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Abstract

Introduced by Kifer (2000), game options function in the same way
as American options with the added feature that the writer may also
choose to exercise at which time they must pay out the intrinsic option
value of that moment plus a penalty. In Kyprianou (2004) an explicit
formula was obtained for the value function of the perpetual put option
of this type. Crucial to the calculations which lead to the aforementioned
formula was the perpetual nature of the option. In this article we address
how to characterize the value function of the finite expiry version of this
option via mixtures of other exotic options by using mainly martingale
arguments.
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1 Introduction

Consider the Black-Scholes market. That is, a market with a risky asset S and
a riskless bond, B. The bond evolves according to the dynamic

dBt = rBtdt where r, t ≥ 0.

The risky asset is written as the process S = {St : t ≥ 0} where

St = x exp{σWt + µt} where x > 0

is the initial value of S and W = {Wt : t ≥ 0} is a Brownian motion defined on
the filtered probability space (Ω,F , F = {Ft}t≥0, P ) satisfying the usual condi-
tions and T ∈ (0,∞) is the time horizon. A callable put is an American put
with the additional feature that the seller can recall the option prematurely
paying besides the intrinsic value a constant penalty δ.
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If the holder exercises first, (s)he may claim the value (K − St)+ at the
exercise date and if the writer exercises prematurely, (s)he is obliged to pay
to the holder the value (K − St)+ + δ at the time of exercise. If neither have
canceled at time T then the writer pays the holder the value (K − ST )+. If
both decide to claim at the same time then the lesser of the two claims is paid
(But, it turns out that the agreement about this marginal case has no impact
on the resulting option price). Our objective in this paper is to characterize
the value and rational behaviour of writer and holder which lead to this value.
However, before getting involved with technicalities, let us address the following
fundamental question.

Who should buy and who should sell a callable put ?

Assume that the option starts far out of the money, i.e. x � K. If St

hits K (goes in the money) quite late, i.e. near to expiry, the risk for the
writer is comparatively small. By contrast, when St hits K quite early in the
option lifetime it becomes a long-term at-the-money-option which has a large
time value. Against this risky situation, the writer is insured by the right to
recall the option. Put differently, by the callable feature the writer has an upper
bound on the time value conceded to the put holder.

In the context of an illiquid market where the writer cannot compensate
her/his short position by buying an American residual put option recalling is
possibly the only way to close the position. Also, in view of model risk or
violation of the hypothesis of market completeness, the cheapest superhedging
strategy for the writer of an American put option can be the trivial one – consist-
ing of an investment of K units in the riskless bank account. In this situation,
strategic recalling can be an efficient instrument to limit risk – especially when
the writer expects falling stock prices.

On the other hand for the buyer the incentive is the lower price (as it is for
callable bonds). This comes at the price that extreme gains become less likely.

A deposit insurance can be viewed as a callable perpetual put option on the
market value of the assets issued by the insured bank. The put writer – usually
a federal deposit insurer – agrees to purchase the bank’s insured deposits for the
market value of the bank’s assets (if the bank closes itself). On the other hand
the deposit insurer can enfore premature exercise of the option by recalling the
put option and closing the bank. For details, see Allen and Saunders (1993).

Returning now to the technical description of the callable put, let Tt,T be the
class of F-stopping times valued in [t, T ] and let Px be the risk-neutral measure
for S under the assumption that S0 = x. [Note that standard Black-Scholes
theory dictates that this measure exists and is uniquely defined via a Girsanov
change of measure]. We shall denote Ex to be expectation under Px. From Kifer
(2000) it follows that there is a unique no-arbitrage price process of the callable
put under the Black-Scholes framework which can be represented by the right

2



continuous process V = {Vt : t ∈ [0, T ]} where

Vt = ess-infτ∈Tt,T ess-supσ∈Tt,T
Ex

(
1(σ≤τ)e

−r(σ−t)(K − Sσ)+

+1(τ<σ)e
−r(τ−t)

{
(K − Sτ )+ + δ

}∣∣∣Ft

)
= ess-supσ∈Tt,T

ess-infτ∈Tt,T Ex

(
1(σ≤τ)e

−r(σ−t)(K − Sσ)+

+1(τ<σ)e
−r(τ−t)

{
(K − Sτ )+ + δ

}∣∣∣Ft

)
.

Further, for all t ∈ [0, T ] there exist stopping strategies

σ∗
T−t = inf

{
s ∈ [t, T ] : Vs = (K − Ss)+

}
and

τ∗
T−t = inf

{
s ∈ [t, T ] : Vs = (K − Ss)+ + 1(s<T )δ

}
. (1)

such that

Vt = Ex

(
1(σ∗

T−t≤τ∗
T−t)e

−r(σ∗
T−t−t)(K − Sσ∗

T−t
)+

+1(τ∗
T−t<σ∗

T−t)e
−r(τ∗

T−t−t)
{
δ + (K − Sτ∗

T−t
)+

}∣∣∣Ft

)
(2)

By the Markov property we can write Vt = vCP (St, T − t) where

vCP (x, u) = inf
τ∈T0,u

sup
σ∈T0,u

Ex

(
1(σ≤τ)e

−rσ(K − Sσ)+

+1(τ<σ)e
−rτ

{
(K − Sτ )+ + δ

})
= sup

σ∈T0,u

inf
τ∈T0,u

Ex

(
1(σ≤τ)e

−rσ(K − Sσ)++

1(τ<σ)e
−rτ

{
(K − Sτ )+ + δ

})
(3)

defined on (x, u) ∈ (0,∞) × [0, T ]. Note that by considering strategies σ = 0
and τ = 0 it can be seen that

(K − x)+ ≤ vCP (x, u) ≤ (K − x)+ + δ. (4)

Our interest is in showing how the value function vCP (x, u) can be char-
acterized in terms of the value functions of other more familiar exotic options.
However it is first necessary to understand whether the writer’s rights really
makes a significant difference to the case of the American put.

In Kyprianou (2004) for T = ∞ explicit formulae expressions are achieved for
Vt in terms of the process S. The calculations are greatly eased by the perpetual
nature of the option. For the finite expiry version, no explicit formulae are
possible for the same reason that there are no explicit formulae for the value
function of an American put. In this article we establish representations of finite
expiry versions of the callable put via mixtures of other familiar exotic options.
The method of proof relies on the classical technique of ‘guess and verify’.

We close this section with an overview of the paper. Section 2 reviews the
American put for later reflection. For a suitably large value of δ, i.e. exceeding
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a specified threshold, it turns out that the value of the callable put is nothing
more than the value of the American put. That is to say the writer will never
exercise. This is dealt with in Section 3. In Section 4 the more interesting
and complicated case of when δ is smaller than the aforementioned threshold is
considered. The paper presents its conclusions in Section 5.

2 Reviewing the American put

It will be of help to review some facts concerning the pricing of a regular Ameri-
can put option (cf. Karatzas and Shreve (1998), Lamberton (1998) and Myneni
(1992)). That is to say, a contract with finite expiry date T which rewards the
holder with (K − St)+ at the moment they decide to exercise and forces a pay-
ment of (K − ST )+ if they have not exercised by the time the contract expires.
Classical analysis of the American put tells us that

Vt = ess-supσ∈Tt,T
Ex

(
e−r(σ−t)(K − Sσ)+

∣∣∣Ft

)
= vA (St, T − t)

where
vA (x, u) = sup

σ∈T0,u

Ex

(
e−rσ(K − Sσ)+

)
defined on (x, u) ∈ (0,∞)×[0, T ] is jointly continuous, convex and non-increasing
in x and non-decreasing in u. Further, the optimal stopping strategy is given by
the stopping time

σA
T := inf

{
t ≥ 0 : Vt ≤ (K − St)+

}
(5)

so that on the event t < σA
T

Vt = Ex

(
e−rσA

T

(
K − SσA

T

)+
∣∣∣∣Ft

)
= Ex′

(
e−rσA

T−t

(
K − SσA

T−t

)+
)

where x′ = St and σA
T−t has the same definition as (5) but with T replaced

by T − t. Note that we shall use here and throughout the standard definition
inf ∅ = ∞. Based on the facts above, one can show that there exists a continuous
monotone decreasing curve ϕA : [0, T ] → (0, K] with ϕA (0) = K such that the
optimal stopping strategy can otherwise to be defined as

σA
T = inf

{
t ≥ 0 : St ≤ ϕA (T − t)

}
∧ T.

Finally, from the theory of optimal stopping which drives the rational behind
the pricing of American options, we have that

{e−r(t∧σA
T )vA(St∧σA

T
, T − (t ∧ σA

T ) : t ∈ [0, T ]}
and

{e−rtvA (St, T − t) : t ∈ [0, T ]}

are a Px-martingale and a Px-supermartingale respectively for each x > 0.
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3 Representation of vCP for large δ

Suppose that δ is very large, for example when

δ > sup
(x,u)∈(0,∞)×[0,T ]

vA(x, u).

With such a large value of δ it would not make sense for the writer to exercise
at all. For then they would be left with the responsibility of a compensation
which far exceeds any amount the holder themselves would ever have claimed.
We should therefore expect that in this case the saddle point in Kifer’s theorem
simply requires the writer to leave the decision making to the holder. That is to
say, in this case, the callable put option becomes nothing more than the standard
American put. For smaller values of δ however, as indicated in the introduction,
one should expect that there can be rational in the writer exercising before the
holder. Suppose that δ is very small. The writer can force the holder to exercise
the option untimely by paying in addition to the intrinsic value (K − St)+ a
small penalty. The following Lemma shows that there is a smallest δ beyond
which the callable δ-penalty put is nothing more than an American put.

Lemma 1 If δ ≥ vA (K, T ) then vCP = vA, σ∗ = σA
T and τ∗ = T .

Proof. For two different game options the difference between their option values
is bounded by the maximal deviation between the two exercising and between
the two recall processes. Therefore vCP is varying with δ in a continuous way
and it is sufficient to show the assertion for δ > vA (K, T ). Then, we have that
for all x ∈ (0,∞), u ∈ [0, T ]

vCP (x, u) ≤ vA(x, u) ≤ (K − x)+ + vA(K, u) < (K − x)+ + δ. (6)

Note that the first inequality is justified by considering τ = u in the definition
of vCP (x, u). Since Vt = vCP (St, T − t), (6) implies that the optimal recall time
for the seller, given by (1), is τ∗

T = T . This implies vCP (x, u) = vA(x, u) and
σ∗

T = σA
T .

4 Representation of vCP for small δ

Suppose now that 0 < δ < vA (K, T ) . That is to say at the beginning of the
contract, for certain paths of S the American option is worth strictly more
than the callable δ-penalty put; recall the bounds (4). Despite this fact, since
the value function vA is continuous and increasing in the time to expiry with
vA(x, 0) = (K − x)+, for all times sufficiently close to expiry the value of the
American option will become uniformly in s less than the writers obligation
should they decide to exercise; vA (x, T − t) ≤ (K −x)+ + δ, uniformly in x, for
all sufficiently large t < T . Suppose that a callable δ-penalty put has survived
to almost the expiry date, say a time t′. By the Markov property the option
has the same value of a fresh callable δ-penalty put initiated at t′ with the same
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strike but with duration T − t′. Since δ ≥ vA (K, T − t′), Lemma 1 tells us that
the writer has no interest in exercising and the option proceeds as the tail end
of an American put with strike K and expiry T − t′.

In this light, we shall proceed by investigating the following heuristic for the
exercising strategy of the option writer.

Writer’s perspective. As long as St > K it is not rewarding to cancel the
contract by paying the penalty δ. Namely, as the interest rate r is positive,
it is better to wait and not to cancel the contract, if at all, until S hits K.
On the other hand, if St < K we have that e−rt

{
(K − St)+ + 1(t<T )δ

}
=

e−rt
{
K − St + 1(t<T )δ

}
. This payoff, considered as a process stopped when S

hits K, is a strict Px-supermartingale (as the process e−rtSt is a Px-martingale).
Thus the writer it doing well to wait – independent of the stopping strategy of
the holder. Summing up, acting optimally the writer can (if at all) only stop
when St = K.

Let t∗ be the time for which vA (K, T − t∗) = δ. Note that continuity
and strict monotonicity of the function vA(K, ·) guarantees that this value is
uniquely defined. Assume now that (s)he does not recall at St = K for some
remaining lifetime u > T−t∗. Then, (s)he will nor recall sometime in the future.
This would imply that

vCP (x, u) = vA(x, u), ∀x ∈ (0,∞). (7)

But, for x = K (7) implies that

δ = vA(K, T − t∗) < vA(K, u) = vCP (K, u)

which is a contradiction to the fact that vCP (x, u) has to lie in the interval
[(K − x)+, (K − x)+ + δ]. Thus, we might guess that the writer should exercise
according to the strategy

τ̂ = inf{t ∈ [0, t∗] : St = K} ∧ T. (8)

The strategy in (8) has another interpretation. It is well known that the
time value of an American put, defined as vA(x, u) − (K − x)+, is maximal at
x = K and increasing in u. (8) suggests that also the time value of the callable
put, i.e. vCP (x, u)− (K − x)+, is maximal at x = K taking the value δ in case
of u ≥ T − t∗ (and a smaller value when u < T − t∗).

Holder’s perspective. The holder on the other hand will reason in the same
way as they would for the associated American put. That is to make a com-
promise between S reaching a prescribed low value and not waiting too long.
Following these strategies, if neither holder nor writer takes action by time t∗

the option should go on, as we have already seen, as a regular American put.

In order to turn these heuristics into rigour, it will be helpful to consider the
following related exotic option.
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4.1 The American knock-out option

Theorem 2 Consider an American-type exotic option of duration t∗ which of-
fers the holder the right to exercise at any time claiming (K − St)+, however,
if the value of S hits K then the option is ‘knocked-out’ with a rebate of δ and
further, if at expiry the option is still active then the holder is rewarded with an
American put option with strike K and duration T − t∗.

(i) The holder of this option behaves rationally by exercising according to the
stopping time

σ̂ = inf{t ≥ 0 : v̂ (St, t
∗ − t) = (K − St)+} ∧ t∗, (9)

where

v̂ (x, u) = sup
σ∈T0,u

Ex

(
e−rbτδ1(bτ≤σ) + 1(σ<bτ∧u)e

−rσ(K − Sσ)+

+1(σ=u<bτ)e
−ruvA(Su, T − t∗)

)
. (10)

(ii) The discounted value of the option is given by

{e−r(t∧bτ)v̂ (St∧bτ , t∗ − (t ∧ τ̂)) : t ∈ [0, t∗]}.

(iii) The process
{e−r(t∧bτ)v̂ (St∧bτ , t∗ − (t ∧ τ̂ )) : t ∈ [0, t∗]}

is a Px-supermartingale and the process

{e−r(t∧bτ∧bσ)v̂ (St∧bτ∧bσ, t∗ − (t ∧ τ̂ ∧ σ̂)) : t ∈ [0, t∗]}

is a Px-martingale.

Proof. (i) First note that the discounted claim process {πt : t ∈ [0, t∗]}
where

πt = 1(t<bτ∧t∗)e
−rt(K − St)+ + e−rbτδ1(bτ≤t∗ and t≥bτ)

+1(t∗<bτ and t=t∗)e
−rt∗vA(St∗ , T − t∗).

is an F-adatped process with càdlàg paths that have no negative jumps and
satisfies Ex

(
supt∈[0,t∗] πt

)
< ∞. Now consider the optimal stopping problem

sup
σ∈T0,t∗

Ex (πσ) . (11)

Standard theory of American-type option pricing (cf. Shiryaev et al. (1995))
now tells us that this problem charaterizes the value of this option. In particular,
optimal stopping strategy occurs at

σ̃ = inf{t ≥ 0 : vπ
t = πt}
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where vπ = {vπ
t : t ∈ [0, t∗]} is the Snell envelope of {πt : t ∈ [0, t∗]}. By the

Strong Markov Property of S we have that on the set {t ≤ τ̂}

vπ
t = ess-supσ∈Tt,t∗ Ex (πσ|Ft)

= e−rt sup
σ∈T0,t∗−t

Ex′ (πσ) where x′ = St

= e−rtv̂ (St, t
∗ − t) .

Therefore, on the set {σ̂ < τ̂} we have that σ̃ = σ̂ and on the set {σ̂ ≥ τ̂} we
have that σ̃ = τ̂ . Thus σ̃ = σ̂ ∧ τ̂ . As vπ

t = δ, for τ̂ ≤ t∗ and t ≥ τ̂ , it follows
that Ex (πbσ) = Ex (πeσ). Thus, also σ̂ is optimal for the stopping problem (11).

(ii)–(iii) From standard theory of optimal stopping, the Snell envelope vπ

is a supermartinagle and further when stopped at an opimal stopping time it
forms a martingale. e−r(t∧bτ)v̂ (St∧bτ , t∗ − t ∧ τ̂ ) = vπ

t∧bτ implies the assertion.

Remark 3 The option described in the previous theorem has two different
interpretations depending on the initial stock price x.

If x < K then we can understand this option to be an American ‘up-and-out’
put option with reimbursement δ at the point of ‘knock-out’. Further the holder
is rewarded with an American put option of further duration T − t∗ and strike
K if the option reaches its natural maturity.

If on the other hand, x > K the option cannot come into the money before
t∗ without knocking out. This gives the interpretation of our option being
a European ‘down-and-out’ option with contingent claim vA(St∗ , T − t∗) and
rebate δ when the option ‘knocks out’.

Without specifying on which side of K the initial value of the risky asset
lies, we can say that the option in the previous theorem is the sum of the above
compound American up-and-out with rebate and European down-and-out with
rebate. For future reference we shall refer to this combined derivative as ‘the
American knock-out’.

4.2 Analytical properties of the American knock-out op-
tion

Let us progress to look at some of the analytical properties of the American
knock-out option, presented as a series of lemmas, which will be of later use.

The lemmas are partial steps to establishing convexity of v̂ which in turn is
crucial in establishing a submartingale associated with v̂. This submartingale
serves to justify the heuristic at the beginning of this section.

Lemma 4 There exists a function f : (0,∞) × [0, t∗] → R which is convex in
its first variable such that

f(x, u) ≤ v̂(x, u) and f(K, u) = v̂(K, u) = δ. (12)

Proof. Recall that for u ∈ [0, t∗], vA(K, T − t∗ + u) ≥ δ, where vA is the
value function of the corresponding standard American put. Define

f(x, u) = vA(x, T − t∗ + u) + δ − vA(K, T − t∗ + u)
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We have of course that f(K, u) = v̂(K, u) and convexity follows from the fact
that vA is known to be convex. It remains to show that

f(x, u) ≤ v̂(x, u). (13)

As the rebate δ is always smaller than the value of the American put at the strike
we have that v̂ ≤ vA(·, T − t∗ + ·). Thus (13) states that the maximal distance
between v̂(x, u) and vA(x, u) is attained at x = K. This seems to be plausible
as the payoffs of the underlying options only differ when St hits K. But, if the
process St starts away from K it hits K only with some probability and after
some time. By this, the strong Markov property and the fact that vA(K, ·)
is increasing, one can verify (13). For a formal proof write σA as short hand
for σA

T−t∗+u, the optimal exercising time for an American put with maturity
T − t∗ + u, and recall that τ̂ is the first hitting time of K. We have

v̂(x, u)

≥ Ex

(
e−r(σA∧bτ∧u)v̂(SσA∧bτ∧u, u − σA ∧ τ̂ ∧ u)

)
≥ Exe−r(σA∧bτ∧u)

(
1(bτ<σA∧u)δ + 1(bτ≥σA∧u)v

A(SσA∧u, T − t∗ + u − σA ∧ u)
)

= Ex

(
e−r(σA∧bτ∧u)vA(SσA∧bτ∧u, T − t∗ + u − σA ∧ τ̂ ∧ u)

)
−Ex

(
e−rbτ1(bτ<σA∧u)

(
vA(K, T − t∗ + u − τ̂ ) − δ

))
≥ Ex

(
e−r(σA∧bτ∧u)vA(SσA∧bτ∧u, T − t∗ + u − σA ∧ τ̂ ∧ u)

)
−Ex

(
1(bτ<σA∧u)

(
vA(K, T − t∗ + u) − δ

))
≥ Ex

(
e−r(σA∧bτ∧u)vA(SσA∧bτ∧u, T − t∗ + u − σA ∧ τ̂ ∧ u)

)
−

(
vA(K, T − t∗ + u) − δ

)
= vA(x, T − t∗ + u) + δ − vA(K, T − t∗ + u)
= f(x, u).

The first inequality is due to the supermartingale property stated in Theorem 2.
The second inequality can be seen by a case differentiation. In case of τ̂ < σA∧u
it is obvious thereas for σA ∧u ≤ τ̂ we use that v̂(SσA , u−σA) ≥ (K −SσA)+ =
vA(SσA , T − t∗ + u − σA) and v̂(Su, 0) = vA(Su, T − t∗), resp. Then, the first
equality is just rewriting and the third and fourth inequality use that the value
of the American put is increasing in the time to maturity and the difference
vA(K, T − t∗ + u) − δ is nonnegative. Finally, the second equality comes from
the martingale property of the American put.

Lemma 5 We have that for all u ≥ 0 and x > 0, v̂(x, u) > 0 and

(K − x)+ ≤ v̂ (x, u) ≤ (K − x)+ + δ. (14)

Further, for each x > 0 the function v̂(x, ·) is monotone increasing and con-
tinuous and for each u ∈ [0, t∗] the function v̂(·, u) is monotone decreasing and
continuous; and hence v̂ is jointly continuous.
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Proof. The lower bounds follow by considering the stopping times σ = u and
σ = 0 in the expression given for v̂ in (10).

For the upper bound we make a case differentiation. For initial price x ≥
K the assertion is trivial as the (discounted) payoff by the American knock-
out cannot exceed δ. For x < K we bring to mind that the stopped process
(e−rt(K − St)+)bτ

t∈[0,u] = (e−rt(K − St))
bτ
t∈[0,u], where τ̂ was defined as the first

time St hits K, is a supermartingale. Therefore from the definition of v̂(x, u)
we have

v̂(x, u) ≤ sup
σ∈T0,u

Ex

(
e−r(σ∧bτ)(K − Sσ∧bτ )+ + δ

)
= (K − x)+ + δ.

For the inequality above, recall that at σ = u the option is switched to an
American put with duration T − t∗. Its value becomes vA(Su, T − t∗) ≤ (K −
Su)+ + vA(K, T − t∗) = (K − Su)+ + δ.

Let us now show the monotonicity of v̂(x, ·). As a partial step we shall show
that

vA(x, T − t∗) ≤ v̂(x, u) for all x > 0 and u ∈ [0, t∗]. (15)

By the dynamic programming principle, the value of the standard American
put option coincides with the value of an American put which is knocked out
when St hits K, paying then the amout vA(K, T − t∗ − τ̂ ). We thus obtain for
u ∈ [0, t∗] that

vA(x, T − t∗)
= sup

σ∈T0,T−t∗
Ex

(
e−rσ(K − Sσ)+

)
= sup

σ∈T0,T−t∗
Ex

(
1(bτ≤σ∧u)e

−rbτvA(K, T − t∗ − τ̂) + 1(bτ>σ∧u)e
−rσ(K − Sσ)+

)
.

(16)

Further, since by the definition of t∗, an American option with remaining term
less than T − t∗ is less than δ, it follows from the right hand side above that

vA(x, T − t∗)

≤ sup
σ∈T0,T−t∗

Ex

(
1(bτ≤σ∧u)e

−rbτδ + 1(bτ>σ∧u)e
−rσ(K − Sσ)+

)
≤ sup

σ∈T0,T−t∗+u

Ex

(
1(bτ≤σ∧u)e

−rbτδ + 1(bτ>σ∧u)e
−rσ(K − Sσ)+

)
. (17)

Finally we note that by considering the American knock-out option with expiry
u as having ultimate expiry time T − t∗ + u by taking into account the rebated
American option of length T − t∗ issued at time t∗, we may simply identify the
right hand side above as v̂(x, u).

Now, suppose that 0 ≤ u1 ≤ u2 ≤ t∗. We compare American knock-out
options with remaining times u1 and u2, respectively. Until u1 the payoffs
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coincide. At time u1 the first option is switched to an American put and the
second is still a knock-out option with remaining time u2 − u1. We use (15)
with u = u2 − u1 and obtain

v̂(x, u1)

= sup
σ∈T0,u1

Ex

(
1(bτ≤σ)e

−rbτδ + 1(σ<bτ∧u1)e
−rσ(K − Sσ)+

+1(σ=u1<bτ)e
−ru1vA(Su1 , T − t∗)

)
≤ sup

σ∈T0,u1

Ex

(
1(bτ≤σ)e

−rbτδ + 1(σ<bτ∧u1)e
−rσ(K − Sσ)+

+1(σ=u1<bτ)e
−ru1 v̂(Su1 , u2 − u1)

)
= v̂(x, u2). (18)

This is the required monotonicity in u.
For continuity in u, have again a look at (17). As we have vA(K, T−t∗−u) →

δ for u → 0, the second line in (17) becomes an approximation for the last line
of (16) as u → 0. For u < T − t∗ the last line in (17) coincides with

sup
σ∈T0,T−t∗

Ex

(
1(bτ≤σ∧u)e

−rbτδ + 1(bτ∧T−t∗>σ∧u)e
−rσ(K − Sσ)+

+1(σ=T−t∗>bτ)e
−r(T−t∗)vA(ST−t∗ , u)

)
.

As vA(x, u) → (K − x)+ for u → 0, uniformly in x ∈ (0,∞), also the third line
in (17) becomes an approximation for the line before as u → 0. We obtain

v̂(x, u) → vA(x, T − t∗), u → 0, uniformly in x ∈ R+. (19)

The asymptotic (19) together with an inspection of (18) reveals that v̂(x, u1)−
v̂(x, u2) → 0 for u2 − u1 → 0.

For monotonicity in x, let 0 ≤ x1 < x2 ≤ K and write

τ̂x2 = inf{t ≥ 0 : x2St = K}.

By (12) and the monotonicity of vA we have that for every u ∈ [0, t∗]

v̂

(
x1

x2
K, u

)
≥ vA

(
x1

x2
K, u

)
+ δ − vA (K, u) ≥ δ. (20)

It now follows that (20) and the monotonicity of x �→ K − x and x �→ vA(x, u)
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imply that

v̂(x2, u)

= sup
σ∈T0,u

E1

(
1(bτx2≤σ)e

−rbτx2δ + 1(σ<bτx2∧u)e
−rσ(K − x2Sσ)+

+1(σ=u<bτx2)e
−ruvA(x2Su, T − t∗)

)
≤ sup

σ∈T0,u

E1

(
1(bτx2≤σ)e

−rbτx2 v̂

(
x1

x2
K, u − τ̂x2

)
+ 1(σ<bτx2∧u)e

−rσ(K − x1Sσ)+

+1(σ=u<bτx2)e
−ruvA(x1Su, T − t∗)

)
= v̂(x1, u). (21)

The last equality follows from the dynamic programming principle (Note that
τ̂x2 ≤ inf{t ≥ 0 : x1St = K}). By (14) we have v̂ (Kx1/x2, u) ≤ (K − Kx1/x2)

++
δ and therefore

v̂

(
x1

x2
K, u

)
→ δ, x1 → x2 > 0. (22)

The limiting relation (22) and an inspection of (21) reveals continuity in x.
On [K,∞) the proof of monotonicity and continuity is similar, but easier. It

makes again use of the fact that v̂(x, u) ≥ vA(x, u)+ δ − vA(K, u) → δ, x → K,
uniformly in u ∈ [0, t∗]. The complete proof is left to the reader.

The monotonicity properties of v̂ and its lower bounds together with the fact
that v̂(K, u) = δ, this implies that there exists an open set C taking the form

C = (K,∞) × (0, t∗) ∪ {(x, u) ∈ (0, K) × (0, t∗) : x > b(u)}

where b : (0, t∗] → [0, K), given by

b(u) = sup{x ≥ 0 : v̂(x, u) = K − x}

(with the convention that sup ∅ = 0) is monotone decreasing, satisfying
limu↓0 b(u) ≤ ϕA(T − t∗) such that the optimal stopping time τ̂ ∧ σ̂ corresponds
to

τC := inf{t > 0 : (St, t
∗ − t) /∈ C}

Lemma 6 The value function v̂(x, u) is twice continuously differentiable in x
and once continuously differentiable in u on the continuation region C with

1
2
σ2x2 ∂2v̂

∂x2
+ rx

∂v̂

∂x
− rv̂ − ∂v̂

∂u
= 0 in C.

Proof. We recall a technique used in Karatzas and Shreve (1991), page 243.
That is to say, construct the parabolic Dirichlet problem

1
2
σ2x2 ∂2V

∂x2
+ rx

∂V

∂x
− rV − ∂V

∂u
= 0 in R

V = v̂ on ∂0R

12



where R is the open rectangle (x1, x2) × (u1, u2) ⊂ C with parabolic boundary

∂0R =∂R− ((x1, x2) × {u2}).

On account of the fact that v̂ is joinly continuous in u and x, classical theory of
boundary value problems dictates that the above Dirichlet problem has a unique
solution which is C2,1 in R (cf. Friedman (1976)). By part (iii) of Theorem 2
we have that

{e−rtv̂ (St, t
∗ − t) : t ∈ [t∗ − u2, τ

R]}
is a uniformly integrable martingale where τR = inf{t ≥ t∗ − u2 : (St, t

∗ − t) /∈
R}. On the other hand, stochastic representation tells us also that

{e−rtV (St, t
∗ − t) : t ∈ [t∗ − u2, τ

R]}

is also a uniformly integrable martingale. Since both have the same terminal
value, we are forced to conclude they are the same martingale and hence V = v̂
in R. Since R may be placed anywhere in C the theorem is proved.

Lemma 7 For each u ∈ [0, t∗] the function v̂ (·, u) is convex on (0,∞).

Proof. Let

L =
1
2
σ2x2 ∂2

∂x2
+ rx

∂

∂x
− r − ∂

∂u
and recall that Lv̂ = 0 on C (in particular v̂ is smooth on C). From Lemma 5
we have that v̂ is decreasing in its first variable and increasing in its second
variable. Hence it follows that ∂v̂/∂x ≤ 0 and ∂v̂/∂u ≥ 0 on C. These latter
two observations together with the fact that v̂ ≥ 0 and Lv̂ = 0 leads to the
conclusion that ∂2v̂/∂x2 ≥ 0 on C.
Since v̂ is jointly continuous and bounded below by a convex function f (cf.
Lemma 4) having the property that f(K, u) = v̂(K, u) it follows from the
conclusion of the previous paragraph that v̂ (·, u) is convex on (b(u),∞). As
v̂(x, u) ≥ (K − x)+, when v̂ joins the function (K − x)+ it does so with an
increasing gradient in x. It now follows that v̂(·, u) is convex on (0,∞).

Lemma 8 Let t′ ∈ [0, t∗] and

σ̂t′ := inf{t ≥ t′ : v̂ (St, t
∗ − t) = (K − St)+} ∧ t∗.

We have that

{e−r(t∧bσt′)v̂
(
St∧bσt′ , t

∗ − (t ∧ σ̂t′)
)

: t ∈ [t′, t∗]}

is a Px-submartingale.

Proof. Recall again that Lv̂ = 0 on C. Using a modern version of Itô’s
formula as given in Theorem 3.1 of Peskir (2005) we may deduce that on t ∈
[t′, σ̂t′ ]

ertd[e−rtv̂ (St, t
∗ − t)]

= Lv̂(St, t
∗ − t)dt + dMt

+
{

∂v̂

∂x
(K+, t∗ − t) − ∂v̂

∂x
(K−, t∗ − t)

}
dLK

t (23)
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where LK is local time of S at level K and M is a martingale. Note that
Theorem 3.1 of Peskir (2005) has three conditions which need checking. It can
easily be confirmed that these conditions are automatically satisfied here.

Since v̂ is convex in x, we know that the local time term in (23) is monotone
increasing and hence the result follows.

4.3 The callable δ-penalty put is a composite exotic option

Now we are ready to show what we have already alluded to. Namely that the
callable δ-penalty put option of length T is nothing more than the American
knock-out option with expiry t∗ followed through to the expiration of the rebated
American put of length T − t∗ if appropriate.

Theorem 9 Suppose that δ < vA(K, T ) and define

t∗ = sup{t ≥ 0 : vA(K, T − t) = δ}.

The δ-penalty Israeli put value function vCP is given by

vCP (x, u) =
{

vA(x, u) for (x, u) ∈ (0,∞) × [0, T − t∗]
v̂(x, u − T + t∗) for (x, u) ∈ (0,∞) × [T − t∗, T ]. (24)

Further, with

SCP =
{
(x, u) : x ≥ ϕA(u), u ∈ [0, T − t∗]

}
∪{(x, u) : x ≥ b (u + t∗ − T ) , u ∈ (T − t∗, T ]}

the optimal stopping strategy of the holder is given by

σCP = inf{t ≥ 0 : (St, T − t) ∈ SCP } ∧ T

and the optimal stopping strategy of the writer is

τCP = inf{t ∈ [0, t∗] : St = K} ∧ T.

Proof. Let us define a new function v(x, u) which will be equal to the right
hand side of (24). Already from the definitions of vCP and v̂ in (3) and (10),
respectively, it becomes evident that v ≥ vCP as v corresponds to the value in
case of a certain recall strategy of the seller, namely τCP , whereas for vCP we
take the infimum over all stopping times τ . All that we need is to prove that
v ≤ vCP ; then v is the solution to the saddle point problem (3).

It turns out that the submartingale properties associated with v̂ will be
crucial for the proof. As the value of an American put is a martingale up to the
optimal exercise time it follows from Lemma 8 that

{e−r(t∧σCP )v
(
St∧σCP , T − (t ∧ σCP )

)
: t ≥ 0} is a Px-submartingale.

We can perform a calculation similar in nature to the calculations in Kyprianou
(2004). To this end, define

σCP
t = inf{q ≥ 0 : (Sq, T − t − q) ∈ SCP } ∧ (T − t)
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and

τCP
t =

{
inf{q ∈ [0, t∗ − t] : Sq = K} ∧ (T − t) if t ≤ t∗

T − t if t > t∗.

That is when x′ = St

v (x′, T − t)

= inf
τ∈T0,T−t

Ex′
(
e−r(τ∧σCP

t )v
(
Sτ∧σCP

t
, T − t − (τ ∧ σCP

t )
))

≤ inf
τ∈T0,T−t

Ex′
(
e−r(τ∧σCP

t )
{
1(σCP

t ≤τ)(K − SσCP
t

)+ + 1(σCP
t >τ)[(K − Sτ )+ + δ]

})
≤ sup

σ∈T0,T−t

inf
τ∈T0,T−t

Ex′
(
e−r(τ∧σ)

{
1(σ≤τ)(K − Sσ)+ + 1(σ>τ)[(K − Sτ )+ + δ]

})
= vCP (x′, T − t)

where the first equality holds by Lemma 8 and the corresponding martingale
property for the American put. In the first inequality we have used that
v

(
SσCP

t
, T − t − σCP

)
= (K − SσCP

t
)+ and the fact that (K − x)+ + δ is an

upper bound for v. The latter follows from (14) and the estimation vA(x, u) ≤
(K − x)+ + vA(K, u) ≤ (K − x)+ + δ for American puts with duration u less
than T − t∗.

Remark 10 From this proof and Theorem 2 (iii) we saw that

{e−r(t∧σCP∧τCP )vCP
(
St∧σCP ∧τCP , T − t ∧ σCP ∧ τCP

)
: t ∈ [0, T ]}

is a martingale. This is the martingale which the writer should hedge in order
to replicate the option.

Remark 11 In the proof of Lemma 8, and hence Theorem 9, it is not clear
that the discounted value process is a genuine submartingale (as opposed to
just a martingale) as there may be smooth pasting of v̂ at x = K which would
knock out the integral with respect to local time. The following proposition
excludes this possibility and thus τCP is the unique optimal strategy for the
option writer.

Proposition 12 For u > T − t∗ we have

∂vCP

∂x
(K+, u) >

∂vCP

∂x
(K−, u).

Proof. As, by Lemma 5, vCP (x, ·) is monotone increasing and vCP (K, u) = δ
for all u ∈ [T − t∗, T ], we have that on [T − t∗, T ] the difference

vCP (K + ∆x, ·) − vCP (K, ·)
∆x

− vCP (K, ·) − vCP (K − ∆x, ·)
∆x
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is monotone increasing for all ∆x > 0 and therewith also its limit

∂vCP

∂x
(K+, ·) − ∂vCP

∂x
(K−, ·) (25)

(letting ∆x tend to zero). By convexity the difference in (25) is nonnegative.
Assume that it vanishes for a fixed u ∈ (T − t∗, T ]. Then, it has to vanish
for all u′ ∈ (T − t∗, u] and the local time part in (23) disappears after T − u.
Consequently, the process t �→ e−rtvCP (St, T − t) started at t = T − u is a
supermartingale which impies that vCP (·, u) = vA(·, u) (as the price process
of the American put is the smallest supermartingale dominating the intrinsic
option value). This contradicts to vCP (K, u) = δ = vA(K, T − t∗) < vA(K, u)
for u ∈ (T − t∗, T ].

Let us conclude this section with some sketches of aspects of the function
vCP . Figure 1 gives an impression of the two barriers which form the saddle
point strategy of the stochastic game behind the callable put. The upper barrier
at S = K represents the stopping region of the writer and the domain below
the lower curved line represents the stopping domain of the writer. The dotted
line represents the continuation of the barrier in the case of a regular American
put with the same parameters.

In Figures 2 and 3 depict time slices of the function vCP (x, u). Figure 2 is
a time slice from the region where T ≥ u > T − t∗. The profile of vCP (·, u) is
constrained by the upper and lower gain functions (K − x)+ + δ and (K − x)+

respectively. Further, the value function pastes smoothly onto the lower gain
function and fits under the corner of the upper gain function with a discontinuity
in its first derivative as indicated in the previous proposition.

In Figure 3 we see vCP (·, u) closer to the expiry of the option when 0 <
u < T − t∗. In this case, the callable put has the same value as an American
put with the same parameters close to expiry. One sees in the figure that the
upper gain function is everywhere strictly greater than the value curve which
is consistent with the logic that the writer of the callable put prefers never to
exercise close to expiry.

5 Conclusion

We have shown that the callable put is equivalent to the composition of other
known exotic options. That is to say the stochastic saddle point in Kifer’s
pricing formula of game contingent claims is semi-explicitly identifiable thus
giving a basis for further research of these options. Indeed with further work,
one should be able to show that the given composite exotic options characterize
uniquely the solution to a free boundary problem as one sees for American
put and Russian options. See the preprint preceding this article, Kühn and
Kyprianou (2003a).

In related work, the reader is also referred to Kühn and Kyprianou (2003b)
where the value of a more general class of finite expiry game contingent claims
are characterized via a pathwise pricing formula.
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S

K

t∗ T

Figure 1: A sketch of the boundaries which characterize the optimal strategies
of the writer and holder. The dotted line is where one would expect to see the
optimal stopping barrier of a regular American put with the same parameters.
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(K − s)+ + δ

vCP (s, u) = bv(s, u − T + t∗)

b(u + t∗ − T )

K

s
K

Figure 2: A profile of the function vCP (·, u) for u ∈ (T − t∗, T ].

(K − s)+ + δ

ϕA(u)

vCP (s, u) = vA(s, u)

K

s

K

Figure 3: A profile of the function vCP (·, u) for u ∈ (0, T − t∗).
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