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ABSTRACT
Monitoring of environmental phenomena with embedded net-
worked sensing confronts the challenges of both unpredictable
variability in the spatial distribution of phenomena, coupled
with demands for a high spatial sampling rate in three di-
mensions. For example, low distortion mapping of critical
solar radiation properties in forest environments may re-
quire two-dimensional spatial sampling rates of greater than
10 samples/m2 over transects exceeding 1000 m2. Clearly,
adequate sampling coverage of such a transect requires an
impractically large number of sensing nodes. This paper
describes a new approach where the deployment of a com-
bination of autonomous-articulated and static sensor nodes
enables sufficient spatiotemporal sampling density over large
transects to meet a general set of environmental mapping
demands.
To achieve this we have developed an embedded networked

sensor architecture that merges sensing and articulation with
adaptive algorithms that are responsive to both variability in
environmental phenomena discovered by the mobile sensors
and to discrete events discovered by static sensors. We be-
gin by describing the class of important driving applications,
the statistical foundations for this new approach, and task
allocation. We then describe our experimental implementa-
tion of adaptive, event aware, exploration algorithms, which
exploit our wireless, articulated sensors operating with de-
terministic motion over large areas. Results of experimental
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measurements and the relationship among sampling meth-
ods, event arrival rate, and sampling performance are pre-
sented.
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1. INTRODUCTION
A broad class of environmental monitoring objectives in

fundamental science, environmental resource management,
and public health protection demand distributed sensing ca-
pabilities [1]. For example, the potential global impact of
climate change creates a requirement for understanding the
interaction between the forest canopy and the atmosphere.
Understanding critical phenomena, for example the nature
of carbon flux from the atmosphere to forest biomass, re-
quires direct experimental characterization of spatiotempo-
rally distributed phenomena [2]. This includes measurement
of solar radiation (driving fundamental photosynthesis and
growth), atmospheric water vapor, temperature, and chem-
ical composition. Distributed measurements are required



since these phenomena are sensitive to (and in turn influ-
ence) the heterogeneous structure of the natural environ-
ment.

1.1 High Fidelity Environmental Field
Monitoring

Many environmental monitoring applications share the
challenge for achieving high fidelity characterization capa-
bility for environmental field variables. This is convention-
ally achieved with high spatiotemporal sampling rate. For
example, solar radiation and atmospheric properties must
be mapped in natural environments over a spatial extent
comparable to those of the forest structure (where a mea-
surement transect height may exceed 50m and the width re-
quired to adequately span the heterogeneous structure may
exceed 100m) . At the same time, some phenomena dis-
play a characteristic spatial variability on the scale of cen-
timeters, reflecting the fine scale of natural structure and
important phenomena. Thus, in considering high fidelity
sampling for these phenomena over a two-dimensional plane
with the required spatial extent of over 1000 m2 and resolu-
tion of greater than 10 sample/m2 requires an impractically
large number of sensing elements with 10,000 measurement
points.
Measurement distortion may also result from an improper

spatial-sampling distribution (specifically due to mismatch
between the spatial structure of the phenomena and sensor
node placement). This introduces yet further challenges for
environmental monitoring by limiting the capability for dis-
tributed sensor node deployment planning. Specifically, the
inherent unpredictability and variability of environmental
structure and phenomena precludes the possibility of achiev-
ing adequate spatial sampling density by advance planning.
The conventional solution for reducing this source of dis-
tortion has been to increase spatiotemporal sampling rate.
However, this results in excessive disturbance to the sensed
environment. Clearly, fixed sensor distributions, alone, are
not adequate for many important environmental monitoring
phenomena.
Since it is the presence of dynamic physical structures (for

example the growth of foliage or environmental erosion) that
lead to unpredictable and variable sensor coverage require-
ments, sensor networked systems must exploit wide-ranging
and high-spatial-resolution sensor node mobility in order to
ensure adequate coverage.

1.2 Coordinated Fixed and Mobile Sensing
Nodes for High Fidelity Coverage

This paper describes a new Networked Infomechanical
Systems (NIMS) architecture that combines both fixed and
mobile sensor nodes to achieve a spatiotemporal environ-
ment coverage that is dramatically advanced over that of
either system alone. Mobility allows the networked sensor
system to always seek the most efficient spatiotemporal sam-
pling distribution to achieve a specified accuracy of environ-
mental variable reconstruction. Further, mobility also per-
mits the NIMS system to respond to initially unpredictable
and variable environmental evolution.
While it is shown here that this architecture enables mo-

bile sensors that adapt to variable environments, their cov-
erage at any instant is restricted to their effective area of
regard. Thus, temporal measurement distortion will appear
in the presence of rapidly changing phenomena.

Figure 1: The NIMS system exploits suspended
aerial infrastructure to enable sustainable and pre-
cise transport of mobile nodes within complex three-
dimensional environments. Phenomena are mapped
within a spatially extensive transect where sensing
nodes have precise command over horizontal and
vertical motion.

The NIMS architecture introduces coordination between
fixed and mobile devices. Sparsely distributed fixed sensor
nodes, each remaining vigilant over a localized area of re-
gard, provide a distributed event detection service for the
combined network. We experimentally demonstrate that
proper task allocation of mobile devices permits both high
spatial sampling rate and low event response time.
The NIMS architecture coordinating mobile and fixed de-

vices provides the ability to accommodate high fidelity sens-
ing with limited resource constraints. For example, typi-
cal environmental monitoring characterization tasks require
costly sensing modalities where the cost is measured in terms
of energy, mass, volume, monetary expense, or other value).
Examples in natural environmental monitoring are tasks
that require gas phase analysis or multi-spectral imaging.
Thus, while the demand for dense spatial coverage is high,
the resource cost associated with supporting a vast num-
ber of individual sensor elements for adequate spatiotempo-
ral coverage may be excessively high and the disturbance
to the environment due to their introduction may be pro-
hibitive. However, it is demonstrated here that the com-
bination of low spatial-density fixed sensors (providing the
required assets for mobile node task allocation) and highly
capable mobile devices results in both adequate spatiotem-
poral coverage as well reduced overall resource cost.
The NIMS architecture for mobile and adaptive sampling

must include the attributes of 1) wide range mobility within
three-dimensional volumes, 2) precise and high resolution
position and orientation control, 3) long term autonomous,
sustainable operation, and 4) mobile operation with minimal
disturbance to the environment with regards to physical sur-
faces or structures or to emitted acoustic noise. The combi-
nation of these requirements are met by NIMS infrastructure-
supported mobility, as shown in Figure 1. Here, infrastruc-



Figure 2: Map of solar radiation intensity obtained
in a forest ecosystem by a NIMS system transport-
ing a light intensity sensor within the canopy. So-
lar radiation intensity is indicated in contours as it
varies spatially according to horizontal and vertical
sensor displacement.

ture is adapted to the environment and uniquely enables
each of the attributes above.

1.3 Motivating Application
An example of a fundamental phenomenon that controls

processes within natural ecosystems is the flux of solar ra-
diation. Solar radiation is spatially filtered by the complex
ecosystem structure and ultimately controls photosynthesis
and growth [3]. The characterization of solar radiation spa-
tiotemporal patterns is of primary interest to understanding
growth, evolution, and global change trends [2].
NIMS provides the first method for extensive spatiotem-

poral mapping of phenomena, including solar radiation in
the ecosystem. Figure 2 displays a map of the photosyn-
thetically active radiation (PAR) spectral region of solar il-
lumination. This two dimensional PAR map was acquired
by a NIMS system operating in a mixed conifer forest within
the James San Jacinto Mountain Reserve [4]. Note the char-
acteristic scale of variability for solar radiation is less than
1m with a need to characterize a spatial extent that equals
the dimensions of the forest canopy itself.
Figure 3 shows a NIMS system deployed in the forest re-

serve for continuous operation. This system includes sup-
porting cable infrastructure, a horizontally mobile embed-
ded computing platform payload, image sensing, and a ver-
tically mobile meteorological sensor system carrying water
vapor, temperature, and PAR sensing capability. Wireless
networking is incorporated to link fixed nodes (distributed
on the surface or suspended) with the vertically and horizon-
tally mobile elements. The NIMS infrastructure is elevated
in the environment and thus lies above environmental ob-
stacles to solar radiation. NIMS systems have exploited this
and have been deployed with battery energy sources supplied
solely by solar photovoltaic cell energy harvesting. Energy
is transported as needed along the NIMS cable infrastruc-
ture by an articulated cable system. The NIMS system is
deployed in a transect of length 70m and average height of
15m with a total area of over 1,000 m2.
The experimental NIMS system operates with a linear

speed range for node motion of 0.1 to 1 m/second. Thus, the

Figure 3: A NIMS system deployed at
the James San Jacinto Mountain Reserve
(http://www.jamesreserve.edu). This image shows
the NIMS cable infrastructure, horizontal transport
node (carrying an embedded computing platform,
image sensor, and vertical transport control, and
vertically mobile meteorological sensor node.

time required to map an entire 1,000 m2 transect with 0.1
m2 resolution with a simple ’raster’ regular scanning sched-
ule will exceed 104 to 105 seconds. Phenomena that vary
at a characteristic rate exceeding this scanning rate may
not be accurately mapped. However, without knowledge of
the spatial variability of measured phenomena, the sampling
system must sample at high spatial rate in order to achieve
low measurement distortion.

1.4 Event-Aware Adaptive Sampling Systems
Thus, as will be described below, the requirements for the

measurement system to respond to variable environmental
structure and to accurately map environmental variables at
minimum time and resource cost has lead to the introduc-
tion of a NIMS architecture that combines mobile adaptive
sampling with task allocation methods controlling node mo-
tion. These rely on fixed sensor networks as well as mobile
elements to ensure that measurement is most efficient and
then to focus exploration and mapping at the point in a
transect for which change in environmental variables has
occurred.
This paper first describes the Adaptive Sampling, Task

Allocation, and also Event-Aware Adaptive Sampling meth-
ods and algorithms. A new Fidelity Driven Sampling adap-
tive method is introduced and tested with experimental data.
Then, experimental methods including system hardware and
software architecture are discussed. This includes descrip-
tion of a laboratory-scale NIMS system (NIMS-LS) employed
for algorithm and verification of combined software and mo-
bile embedded hardware system implementations. Finally,
experimental results obtained with NIMS-LS demonstrat-



ing the marked benefits of combined adaptive sampling and
task allocation are described. It is important to note that
Related Work is discussed in each Section below.

2. ADAPTIVE SAMPLING ALGORITHM
Sampling configurations (e.g. sample density) for em-

bedded networked sensor systems are generally limited by
considerations related to the availability of communication
channel resources or energy constraints. This has spawned
a number of recursive estimation techniques that make de-
cisions in a hierarchical fashion [5]. For example, local clus-
ter heads accumulate information and propagate this ac-
cording to a value metric. By introducing infrastructure-
supported mobility, it is now possible to characterize envi-
ronmental variable fields with much greater spatiotemporal
density than was previously practical. While this enables
new applications, it also creates new choices for estimators
and for optimizing sampling. A new algorithm, Fidelity
Driven Sampling will be described that exploits mobile sam-
pling to first stratify the environment into regions requiring
varying degrees of sample density, then samples in these re-
gions while tracking estimated sampling error (fidelity). Fi-
delity Driven Sampling has the advantage over conventional
raster (or other pre-planned sampling strategies) of actively
seeking to minimize error without prior knowledge of the
variable field.

2.1 Methodology
Optimal designs for estimators have been studied exten-

sively in the statistics literature; see [6, 7, 8, 9]. These
approaches often assume a parametric form for the esti-
mate. Given a generic learning algorithm, the problem of
optimal design is much harder. Optimal designs for sim-
ple kernel methods were studied by [10] where it was found
that the best placement of points depends on the second
derivative of the function; places with high curvature should
have relatively more points than flat regions. [11] study
designs for local linear smoothing, ultimately proposing a
batch-sequential algorithm. It should be noted that image
compression methods are not directly applicable here since
these are based on post-processing of acquired data, whereas
fidelity-driven adaptive sampling specifically selects actual
measurement sample sites according to data characteristics.
The NIMS adaptive sampling algorithms are designed with

the goal of sequentially constructing a sampling pattern where
at each step, samples are chosen that improve the estimate
of the sensed field. [12] studies such sampling plans in the
context of kernel smoothing. Points are added one at a time,
chosen so as to reduce an estimate of the integrated squared
error. [13, 14] study the same problem, but with neural
networks as their estimators. They use the term “active
learning” to describe the adaptive sampling process. [13]
selects points to minimize an information criterion, while
[14] studies the mean squared error. In each case, it is as-
sumed the bias is negligible and attention is focused on the
variance of the estimator. [14] also introduces the notion of
path constraints on the samples, a topic that will be impor-
tant in our ultimate deployment of adaptive sampling.
The Adaptive Sampling algorithm reported here, relies

on a mean squared error estimation approach and an under-
lying learning algorithm based on a local linear smoother.
Further, a variable bandwidth is assumed based on nearest
neighbors. This algorithm, termed Fidelity Driven Sampling

Algorithm 1 Pseudocode description of the Fidelity Driven
Sampling algorithm

C: rectangular cell (scanning area)

PREDICT FRAME(C)
while there is a strata with error higher than threshold
do

extract strata with highest bias error
add sampling points
if current strata mean square error > threshold error
then

compute vertical and horizontal mean square error
if horizontal bias error > vertical bias error then

divide strata horizontally
add stratum to the working queue

else
divide strata vertically
add stratum to the working queue

return local polynomial fit

(FDS), attempts to reduce mean square error at each sam-
pling point by adjusting point density and location. It will
be further described and evaluated below.
Mean squared error can be decomposed into a bias com-

ponent and a variance component. In our application of
solar illumination mapping, measurement noise is a negli-
gible fraction of the overall signal, and hence our greatest
concern will be bias. In other applications, bias may not
be dominant, and other estimation methods will be needed.
In these other regimes, attention will likely focus on tasks
other than field estimation; or if a snapshot of the field is de-
sired, a longer learning process involving repeated measures
in time will be required. This is all the subject of future
work.
Throughout the sampling process, FDS maintains an es-

timate of the field being observed. In this paper, a local
linear fitting routine is chosen, with its bandwidth varying
to include a fixed number of nearest neighbors. Using this
estimate, the FDS loop identifies regions or strata exhibit-
ing a high degree of misfit. At each step in the sampling
process, FDS adds points to that stratum with the largest
error. In so doing, the FDS algorithm reduces the distance
between neighbors and effectively lowers the bandwidth of
the local linear fit within the stratum. The algorithm con-
tinues adding points to poor fitting strata until either an
overall sample budget is exhausted or a desired fidelity limit
is achieved.
Local linear fits have been chosen because these can tie

the notion of sampling with the resolution of structures ex-
pected in the variable field. In principle, any nonparametric
procedure could be employed including thin plate splines or
other radial basis functions.

2.2 The Fidelity Driven Sampling System
Algorithm 1 shows pseudo code description of the Fidelity

Driven Sampling adaptive algorithm. The NIMS robotic
system continues adaptive sampling for the entire period of
operation in the environmental mapping state. The FDS al-
gorithm then calls the procedure PREDICT FRAME(C)
which returns the estimate of the environmental variable
field. The algorithm follows a procedure of stratifying a
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sampling region and according to observed measurements
in the region and for each strata, adjusting the number of
sampling points.
In addition, in the discussion below, the performance of

Raster Scanning, Stratified Random Sampling, and the new
Fidelity Driven Sampling algorithms are compared through
simulation of each sampling method with actual experimen-
tal data. It is important to note that Fidelity Driven Sam-
pling provides an autonomous system that seeks to assign
sampling points to achieve a specified threshold error value
(or a specified stratification rank). By estimating error mag-
nitudes, Fidelity Driven Sampling can actively adapt to achieve
a sampling fidelity objective. This differs fundamentally
from raster scan methods that are not informed of resid-
ual errors. It is most important to note that Fidelity Driven
Sampling, being adaptive, requires no prior knowledge of the
environmental variable field characteristics and will rather
report these characteristics. The successful demonstration
of this is enclosed in Section VI.
This PREDICT FRAME(C) procedure starts by insert-

ing a root stratum in a queue. Here, the root stratum
corresponds to the entire scanning area C (transect) - the
entire region of study. PREDICT FRAME(C) then ini-
tiates a loop that extracts strata with highest product of
mean square error and area. It determines the sampling
points to be added to the strata and then the mobile sen-
sor moves to visit those points and sample corresponding
data. After sampling points in the strata, it performs a lo-
cal linear kernel regression and reevaluates the estimate of
the phenomenon. Error is computed in terms of the abso-
lute difference between estimated and sampled values. If
the computed error in the strata falls below a threshold,
PREDICT FRAME(C) exits the inner loop and proceeds
to examine more strata or otherwise divides the strata into
horizontal or vertical substrata depending on which division
leads to the greatest reduction in error.
Following Fidelity Driven Sampling operation (or raster

scanning data acquisition) the returned variable field with
its set of sample points was then supplied to a standard

estimation algorithm (that performs an interpolation) and
returns an environmental field map. This final result is
referred to as a reconstruction of the variable field. Ex-
perimental results and evaluation of reconstructions will be
discussed below for varying field characteristics. Note that
throughout the paper error metric used is integrated square
error across the strata which represents the degree misfit of
that strata but one can use more complex error functions
that incorporate the cost of mobility.

3. TASK ALLOCATION ALGORITHM
Task Allocation (TA) is the problem of assigning available

resources to tasks. For a comprehensive overview of TA for-
mulations please refer to [15]. There are two major subdi-
visions: offline and online. The offline TA is the problem of
assigning resources to different tasks if certain information
(e.g. the distribution of task arrival times, relative task pri-
ority) is known a priori. The assignment process proceeds
offline. The offline TA problem, in its most general form, is
equivalent to the conjunctive planning problem [16] which
is NP-Complete.
Our focus here is on online task allocation. In online TA,

all information about the tasks becomes available only upon
task arrival. The assignment of resources to tasks must be
computed in real time. It has been shown [17] that greedy al-
gorithms provide good approximate solutions to online TA.
It has also been shown [17] that in some cases the greedy
online TA solution is within a bounded limit of the optimal
solution obtained by offline TA. Following the model in [18],
we think of task assignment occurring in decision epochs.
A decision epoch is a period of time during which only the
tasks which have arrived since the end of the previous epoch
are considered for assignment. Increasing the decision epoch
to infinity converts the online TA into the offline TA prob-
lem. We model the NIMS system as an online TA problem,
since it is designed for real-life autonomous field applications
in dynamic environments.
Our work is related to the body of work on the problem of

online multi-robot task allocation (MRTA). For an overview
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and comparison of the key MRTA architectures see [19],
which subdivides MRTA architectures into behavior-based
and auction-based. For example, ALLIANCE [20] is a behavior-
based architecture that considers all tasks for (re)assignment
at every iteration based on robots’ utility. Utility is com-
puted by measures of acquiescence and impatience. Auction-
based approaches include the M+ system [21] and Mur-
doch [22]. Both systems rely on the Contract Net Protocol
(CNP) that puts available tasks for auction, and candidate
robots make ’bids’ that are their task-specific utility esti-
mates. The highest bidder (i.e., the best-fit robot) wins a
contract for the task and proceeds to execute it.
The proposed TA algorithm differs from the above MRTA

approaches. It relies on a static network, and communica-
tion, sensing and computation are distributed. The motiva-
tion for the TA algorithm derives from the need to efficiently
sample the phenomena instead of sampling the entire envi-
ronmental space. As has been discussed in the Introduction,
it is impractical to deploy enough fixed sensors to achieve
required sensing fidelity. As will be shown, the system com-
bining fixed and mobile nodes enables efficient sampling.
TA becomes the primary driver of efficient data collection
in this system, since it allows the user to select a portion of
the environment for sampling, as opposed to sampling the
entire environment. In addition, TA manages system re-
sources, so that resources are not consumed unless assigned
most effectively.

3.1 Methodology
The general online TA system functions in the following

way. Suppose at a given decision epoch the system maintains
a set of resources R = {r1, ..., rn} and tasks T = {t1, ..., tk}.
Tasks are prioritized based on a criterion C. C is an applica-
tion dependent function and can combine such parameters
as task arrival time, task importance, etc. A set of assign-
ments A = (l = min(n, k) : {a1, ..., al}) is computed as
follows.

∀a∈Aa = argmaxj=(1,...,|R|)(U(rj , t)) (1)

where t is the next unassigned task according to C and
U(rj , t) is the j-th resource utility value for accomplishing t.
The assigned resource and corresponding task are removed
from R and T respectively, before the next assignment. The
utility function is chosen to be application and resource de-
pendent. In our model, once assigned, resources cannot be
reallocated. After a resource has completed its task it be-
comes available for a new assignment. In the terminology
of [23] we adopt a commitment strategy as opposed to op-
portunism.
The system consists of a mobile node suspended on a ca-

ble and a static sensor network. We assume that the net-
work is predeployed where each node knows its location in
a global coordinate system. The network monitors the en-
vironment for events of interest (motion, change in light
intensity, etc). The problem then is to prioritize the events,
and drive the mobile node to a vantage point from which a
particular event is better observed. Once the node arrives,
the local phenomenon is measured. In TA terminology, a
robot is a resource and a detection by a sensor node of an
event requiring perusal by a robot is a task.
Figure 4 shows two network topologies that we define -

positioned on the ground (the 2D-case) and more generally,
in the volume surrounding the transect (the 3D-case). In
order for TA system to plan node’s motion the goal points
should lie in the transect plane. Hence, we project the nodes
locations onto the transect plane. As a result we get a set
of points on a line l (2D-case, Figure 4a) or a plane Πr (3D-
case, Figure 4c), both of which lie in the transect plane. In
the 2D-case, l is the line where the transect plane intersects
the ground plane. Since, the mobile node cannot move along
that line, we translate l to a parallel line lr on the transect.
We define the projection function in the 2D-case PROJlr

and 3D-case PROJΠr
.

Based on tasks projected locations TA divides the transect
into slices (2D-case, Figure 4b), or generally cells (3D-case,
Figure 4d). With every projected node k we associate a cell
Cn.



Algorithm 2 Event-Aware Adaptive Sampling Algorithm

(xt, yt, zt): coordinates of current task
Ct: a cell corresponding to current task
AS ON : flag, turns Adaptive Sampling Module on/off

INSERT (Ta, t) : insert task t into unassigned tasks set
Ta based on time of arrival
COMPUTE TASK INFO(t) : determines goal position
and corresponding cell for t
MOV E TO(xt, yt, zt) : delivers the robot to given posi-
tion
PREDICT FRAME(Ct): Algorithm 1

Task Allocation Module:

if there is a new task t then
INSERT (Ta, t)

if Ta 6= 0andAS ON == false then
t = Ta(0)
(xt, yt, zt, Ct) = COMPUTE TASK INFO(t)
MOV E TO(xt, yt, zt)
AS ON = true

Adaptive Sampling Module:

if AS ON == true then
PREDICT FRAME(Ct)
AS ON = false

Note that a 2D system is sometimes preferred because it
is easier to setup in the field and for some applications a
2D perspective is enough. As an example, consider study-
ing sunlight intensity shining through a forest canopy. In
this case a sensor network with illumination detectors can
be placed on the ground. Suppose node k discovered an
interesting reading (say an abnormal light value). The TA
system then would guide the robot towards the goal point
on lr computed by PROJlr . The mobile node then can
study appropriate slice Ck. The general 3D-case system is
investigated in this paper.

3.2 The Task Allocation System
Our system consists of two algorithms - one running on

the robot and another within the network. First we describe
the algorithm that runs on every static node. It consists of
two parts - Task Generation and Task Management.

1. Task generation. If node’s sensor reading is above
a threshold a task is created and a notification mes-
sage NEW TASK is broadcasted. The notification mes-
sage contains the notifying node’s ID, location, sensor
reading, and time stamp (time when the task was gen-
erated).

2. Task management. Each node maintains a set of
currently active tasks Ta and non-active tasks Tna. If
a node receives NEW TASK message and the task is new
(it is neither in Ta nor in Tna) then Ta is updated
and the message is redirected to the network. As we
discuss later, when the robot fulfills its assigned task
it sends a TASK DONE message containing the id of the
node that generated the task and task’s time stamp.
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Figure 6: The NIMS system architecture combines
the adaptive sampling and Task Allocation (TA) al-
gorithms providing interfaces to actuation and sens-
ing. While the adaptive sampling relies on mo-
bile sensor inputs, TA responds to events emanating
from distributed fixed sensors. The adaptive sam-
pling and TA algorithms are coordinated and hosted
by the embedded Stargate platform shown in Fig-
ure 7

If the task is in Ta, then it is removed from Ta, added
to Tna and the message is redirected to SN.

Note that in practice the sizes of Ta and Tna are fixed (20
and 30 in our experiments). Both sets can be overwritten,
so where is no overflow problem. At the same time, the size
of Ta should be set with care to avoid loss of data about
currently active tasks and potentially failing to propagate
this data to the rest of the system.
Our system is a special case of the TA methodology de-

scribed above - with only one resource (mobile node) for task
assignment. We consider the problem of assigning tasks one
at a time. In this case the greedy assignment is obviously
optimal. Consider task assignment Equation 1. Since there
is only one mobile node, the next task with highest priority
(according to criterion C) is assigned to the mobile node,
no matter what the mobile node’s utility function might be.
The task prioritization criterion selected here is C based on
the time stamp associated with every task. The algorithm
running on the mobile node is as follows.
All incoming new tasks (specified by NEW TASK message)

are sorted according to the criterion C (tasks with smaller
time stamp get priority - a FIFO policy) and stored in a
set of currently active tasks Ta. Note that since the system
does not have any prior knowledge about the spatiotemporal
variation of event arrival, the priority of events are taken as
uniform. Therefore, FIFO scheduling is appropriate. In our
future work, as we will learn more about the nature of the
phenomenon, we plan to incorporate that knowledge into
the task allocation process. When the mobile node becomes
available for reassignment, the task of highest priority is
extracted from Ta and assigned to it. Next, based on the
task information the mobile node needs to compute a goal
point.
If the task’s position is p then the goal position will be

PROJlr (p) in 2D-case and PROJΠr
(p) in 3D-case (see Fig-



ure 4). After the robot completes its last task it sends a
TASK DONE message containing the id of the sensor node that
generated the task and task’s time stamp.
The TA algorithm computes projections of the static net-

work onto the transect and separates the transect into slices
(in the 2D-case) or more refined cells (in the 3D-case). This
is the cornerstone for Event-Aware Adaptive Sampling Al-
gorithm discussed next.

4. EVENT-AWARE ADAPTIVE SAMPLING
The Adaptive Sampling approach we proposed in Sec-

tion 2 (Fidelity Driven Sampling or FDS) is designed to
capture static phenomena with an adjustable level of accu-
racy. On the other hand, consider a dynamic scene when
the phenomenon to be observed changes spatially and tem-
porally. If this change is faster than the time it takes adap-
tive sampling to complete, the algorithm would not obtain
a correct result - the final “sensor picture” will consist of
superimposed phenomena.

4.1 Methodology
Suppose the task is to observe a dynamic phenomenon P

which changes rapidly in time (Figure 5a). Thus, P con-
sists of {p1, p2, ...pn}. One solution is to deploy many high
fidelity sensors so that every point of the environment is
sampled. This is impractical. Consider a hybrid approach
where a large number of static low-fidelity sensors capable of
detecting pi are used in conjunction with the mobile NIMS
node which carries the high fidelity sensor. The adaptive
sampling algorithm can then focus on a portion of a tran-
sect containing pi that TA system provides. As shown in
Figure 5b, the sensor network effectively discretizes the en-
vironment, allowing to localize pi and limit the adaptive
sampling to a part of the transect. Note that multiple nodes
can detect the same phenomenon pi. For simplicity we as-
sume that only the node with highest sensor reading of the
phenomenon detects it. In principle, there are two ways to
address that problem. One is to let the mobile node cluster
tasks and then create a combined slice of the transect to
run the adaptive sampling. Another way is to let the SN
locally determine the cluster, and the ’leader’ of the cluster
will create a combined task.

4.2 Event-Aware Adaptive Sampling System
The following describes the Event-Aware Adaptive Sam-

pling (EAAS) System. The system consists of two modules:
Task Allocation Module and Adaptive Sampling Module.
Algorithm 2 shows pseudo-code of EAAS system.
TA module monitors the environment for new tasks. If

unassigned tasks set Ta 6= 0, TA assigns the robot to the
next task in order, say task t. Then TA computes the ap-
propriate goal position and a corresponding transect cell as
discussed in previous section. The robot is delivered next
to the computed goal position of the cell to sample. Once
at the goal position, TA sends request to the adaptive sam-
pling system with (x, y, z) of the center of the scan and
dimensions of the scanning cell. TA module pauses, while
monitoring the environment for new events. The adaptive
sampling scans designated area and returns to TA. The pro-
cess repeats.
In summary, when a node detects a phenomenon (sensor

reading reaches a predetermined threshold) it notifies the SN
and the mobile node. We say that a task is created. The

notification message contains the node ID, its location and
the sensor reading. Given this information we can use the
TA algorithm to assign robot to the task, navigate the robot
to that task and start the adaptive sampling on a limited
cell provided by TA. Figure 5c shows nodes that detected
phenomena of Figure 5a and created corresponding tasks.

5. SYSTEM PROTOTYPE AND
EXPERIMENTAL SETUP

The combined Adaptive Sampling and Task Allocation
methods have been introduced to both enable efficient mea-
surement (for a specified accuracy estimate) while also en-
abling fast response to events. This section describes the
enabling architecture and design methods.

5.1 System Hardware Prototype
As described in the Introduction, a NIMS system has re-

cently been deployed in the field and characterization of
forest canopy phenomena using NIMS methods may begin.
However, the rapid development of NIMS algorithms and the
verification of NIMS software, embedded hardware, and sen-
sor systems benefit from characterization and testing with
complete systems that operate in an indoor laboratory-scale
facility where all inputs may be controlled. This laboratory-
scale system, NIMS-LS, has been developed and is shown in
Figure 6.
NIMS-LS includes a mobile node system suspended by a

cable network (see Figure 7a) that is articulated by a step-
per motor control system (see Figure 7b) controlled by a
StargateTM embedded node. The motor control system al-
ternately winds and unwinds cable length from a pair of
cable spools thereby causing a horizontal and vertical trans-
lation of the mobile node. The actuator system includes ac-
celeration and deceleration control as well as odometer sens-
ing of motion on the NIMS infrastructure cable. Through
proper calibration, this system provides less then 1 cm res-
olution for localization of the node at any point within the
transect plane. While configurable in height and width, the
transect used for the experiments reported here was 8m in
length and 2.5m in height. Fixed sensor nodes were dis-
tributed on the surface of the transect region and also ele-
vated in the transect as well, as will be discussed below.
The mobile node is a standard wireless mote sensor sys-

tem. The MICA-2 mote is used as a standard wireless mote
in both the mobile node and in a wireless network with both
the Stargate platform as well as the distributed fixed sen-
sors.

5.2 System Software Prototype Architecture
The NIMS software architecture (as illustrated in Fig-

ure 6) is based on the Emstar system [24]. This has been
selected for NIMS and provides the following benefits. First,
Emstar provides a common set of embedded platform inter-
faces for multiple embedded platforms that compose NIMS
field and NIMS-LS systems. This offers the benefit that ap-
plications developed for the NIMS-LS system may then be
directly applied to NIMS field systems. Second, the Emstar
event architecture provides the designer with robust meth-
ods for servicing unscheduled events and order of operations.
The Adaptive Sampling and Task Allocation systems both
benefit from this for implementation of their reactive na-
ture. Third, the Emstar system provides a regular means



(a) (b)

Figure 7: a) The NIMS-LS system employs a cable network to allow rapid deployment of a NIMS transect
within an indoor environment. The cable system permits a sensor node to operate over the length and depth
of a transect area. Software system interfaces are devised to enable applications to operate both on NIMS
field-scale systems as well as NIMS-LS where development and verification may occur. In addition, reconfig-
urable lamp illumination sources and obstacles allow the designer to select a transect environmental variable
distribution for the purposes of testing. Note that both mobile and fixed sensors appear in this architecture.
Note that fixed sensors are distributed in the two dimensional transect plane as well. For the experimental
characterization reported here, six MICA-2 mote sensors were deployed in two rows, equally spaced along
the transect (of length 2m) and with the first row at a height of 80cm and second row at a height of 160cm
as shown. b) The NIMS-LS system incorporates a standard mote sensor node for mobile measurement and
an Intel StargateTM platform for hosting of Adaptive Sampling and Task Allocation algorithms. The platform
manages cable actuator control that, in turn, provides accurate node motion in the transect plane. This
embedded platform, its motor systems, and cable spools for cable actuation are shown.

for implementing the many complex device drivers that ap-
pear in NIMS electromechanical systems. Finally, Emstar
has enabled NIMS emulation that includes rapid verifica-
tion of mobile sensing algorithms (on standard x86 worksta-
tion platforms) in preparation for testing on the NIMS-LS
platform.
The Adaptive Sampling and Task Allocation algorithms

operate on the Stargate platform and communicate over
socket interfaces as shown in Figure 6 Both Adaptive Sam-
pling and Task Allocation exploit Emstar device drivers.
The degree to which this Emstar-based architecture accom-
modates diverse applications is illustrated by this exam-
ple. Here, the Adaptive Sampling algorithm (with its inter-
faces to motor control systems) is developed in C and C++.
However, the Task Allocation algorithm is implemented in
Java. The NIMS-LS architecture has incorporated this di-
versity and enables robust operation of the combined com-
plex and event-ware Adaptive Sampling and Task Allocation
processes. A visualization tool developed in Matlab com-
municates with the Adaptive Sampling system through the
ethernet connection. This allows scientists to monitor the

Adaptive Sampling system and visualize the sampled field
real time.

5.3 Experimental Setup
The environmental variable field is created through use of

a high intensity quartz halogen light source that illuminates
the transect. Just as in the natural environment, photodiode
sensors are employed for light intensity measurement. In
addition, cylindrical obstacles are available and are placed in
the environment to create a variable field for test purposes.
For the experiments reported here, the variable field was
selected to follow that observed in the natural environment
as in Figure 2.

6. RESULTS FOR ADAPTIVE SAMPLING
As described in Section II, Fidelity Driven Sampling ex-

ploits mobile sensing capabilities to explore the variable
field, stratify this into regions of greatest required sample
density, and then sample in these regions adaptively to min-
imize estimated sampling error. Fidelity Driven Sampling
operates in an iterative architecture seeking to reach a de-



Figure 8: An environmental field map for a complex
variable field with superimposed sampling points as
autonomously selected by Fidelity Driven Sampling.
The image grey level indicates illumination intensity
variation (varying by a factor of 5.7 from the darkest
to lightest regions).

sired threshold error. While multiple error threshold poli-
cies may be applied, two are explored here: 1) an error
threshold defined as a maximum tolerated mean squared er-
ror estimate across the entire environmental field, and 2) a
maximum allowed stratification rank which is a number of
divisions that resulted in that strata. Adjustment of these
thresholds permits the mobile sensor node to return an envi-
ronmental field map with a specified estimated fidelity with-
out the requirement for any prior knowledge of the field char-
acteristics. An inability to reach a specified estimated error
(within a given time or rank level limit) will be reported by
the Fidelity Driven Sampling algorithm. This then provides
the user with yet further assurance of proper sampling and
confidence in returned data.
Fidelity Driven Sampling is evaluated here by subjecting

the algorithm to environmental variable fields having two
extremes in their “curvature” characteristics. For one limit,
the environmental variable field was created by placing many
obstacles in the illumination field (see Figure 9) to emulate
the characteristically most complex patterns observed in the
natural environment. In addition, the algorithm was also
subjected to an environmental variable field that showed
low curvature created by casting only diffuse shadowing on
the transect. This latter case is characteristically similar to
the least complex fields observed under clear forest canopy
structure. We call this a smooth phenomena.
The performance of the Fidelity Driven Sampling algo-

rithm was evaluated by allowing the algorithm to autonomously
operate and return a sample distribution. This distribution
then was supplied to the estimator to return a reconstructed
variable map. Finally, this map was compared with the ac-
tual measured data obtained by exhaustively moving the
node at his highest resolution through the variable field.
This returned a “ground truth” map of the scene.
The results of Fidelity Driven Sampling were then com-

pared with conventional raster scanning data acquisition.
Raster scanning is the generally used approach that governs

Figure 9: The reconstructed variable field derived
from the Fidelity Driven Sampling points of Figure 8

sampling given no knowledge of the variation of field vari-
ables. It provides a reference for performance of the new
algorithms described here that include awareness of both
events (Section 7) and spatiotemporal variation in field vari-
ables.
Fidelity Driven Sampling algorithm shows a value of Mean

Squared Error for its reconstruction compared to ground
truth that meets or is superior to that of raster scanning.
However, this must be achieved without pre-planning and
must be independent of the nature of the field characteristic.
We examined both the returned reconstruction as well as its
mean of squared error over the entire transect.
It is important that Fidelity Driven Sampling shows a

monotonic decrease in mean squared error for an increase
in stratification rank level. We compared the result of FDS
with raster scanning for both rough and smooth phenomena.

6.1 Fidelity Driven Sampling vs. Rough
Phenomena

Figure 9 shows a map of both ground truth and the po-
sitions of both strata and actual sample points selected by
Fidelity Driven Sampling during an experimental session.
Note that the sample point density increases in regions of
greatest field curvature. This experimental result was cap-
tured as the Field Driven Sampling system passed through
stratification rank 5 and had selected 489 sample points
within the transect. Figure 10 shows the reconstruction
resulting from this. Close agreement in field shapes is ob-
served.
A test of the performance of this approach is shown in

Figure 11. Note that the actual mean squared error (com-
puted between the reconstruction and ground truth across
the transect) reduces with increasing stratification rank. Also,
Figure 12, shows the dependence of mean squared error on
sample density for Fidelity Driven Sampling (Adaptive) and
raster scanning (Raster) methods.

6.2 Fidelity Driven Sampling vs. Smooth
Phenomena

The sample distribution results and reconstruction results
for a rank level of 5 are shown in Figures 13 and 14 for an en-
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Figure 10: Mean Squared Error for reconstructions
of the environmental field of Figure 8 as a function
of stratification level. Note that unlike pre-planned
raster scanning or related sampling strategies, Fi-
delity Driven Sampling may proceed autonomously
reach a specified error threshold.
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Figure 11: Mean Squared Error for reconstructions
of the environmental field of Figure 8 as a func-
tion of sampling points comparing Fidelity Driven
with raster sampling. Note that while raster sam-
pling may exhibit a large variation in error with
choice of sample density, Fidelity Driven sampling
autonomously seeks a low value.

Figure 12: n environmental field map for a low cur-
vature variable field with superimposed sampling
points as autonomously selected by Fidelity Driven
Sampling. The image grey level indicates illumina-
tion intensity variation (varying by a factor of 1.5
from the darkest to lightest regions).

Figure 13: The reconstructed variable field derived
from the Fidelity Driven Sampling points of Fig-
ure 12
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Figure 14: Mean Squared Error for reconstructions
of the environmental field of Figure 12 as a function
of sampling points comparing Fidelity Driven with
raster sampling.

vironmental field showing dramatically less curvature than
that of Figure 9. A comparison of mean squared error perfor-
mance between Fidelity Driven and raster scanning is shown
in Figure 14. Note that for this reduced curvature, in our ex-
periments, not only does Fidelity Driven Sampling converge
to a specified mean squared error, it is equal or superior
to raster scanning in efficiency with respect to numbers of
sample points.
The combination of these tests provides a successful eval-

uation of the performance of Fidelity Driven Sampling for
autonomously adjusting sample density through appropri-
ate motion control and sampling of the mobile sensing sys-
tem. As has been discussed this sampling method seeks to
establish a reconstructed variable field with a specified max-
imum sampling error without requiring prior knowledge or
planning. We plan for further analysis of the algorithm on
different test patterns.

7. RESULTS FOR EVENT-AWARE ADAP-
TIVE SAMPLING

Both Task Allocation and Event-Aware Adaptive Sam-
pling use a notion of a task. In the following experiments we
will compare the cumulative task OnTime across all tasks,
over the duration of every experiment. Each task’s OnTime
is computed as the difference between the time the task was
serviced by a robot (TASK DONEmessage is sent) and the time
the task was detected by one of the nodes of the network.
As shown on Figure 7, a network of 6 Mica2 Motes was

predeployed in a test environment with predetermined coor-
dinates. We use the general 3D topology. Hence, by knowing
nodes locations and computing nodes’ projections onto the
transect plane, the TA algorithm produces a subdivision of
the transect similar to Figure 4b.

7.1 Task Allocation vs. Raster Scan
Following the same approach as described for characteri-

zation of the Fidelity Driven Sampling system component,
experiments were conducted comparing Task Allocation(TA)
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Figure 15: Comparison of event OnTime between
TA and Raster Scan. Number of events varies be-
tween 3 and 20.

methods with conventional Raster Scan methods. The Raster
Scan method scans every point of the transect with a spec-
ified resolution. When the Raster Scan reaches the location
of an event it clears it by sending TASK DONEmessage. Raster
Scan method proved to be prohibitively low in performance.
In particular, experimental results showed that at the max-
imum NIMS-LS spatial resolution of 1 cm, with a sampling
dwell time of 1 second at each location, OnTime results were
dramatically inferior to TA methods. Raster Scan method
was also characterized at reduced spatial resolution of 5cm
with a corresponding improvement in response time. This
however, is still inferior to TA algorithm described in this
paper.
In this experiment an artificial event is first generated on

a remote server. Then the server sends an event message
to the node designated for task generation and the node
proceeds as if this event was detected by the node’s sensor.
For this experiment, schedules of 3, 5, 7, 10 and 20 events
were drawn (in time) from a Uniform distribution to arrive
within 600 seconds, with uniformly distributed nodes that
detected the event. Note that for actual applications we do
not expect to receive/process more than 1 - 10 events in 10
minutes on average. Hence the case of 20 events shows the
behavior of the system at the limit.
Figure 15 shows experimental results comparing OnTime

performance of TA and Raster Scan. The number of events
varies between 3 and 20. Both algorithms were evaluated
from 3 different starting positions of the mobile node on the
transect (drawn from a Uniform distribution). The results
were averaged. As can be seen from the graph, TA performs
9-22 times better on the entire interval of 3-20 events. Note
also that TA is stable, as indicated by error bars, and hence
is favored for use in this application since it provides reduced
bounds on system run time over Raster Scan method.
In addition to response time comparison, it is also impor-

tant to compare mobility requirements for TA and Raster
Scan methods. Specifically, the use of mobility requires en-
ergy. Thus, this can be computed and compared for each
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Figure 16: Comparison of energy consumption in
units of time-in-motion (t.i.m.) between TA and
Raster Scan. Number of events varies between 3
and 20.

method. Now, when the density of the events is low, the
TA algorithm enables the mobile node system to remain in
a static position for extended periods - “in between events”.
This occurs when it has serviced all events that have arrived
and is awaiting new events. Raster Scan, however, forces the
robot to move constantly. Hence, this method will consume
far greater energy and mobility resources than TA. A mea-
sure of energy for mobility is determined for the purposes of
comparison by computing the total time of mobile node mo-
tion. Figure 16 shows comparison of energy consumption in
units of time-in-motion between TA and Raster Scan. As ex-
pected, TA outperforms Raster Scan significantly. However
as the number of events increases to infinity, the TA should
approach Raster Scan energy consumption. Also note, that
on interval [5, 20] the slope of the Raster Scan curve is very
small and the energy consumption is insensitive to event
arrival rate.

7.2 Event-Aware Adaptive Sampling
The introduction of Event-Aware Adaptive Sampling pro-

duces a potential dramatic improvement in event response
time. Thus, in this section the results of measurement of
task OnTime is described for the system using the Event-
Aware Adaptive Sampling (EAAS) algorithm. A previous
investigation has evaluated an algorithm approach intended
to enable mobile sensor nodes to perform an adaptive sam-
pling [25]. This was evaluated on data from a mobile sensor
system that was acquired using a regular raster scan. In con-
trast, the system architecture reported here allows adaptive
sampling algorithms to be hosted directly on mobile embed-
ded systems. In addition, this system architecture enables
cooperation between adaptive sampling and Task Alloca-
tion algorithm. This is demonstrated through direct exper-
imental evaluation with the NIMS-LS system. The results
for EAAS operation combining task allocation and adaptive
sampling are compared directly with results for the adaptive
sampling system operating alone.

It is important to note that adaptive sampling does not
provide an accurate sampling of the scene if the frequency
of events is such that events arrive at a rate greater than
the time required for adaptive sampling to complete. But if
the event frequency will be sufficiently low then on average
every task OnTime will be approximately the same. Hence,
it suffices to compare the results for OnTime of only one
task.
This experimental characterization was performed using

light intensity variations to induce events (exactly as occurs
in natural environment conditions.) As shown in Figure 7,
the mobile and fixed nodes form a network. Also, each node
is equipped with a light intensity sensor as deployed on the
mobile node. Here, a node generates an event when the
sensor sampled value exceeds a threshold.
The task OnTime performance of adaptive sampling is

20524 seconds and 577 seconds for EAAS. Hence EAAS sig-
nificantly outperforms adaptive sampling (with an improve-
ment by a factor greater than 35). This dramatic advantage
of EAAS results from its ability to determine the location
of the task, deliver the mobile node to the proper location,
and then reduce the scan area requirements for the adaptive
sampling module by focusing attention on the proper event
region.

8. SUMMARY AND FUTURE WORK
Sensor network systems are now being applied in criti-

cal science and engineering applications in complex envi-
ronments. Such environmental field characterizations, con-
fronts the challenge of spatiotemporal evolution of obsta-
cles in the sensing environment, introducing an unknown
level of measurement distortion. This paper describes a
new architecture that augments fixed sensor networks with
infrastructure-supported mobile nodes. This architecture in-
corporates systems that exploit adaptive mobility to actively
explore environments and determine sampling point distri-
bution, achieving a specified level of sensing fidelity. The co-
ordination of fixed and mobile nodes also calls for new task
allocation algorithms and associated systems that direct mo-
bile node resources to events. This paper describes the inte-
gration of a Fidelity Driven Adaptive Sampling method with
new Task Allocation algorithms and systems. Experimental
measurements demonstrate that this combined system offers
dramatically improved spatiotemporal coverage over that of
either fixed or mobile sensors alone.
Future work will both develop new Fidelity Driven sam-

pling and exploration systems and also apply these systems
more broadly to field biology and civil engineering environ-
mental monitoring needs. Sensing diversity will also be in-
troduced to enhance Fidelity Driven Sampling with mea-
surements made available from fixed and mobile sensors of
diverse modes and locations. It is anticipated that this will
permit Bayesian-style updating or learning that can draw
on possibly coarse or noisy auxiliary measurements when
forming an estimate of the variable field.
Finally, new architectural features will appear that in-

clude ’sensor strands’ consisting of fixed nodes suspended
from the infrastructure in the three dimensional environ-
ment and emplaced and reconfigured by mobile NIMS node
systems. Multiple NIMS mobile node transects will also
be deployed in large and varied environments and transect
types. This will lead to investigation and development of
new utility functions for task allocation that coordinate fixed



node networks and multiple mobile assets for further ad-
vances in sensing fidelity for complex environmental field
characterization.
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