sunlike stars have been known!) By the metric of
“Doppler survey étendue” (number of stars surveyed × typical
time series duration), CLS is the largest planet search to date at
the ∼m s−1 level.
Our search methodology (described in Rosenthal et al. 2021)

involves an automated, iterative, periodogram-based search for
Keplerian signals with uniform vetting to identify false
positives. This methodology detected 178 planets orbiting the
719 stars in the CLS stellar sample. The algorithm is sensitive
to orbital periods much longer than the baseline of our data set,
with the longest-period signals detected as partial orbits.
The search was also sensitive to orbital segments only seen

as linear and parabolic trends in an RV time series. There were
only six such detections in our sample of trends that are not
associated with known stellar binaries and are potentially
consistent with planetary mass companions. Thus, nearly all
orbital signals were resolved or partially resolved as Keplerian
signals.
To characterize survey completeness for each star in the

survey, we conducted injection-recovery tests of synthetic
Doppler planet signals over a range of injected masses, orbital
periods, and orbital geometries. Detected planets and CLS
survey completeness are shown in Figure 1. We refer the reader
to Rosenthal et al. (2021) for the full stellar sample and planet
catalog.
The CLS stellar sample has a median metallicity of

[Fe/H] = 0.0 dex, a median stellar mass of 1.0Me, and a
small number of evolved stars (subgiants). These are good
heuristics for verifying that we successfully constructed a blind
occurrence survey, since a bias toward known giant planet
hosts could manifest as a metal-rich sample (Santos et al. 2004;
Fischer & Valenti 2005), a particularly massive sample, or an
excess of evolved stars (Johnson et al. 2011).

3. Methods

The primary goal of this work is to measure planet
occurrence. Many studies of RV or transit surveys use the
intuitive occurrence measurement method known as “inverse
detection efficiency” (Howard et al. 2012; Petigura et al. 2013).
According to this procedure, one estimates occurrence in a
region of parameter space by counting the planets found in that
region, with each planet weighted by the local search
completeness. One can measure the search completeness map
of a survey by injecting many synthetic signals into each data
set and computing the fraction of signals in a given region that
are recovered by the search algorithm in use. Inverse detection
efficiency is actually a specific case of a Poisson likelihood
method, in which one models an observed planet catalog as the

2
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product of an underlying Poisson process and empirical
completeness map (Foreman-Mackey et al. 2014). This can
be done with a parametric occurrence rate density model, like a
broken power law, or a nonparametric density model, with a
piecewise-constant step function. In this paper, we used the
Poisson likelihood method to model the occurrence of giant
planets, taking measurement uncertainty into account.

We used the hierarchical Bayesian methodology outlined
in Hogg et al. (2010) and Foreman-Mackey et al. (2014)
to evaluate our occurrence likelihood. Given an observed
population of planets with orbital and M isin posteriors {ω}

and associated survey completeness map Q(ω), and assuming
that our observed planet catalog is generated by a set of
independent Poisson process draws, we evaluated a Poisson
likelihood for a given occurrence model Γ(ω|θ), where Γ is an

occurrence density
( ) ( )

d N

d a d M iln ln sin

2

and θ is a vector of model

parameters. The observed occurrence ˆ ( ∣ )w qG of planets in our
survey can be modeled as the product of the measured survey
completeness and an underlying occurrence model,

ˆ ( ∣ ) ( ) ( ∣ ) ( )w q w w qG = GQ . 1

The Poisson likelihood for an observed population of objects
is

ˆ ( ∣ ) ( )
ˆ ( ∣ ) ò w q= Gw q w- G

=

 e , 2
d

k

K

k

1

where K is the number of observed objects, and ωk is a vector

of parameters that completely describe the kth planet’s orbit. In

our case, the two relevant parameters are M isin and semimajor

axis a, taken from the broader set that includes eccentricity,

time of inferior conjunction, and argument of periastron. The

Poisson likelihood can be understood as the product of the

probability of detecting an observed set of objects (the product

term in Equation (2)) and the probability of observing no

additional objects in the considered parameter space (the

exponentiated integral). Equations (1) and (2) serve as the

foundation for our occurrence model but do not take into

account uncertainty in measurements of planetary orbits and

minimum masses. In order to do this, we used RadVel and

emcee to empirically sample the orbital posteriors of each

system (Foreman-Mackey et al. 2013; Fulton et al. 2018). We

hierarchically modeled the orbital posteriors of each planet in

our catalog by summing our occurrence model over many

posterior samples for each planet. The hierarchical Poisson

likelihood is therefore approximated as

ˆ ( ∣ )

( ∣ )
( )

ˆ ( ∣ )  åò w q
w a

»
Gw q w- G

= =

 e
N p

1
, 3

d

k

K

k n

N
k
n

k
n

1 1

k

where Nk is the number of posterior samples for the kth planet

in our survey and wk
n is the nth sample of the kth planet’s

posterior. p(ω|α) is our prior on the individual planet

posteriors. We placed linear-uniform priors on M sin i and

log-uniform priors on a. We used emcee to sample our

hierarchical Poisson likelihood.
We used two different occurrence frameworks to model our

planet population. The first is a nonparametric model across
bins uniformly spaced in ln(M sin i) and ln(a), with a set
of steps Δ of height θ. We define this framework with the
occurrence function

( ∣ ) ∣ ( )w q wqG = Î D . 4N n n

The second framework is a broken power law as a function
of semimajor axis, defined with the function

( ∣ ) ( ) ( ) ( )( )b gG = -b - g
a C a C a e, , , au 1 , 5B

a a
0

0

where C is a normalization constant, β is the occurrence power-

law index beyond the breaking point, a0 determines the

semimajor axis location of the breaking point, and β+ γ is the

power-law index within the breaking point. This model

assumes a giant planet mass function that does not change

with respect to semimajor axis. We fit this model to our

Figure 1. California Legacy Survey planet catalog and survey-averaged search completeness contours in semimajor axis and M isin ; 3% and 1% search completeness
contours are highlighted in white.
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population in order to explore whether giant planet occurrence

falls off beyond the water–ice line.

4. Results

4.1. Enhancement for Giant Planets

Figure 2 shows occurrence rates as a function of semimajor
axis for planets with masses between 30 M⊕ and 6000 M⊕,
derived using the nonparametric model described in Section 3
and assuming uniform occurrence across ln(M isin ). We
confirmed the previous result from Wright et al. (2009),
Cumming et al. (2008), Fernandes et al. (2019), and
Wittenmyer et al. (2020a) that giant planet occurrence is
enhanced by a factor of four beyond 1 au compared to within
1 au. Specifically, planets more massive than 30 M⊕ are 2–4
times more common at orbital distances between 1–3 au
relative to 0.1–0.3 au. Using our broken power-law model,

we find a median power-law slope inside the break of -
+0.72 0.20
0.16,

which is 2σ higher than the power-law slope measured by
Cumming et al. (2008) (0.26± 0.1). This difference is likely
caused by the single power-law model being pulled to lower
values due to neglecting a flattening or turnover in occurrence
at long orbital periods since Cumming et al. (2008) was limited
to planets orbiting inside 3 au.

4.2. Distribution of Giant Planets beyond 3 au

Due to low completeness beyond our observational base-
lines, our occurrence results beyond 10 au are highly uncertain.
However, we can estimate occurrence trends with the broken
power-law model described in Section 3. Figure 3 shows the
broken power-law results juxtaposed with the nonparametric
results, and Figure 4 presents the posteriors for the parametric

model parameters. The medians and 68th percentile credible
intervals for the broken power-law model are listed in Table 1.
Both assume uniform occurrence across ln(M isin ). We find
that 99.4% of the posterior samples are consistent with a
plateauing or declining occurrence rate beyond a peak around

-
+3.6 1.8
2.0 au. We find that the power-law index beyond the peak

is b = - -
+0.86 0.41
0.41. This suggests a much shallower decline

relative to the estimates of Fernandes et al. (2019) but is
also potentially discrepant with the constant prediction of
Wittenmyer et al. (2020a), as our model still measures a

Figure 2. Nonparametric occurrence rates for semimajor axes of 0.03–30 au for planets with minimum masses from 30–6000 M isin , assuming uniform occurrence
across ln(M isin ). The dashed blue line represents a planet count in each semimajor axis bin without correcting for completeness, bold lines and dots show the
maximum posterior values for the Poisson likelihood model, vertical lines represent 15.9%–84.1% confidence intervals (except for the last bin, which is not separated
from zero and shows 0–68.2%), and transparent steps show draws from the occurrence posterior. We see a clear enhancement around 1–10 au, and a tentative fall-off
beyond that range.

Figure 3. Our broken power-law model, juxtaposed with our nonparametric
model and measurements from Fernandes et al. (2019) and Wittenmyer et al.
(2020a). The transparent curves represent draws from the broken power-law
posterior. We find that the power-law index beyond the break is ∼2.5σ
separated from zero, implying an occurrence fall-off beyond the water–ice line.
Cumming et al. (2008) performed a power-law fit to the occurrence rates of
planets orbiting only within 3 au; the light dotted blue line represents an
extrapolation to wider separations.
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fall-off. The results of our nonparametric fit are less clear, with

integrated occurrence rates of -
+14.1 1.8
2.0 and -

+8.9 2.4
3.0 giant planets

per 100 stars between 2–8 au and 8–32 au respectively. This
suggests a fall-off in occurrence beyond 8 au with 1.5σ
confidence.

4.3. Comparing Sub- and Super-Jovians

Figure 5 compares nonparametric occurrence rates for giant
planets more and less massive than 300 M⊕. We find a
quantitatively similar occurrence enhancement around 1–10 au
for both the sub-Jovian-mass and Jovian-mass planets. However,
we lack the sensitivity to measure the occurrence rate of sub-
Jovian-mass planets beyond 10 au, to assess whether they exhibit
the fall-off in occurrence at large orbital separations seen when
examining occurrence across both mass ranges. The sub-Jovian
planets are more common than the super-Jovian planets across a
wide range of separations, particularly beyond the water–ice line.
We find a similar enhancement for sub-Saturns below 150 M⊕,
implying that this occurrence enhancement is independent of
planet mass.

We more concretely measured occurrence as a function of
mass by performing a nonparametric fit to our sample within
1–5 au. Figure 6 shows occurrence as a function of M isin

within 30–3000 M⊕, in four steps. This figure shows that our

assumption of a uniform ln(M isin ) distribution beyond the ice
line is valid up to 900 M⊕, but the distribution falls off with
∼2σ significance above 900 M⊕. If this is also true beyond
5 au, where low completeness prevents us from making a
similar measurement, then we may be underestimating broad
giant planet occurrence in our lowest-completeness region of
parameter space, beyond 10 au. This is because our only
detections in that regime are more massive than 300 M⊕, and
all but one of them are more massive than 900 M⊕.

4.4. Occurrence with Respect to Stellar Mass and Metallicity

In addition to measuring occurrence with respect to semimajor
axis and M isin , we measured the broad occurrence rate of giant
planets more massive than 100 M⊕ and within 1–5 au with
respect to host-star mass and metallicity. We chose a lower limit
of 100 M⊕ instead of 30 M⊕ in order to restrict our analysis to
search-complete regions within 1–5 au, since 30 M⊕ planets are
effectively undetectable beyond 3 au. For each of these two
stellar properties, we computed occurrence across six divisions,
in steps of 0.2 Me across 0.3–1.5 Me and 0.15 dex across
−0.5–0.4 dex respectively. Figure 7 shows occurrence with

Figure 4. Broken power-law posterior. C is a normalization constant, β is the
power-law index beyond the break, a0 determines the location of the break in
units of au, and β + γ is the power-law index within the break. The index
beyond the break β is ∼ 99.1% separated from zero.

Table 1

Broken Power-law Model Parameters

Parameter Value

C -
+350 220
580

β - -
+0.86 0.41
0.41

a0 -
+3.6 1.8
2.0 au

γ -
+1.59 0.33
0.36

Figure 5. Comparison between sub- and super-Jovian occurrence. Steps and
dots show maximum posterior values, and vertical lines show 15.9%–84.1%
confidence intervals. The sub-Jovians are consistently more common than the
super-Jovians, and both populations are enhanced beyond 1 au. Combining
these two populations produces the same trends seen when we assume uniform
occurrence across all masses.

Figure 6. Planet occurrence within 1–5 au with respect to M isin . Steps and
dots show maximum posterior values, and vertical lines show 15.9%–84.1%
confidence intervals. The mass function is constant within 30–900 M⊕, and
falls off beyond 900 M⊕.
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respect to host-star mass, while Figure 8 shows occurrence with
respect to host-star [Fe/H]. Both of our measurements agree
with prior results. Johnson et al. (2010), whose stellar sample
was excluded from CLS due to its bias toward giant planet hosts,
measured giant planet occurrence across stellar mass and found
an increase in occurrence with increasing stellar mass beginning
near 1 Me. Wittenmyer et al. (2020b) independently found an
increase in giant planet occurrence beyond 1 Me. We see the
same phenomenon in our sample, as presented in Figure 7.
Similarly, Fischer & Valenti (2005) found that giant planet
occurrence increases with increasing [Fe/H] beyond 0.1 dex, as
did Reffert et al. (2015) and Jones et al. (2016). We see the same
transition near 0.1 dex in Figure 8.

5. Discussion

5.1. Comparison to Previous RV Surveys

The last few years have seen a number of RV studies
examining the population of long-period planets. Fernandes et al.
(2019) probed planet occurrence as a function of orbital period
by extracting planetary minimum masses and periods, as well as
completeness contours, from a catalog plot shown in Mayor
et al. (2011), which presented a HARPS (Mayor et al. 2003) and
CORALIE (Baranne et al. 1996) blind RV survey of 822 stars
and 155 planets over 10 years (corresponding to a 4.6 au circular
orbit around a solar-mass star). Mayor et al. (2011), who did not
publish their HARPS and CORALIE RVs, measured giant
planet occurrence as a function of orbital period out to 4000
days, in the range of the water–ice line. Fernandes et al. (2019)
pushed out to low-completeness regimes and estimated a sharp
fall-off in occurrence beyond the water–ice line. They measured
an integrated occurrence rate of 1.44± 0.54 giant planets
(0.1–20 MJ) per 100 stars for separations between 3.8 and
7.1 au. Our results indicate a much higher occurrence rate for the
same planets at those separations: -

+15.5 3.0
3.2 giant planets per 100

stars. The treatment of partial orbits in Mayor et al. (2011) is
unclear, and they only measured occurrence with respect to
orbital period out to 3000 days (∼4 au). If Mayor et al. (2011)
underreported partial orbits beyond this period in their sample or
overestimated sensitivity to partial orbits, then that could explain

the large discrepancy between this work and Fernandes et al.
(2019) at separations beyond 10 au.
Dulz et al. (2020) fit model distributions of planets to

occurrence rates measured from Kepler and previous RV
surveys. Although their constraints on Jovian-mass planets
were relatively weak, they found that the occurrence of
Neptune-mass and smaller planets must fall off beyond ∼5 au
due to dynamical constraints. The fact that these two classes of
planets share similar demographical features may suggest a
common formation pathway.
In contrast, Wittenmyer et al. (2020a), which drew from the

Anglo-Australian Planet Search (Tinney et al. 2001) to
construct a blind survey of 203 stars and 38 giant planets over
18 years, found that giant planet occurrence is roughly constant
beyond the water–ice line, out to almost 10 au. Wittenmyer
et al. (2020a) report an occurrence rate of -

+6.9 2.1
4.2 giant planets

>0.3 MJ per 100 stars with periods between 3000 and 10,000
days (≈4–9 au). Our integrated occurrence rate in the same
region of parameter space is slightly higher at -

+12.6 2.0
2.6 giant

planets per 100 stars but it is consistent to within 1σ with the
Wittenmyer et al. (2020a) result.

5.2. Comparison to the Kepler Survey

Foreman-Mackey et al. (2016) performed an automated search
for long-period transiting exoplanets in a set of archival Kepler
light curves of G and K stars. For planets between 1.5–9 au and
0.01–20 MJ and using a probabilistic mass–radius relationship
drawn from Chen & Kipping (2016), they found an occurrence

rate density of
( ) ( )

= 0.068 0.019
d N

d a d Mln ln

2

. We applied our

occurrence model to the same parameter space and found

( ) ( )
= 0.0173 0.0022

d N

d a d M iln ln sin

2

. The Kepler measurement is

2.66σ separated from ours. We are far less sensitive to planets in
the 0.01–0.1 MJ regime than Foreman-Mackey et al. (2016); this
may partly explain the discrepancy in our results.

5.3. Comparison to Direct Imaging Surveys

RV surveys have recently begun to approach baselines long
enough to detect and place limits on the frequency of planets

Figure 7. Occurrence of giant planets more massive than 100 M⊕ and within
1–5 au as a function of host star mass, in six splits. Steps and dots show
maximum posterior values, and vertical lines show 15.9%–84.1% confidence
intervals. There is an increase in occurrence beyond roughly 1 Me, which is in
agreement with Johnson et al. (2010)ʼs original measurement of giant planet
occurrence vs. host-star mass.

Figure 8. Occurrence of giant planets more massive than 100 M⊕ and within
1–5 au as a function of host star metallicity, in six splits. Steps and dots show
maximum posterior values, and vertical lines show 15.9%–84.1% confidence
intervals. There is a clear increase in occurrence beyond roughly 0.1 dex, which
is in agreement with Fischer & Valenti (2005)ʼs original report of a correlation
between giant planet occurrence and host-star metallicity.
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like those detected by direct imaging. One caveat is that direct
imaging surveys usually target stars younger than 100Myr,
while RV surveys generally target stars older than 1 Gyr.
Young planets retain significant heat from their formation and
are bright in the infrared wavelengths covered by direct
imaging surveys. However, young stars also tend to be active
and rapidly rotating, which makes precise RV work difficult.
Because of this, there is minimal overlap between planets that
have been detected by direct imaging and those that have been
detected by RV measurements.

We can still compare rates across these detection methods by
making the assumption that giant planet occurrence does not
change as host stars age beyond ∼10 Myr, once protoplanetary
disks have dissipated. We compared our occurrence model to
the results of two direct imaging surveys of nearby stars. Biller
et al. (2013) imaged 80 stars in nearby moving groups and
detected a small number of brown dwarf companions but no
planetary-mass companions. They used stellar evolution and
planet formation models to estimate constraints on cold giant
occurrence from their nondetections and sensitivity. More
recently, Nielsen et al. (2019) imaged 300 stars and detected six
planets and three brown dwarfs. Figure 9 compares these
results to our occurrence measurements in their respective
regions of parameter space. Our measurements are compatible
with the limits placed on planets with masses 1–20 MJ and
separations between 10–50 au by Biller et al. (2013), depend-
ing on their assumed stellar evolutionary model that determines
the expected brightness of young giant planets. Our measure-
ment for planets with masses 5–14 MJ orbiting between
10–100 au is in excellent agreement with the results of Nielsen
et al. (2019). The only shared quality of our modeling methods
is a Poisson counting likelihood. With the caveat of small
number statistics, this is a remarkable benchmark for compar-
ing exoplanet occurrence across independent search methods.

5.4. Comparison to Gravitational Microlensing Surveys

We compare our model to the microlensing surveys of Cassan
et al. (2012) and Clanton & Gaudi (2016). Like all gravitational
lensing surveys, these studies assume a broad prior for stellar
type based on Galactic observations, a prior that peaks in the

M dwarf range. Our planet-hosting stars have a much higher
median mass than this range, but since the gravitational lensing
estimates come purely from a Galactic model prior, we chose to
perform this broad comparison across stellar masses with the
knowledge that the mass range for the lensing numbers is poorly
constrained. Figure 10 shows that our estimates agree with broad
constraints from the pure lensing survey (Cassan et al. 2012). On
the other hand, the constraints of Clanton & Gaudi (2016)
strongly disagree with our planet occurrence measurement in the
same parameter box. This may be due to that study having a
significantly better constrained sample of M dwarfs, which
would separate their stellar sample from our broader FGKM
sample. Endl et al. (2006), Bonfils et al. (2013), and Montet et al.
(2014) performed independent RV surveys of M dwarfs and all
showed that M dwarfs have a significantly lower giant planet
occurrence rate than more massive stars. This implies that a
survey of M dwarfs should yield a lower giant planet occurrence
rate than a broad survey of FGKM stars, and this is exactly what
we see in our comparison to Cassan et al. (2012).
The MOA-II microlensing survey (Suzuki et al. 2016) found

that the population of planets discovered by that survey was
best fit by a broken power-law model. A single power law (e.g.,
Cumming et al. 2008) was strongly disfavored. This showed
that the occurrence rates of cold, ∼Neptune-mass planets must
reach a maximum and fall off beyond a few astronomical units,
which is in excellent agreement with our results for slightly
more massive planets.

5.5. Implications for Planet Formation

Cumming et al. (2008) first identified an enhancement in the
occurrence rate of giant planets beyond orbital periods of ∼300
days. We expect such enhancements based on planetary migration
models (Ida & Lin 2004). The orbital period distribution in
Cumming et al. (2008) predicted a smooth rise in occurrence
toward longer orbital periods, but we observed a sharp transition
around 1 au, as seen in Figure 2. Ida & Lin (2008) later suggested
that additional solid materials due to ices in the protoplanetary
disk could augment the formation of gas giant planets and cause a
rapid rise in the occurrence rate of these planets beyond the water–
ice line.

Figure 9. Occurrence rate comparison to direct imaging studies. Left: frequency of cool, massive companions with the direct imaging study of Biller et al. (2013).
While they did not detect any planets in their survey they were able to put upper limits on the frequency of companions using assumptions of either hot-start (COND)

or cold-start (DUSTY) models for planetary formation and infrared brightness. Right: same as left, but compared with the results of Bowler et al. (2015) and Nielsen
et al. (2019) for the mass and separation limits specified in the x-axis label. The gray shading represents the 95% upper limit on occurrence from Bowler et al. (2015).
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If increased solids near and beyond the ice line cause a sharp
rise in the occurrence rate, then we might expect this rise to be
more well-defined when looking in a unit more closely related
to the temperature in the protoplanetary disk. In Figure 11, we
plot the occurrence rate as a function of stellar light intensity
relative to Earth. The occurrence rate with respect to flux is
qualitatively similar to the rate with respect to orbital
separation. We do not see strong evidence that the occurrence
rate enhancement is any more localized in terms of stellar light
intensity relative to Earth. The decline in occurrence for fluxes
less than that received by the Earth from the Sun looks more
convincing, but all except for the one bin with the highest
occurrence near 1 au are consistent with a constant occur-
rence rate.

We can separate the puzzle of gas giant formation into two
components: the growth of solid cores that are large enough
to undergo runaway gas accretion, and the process of gas
accretion onto solid cores. It is currently unclear whether giant
planet occurrence increases beyond the ice line because cores
form more easily in this region, or because conditions are more

favorable for rapid gas accretion onto solid cores. A number of
studies (e.g., Morbidelli et al. 2015; Drążkowska & Alibert
2017; Schoonenberg & Ormel 2017) have argued that that core
growth should be enhanced beyond the ice line. If the solid
grain sizes and densities beyond the ice line are enhanced
during the earliest stages of planet formation, it would facilitate
pebble clumping that leads to planetesimal formation and also
result in higher pebble accretion rates onto the growing core
(e.g., Suzuki et al. 2018; Bitsch et al. 2019).
It is also possible that gas giants are more common beyond

the ice line because it is easier for cores to rapidly grow their
gas envelopes in this region. The rate at which the growing
planet’s envelope can cool and contract (hence accreting more
gas) depends sensitively on its envelope opacity (e.g., Bitsch &
Savvidou 2021). In a recent study, Chachan et al. (2021) used
dust evolution models to study the effect of dust opacity and
dust-to-gas ratio on giant planet formation in the epoch
immediately following the end of core formation. They found
that, as the disk evolves, decreasing dust opacity beyond the
water–ice line allows for higher gas accretion rates in this
region.
Ida et al. (2018) recently updated their models with an

improved treatment of Type II migration. This mechanism
would produce a broad semimajor axis distribution with many
giant planets migrating inward to separations less than 1 au.
However, Fernandes et al. (2019) show that this model does not
agree well with the occurrence contrast between the peak and
the inner regions of these systems. Our results are in close
agreement with those of Fernandes et al. (2019) for separations
less than 3 au. The multi-core accretion models of Mordasini
(2018) are also in good agreement with the overall shape of
the semimajor axis distribution, but they underestimate the
absolute occurrence rate of giant planets. This could be due to
the finite number of cores injected into their simulations.
One common theme among planet formation models of gas

giants is that protoplanets tend to migrate inward, all the way to
the inner edge of the disk, on timescales much shorter than the
gas dissipation timescale. This tends to produce an enhance-
ment of occurrence closer to the star and/or many planets being
engulfed by the host star. Jennings et al. (2018) attempt to solve

Figure 10. Left: occurrence rate comparison with the microlensing survey of Cassan et al. (2012). We plot the 1σ limits from Cassan et al. as the shaded blue region.
The occurrence rate posterior from this work is plotted in black. Right: occurrence rate comparison with the combined analysis of Clanton & Gaudi (2016). The
occurrence rate posterior from this work is plotted in black. The 1σ limits from Clanton & Gaudi are indicated by the shaded red region. Clanton & Gaudi combine
constraints from direct imaging, microlensing, and previous radial velocity studies.

Figure 11. Analogous to Figure 2, occurrence with respect to stellar light
intensity instead of orbital separation. Here we see a similar enhancement in the
occurrence rate of giant planets where the insolation flux is equal to that of
Earth and tentative evidence for a fall-off in occurrence just beyond that.
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this issue by simultaneously modeling the effects of photo-
evaporation and viscous evolution on the gas disk. They find
that, depending on the dominant energy of the evaporating
photons, this could clear gaps in the disk that halt Type I
migration and create a pile-up of planets at orbital separations
between 0.8–4 au. They showed that this can produce very
strong and narrow enhancements near certain orbital separa-
tions, but it is conceivable that the shape of the final semimajor
axis distribution would actually be driven by the spectral
energy distributions of host stars during the early years of their
formation.

Hallatt & Lee (2020) also proposed gap formation in the
protoplanetary disk shortly after the formation of gas giant
planets as a mechanism to slow or halt migration at preferred
orbital separations. Their model requires that the giant planets
that form further out in the disk be more massive in order to
reproduce the observed enhancements. We expect this to be the
case as long as the opacity of the disk declines at larger orbital
separations.

The observed enhancement in the occurrence rate of sub-
Jovian planets near 1–10 au, seen in Figure 5, suggests that the
processes that drive the formation and pile-up of planets at
those orbital distances also apply to these lower-mass planets. It
appears just as likely for a gaseous planet to undergo runaway
accretion and grow into a Jovian planet as it is to halt that
runaway accretion process early and remain in the sub-Saturn
regime.

Unfortunately, it is difficult to extract significant constraints
on planet formation models from semimajor axis distributions
alone. Future planet catalogs produced by Gaia and the Roman
Space Telescope will help to measure the precise shape of the
occurrence enhancement around 1 au with planet samples
several orders of magnitude larger, but the stellar samples will
be different from ours. We plan for future works in this series
to analyze the host-star metallicity, eccentricity, and multi-
plicity distributions of our sample, in the hope of uncovering
evidence that discriminates between different planet formation
models.

6. Conclusion

In this work, we utilize the catalog of stars, RV-detected
planets, and completeness contours from Rosenthal et al.
(2021) to measure giant planet occurrence as a function of
semimajor axis. We apply a hierarchical Bayesian technique to
incorporate measured search completeness and uncertainties in
our observations into uncertainties in our occurrence rates. Our
results are consistent with previous studies that have found a
strong enhancement in the occurrence rates of these planets
around 1 au.

We find that the occurrence of planets less massive than
Jupiter (30�M isin � 300 M⊕) is enhanced near 1–10 au in
concordance with their more massive counterparts. We find that
a fall-off in giant planet occurrence at larger orbital distances is
favored over models with flat or increasing occurrence, with
2.5σ confidence from our broken power-law model and with
1.5σ confidence from our nonparametric model. Additionally,
our occurrence measurements beyond 10 au strongly agree with
those derived from direct imaging surveys.

Finally, we lay out the methodology and groundwork for
future studies of giant occurrence as a function of planet and
host-star properties. With these tools, we plan to study the
occurrence rates of giant planets in particular configurations.

Paper III in the CLS series will examine the relationship
between giant planets and smaller companions, while Paper IV
will split our sample into single-giant and multiple-giant
systems and investigate the differences and commonalities
between these two groups. These undertakings may provide
new insight into the formation and evolution of this class of
planets that played a crucial role in sculpting the final
architecture of our own solar system.
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