
 Open access  Posted Content  DOI:10.1101/861054

Calling Somatic SNVs and Indels with Mutect2 — Source link 

David Benjamin, Takuto Sato, Kristian Cibulskis, Gad Getz ...+2 more authors

Institutions: Broad Institute

Published on: 02 Dec 2019 - bioRxiv (Cold Spring Harbor Laboratory)

Related papers:

 Fast and accurate short read alignment with Burrows–Wheeler transform

 The Sequence Alignment/Map format and SAMtools

 VarScan 2: Somatic mutation and copy number alteration discovery in cancer by exome sequencing

 Strelka2: fast and accurate calling of germline and somatic variants.

 The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data

Share this paper:    

View more about this paper here: https://typeset.io/papers/calling-somatic-snvs-and-indels-with-mutect2-
2zzb8xbq0r

https://typeset.io/
https://www.doi.org/10.1101/861054
https://typeset.io/papers/calling-somatic-snvs-and-indels-with-mutect2-2zzb8xbq0r
https://typeset.io/authors/david-benjamin-1iikqzp4uo
https://typeset.io/authors/takuto-sato-1x0w8d2yix
https://typeset.io/authors/kristian-cibulskis-570pmmtcbh
https://typeset.io/authors/gad-getz-1bj64vk26k
https://typeset.io/institutions/broad-institute-xotod8mf
https://typeset.io/journals/biorxiv-318tydph
https://typeset.io/papers/fast-and-accurate-short-read-alignment-with-burrows-wheeler-43uqhgr33c
https://typeset.io/papers/the-sequence-alignment-map-format-and-samtools-4zxkoslnzd
https://typeset.io/papers/varscan-2-somatic-mutation-and-copy-number-alteration-ynsfh2p50e
https://typeset.io/papers/strelka2-fast-and-accurate-calling-of-germline-and-somatic-7jtt46jhwp
https://typeset.io/papers/the-genome-analysis-toolkit-a-mapreduce-framework-for-4aygfa9b66
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/calling-somatic-snvs-and-indels-with-mutect2-2zzb8xbq0r
https://twitter.com/intent/tweet?text=Calling%20Somatic%20SNVs%20and%20Indels%20with%20Mutect2&url=https://typeset.io/papers/calling-somatic-snvs-and-indels-with-mutect2-2zzb8xbq0r
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/calling-somatic-snvs-and-indels-with-mutect2-2zzb8xbq0r
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/calling-somatic-snvs-and-indels-with-mutect2-2zzb8xbq0r
https://typeset.io/papers/calling-somatic-snvs-and-indels-with-mutect2-2zzb8xbq0r


Benjamin et al.

METHODS

Calling Somatic SNVs and Indels with Mutect2
David Benjamin*, Takuto Sato, Kristian Cibulskis, Gad Getz, Chip Stewart and Lee Lichtenstein

*Correspondence:

davidben@broadinstitute.org

The Broad Institute, 415 Main

Street, 02142 Cambridge, MA,

USA

Full list of author information is

available at the end of the article

Abstract

Mutect2 is a somatic variant caller that uses local assembly and realignment to

detect SNVs and indels. Assembly implies whole haplotypes and read pairs, rather

than single bases, as the atomic units of biological variation and sequencing

evidence, improving variant calling. Beyond local assembly and alignment,

Mutect2 is based on several probabilistic models for genotyping and filtering that

work well with and without a matched normal sample and for all sequencing

depths.
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Introduction

To understand the genetics of cancer, we must accurately detect somatic mutations.

Due to such factors as contaminating normal cells, subclonality, and copy number

variations, somatic mutations may have low allele fractions. Such mutations are

difficult to distinguish from artifacts due to sample preparation, sequencing error,

and mapping error. To find somatic variants Mutect2 employs local assembly and

alignment, a Bayesian somatic genotyping model, and a novel filtering scheme. As

a GATK 4 tool it runs on both local and cloud-based data and has a full pipeline

written in the Broad Institute’s Workflow Development Language (WDL).

Methods

Roughly speaking, Mutect2 combines the GATK’s local assembly and pair-

HMM read-to-haplotype alignment, which it shares with HaplotypeCaller [1], with

somatic-specific genotyping and filtering. The discussion below will focus on meth-

ods unique to Mutect2; methods shared with HaplotypeCaller are deferred to the

supplemental material.

Finding Active Regions

Mutect2 triages sites for possible somatic variation and determines intervals over

which to assemble reads by assigning each site’s read pileup a log odds for somatic

activity via a simplified version of the somatic genotyping model, below. A site is

considered “active” if its log odds exceed some threshold. Like HaplotypeCaller,

Mutect2 chooses for assembly intervals that surround each active site with some

margin. The details of this are discussed in the supplemental material.
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Assembling Haplotypes

Mutect2 shares almost all of its local assembly code with HaplotypeCaller[1] Like

HaplotypeCaller, Mutect2 creates a de Bruijn-like graph out of kmerized reads,

prunes the graph of spurious paths, attempts to bring “dangling” paths – that

is, paths that start at non-reference source vertices or end at non-reference sink

vertices – back to the reference path, and sets candidate haplotypes to be the

highest-scoring paths from the reference source to the reference sink, where the

score is the product of branching ratios of edges in the path that come from a

vertex with out-degree greater than 1. An important difference is the novel adaptive

pruning algorithm we devised for Mutect2. Whereas HaplotypeCaller prunes chains

– that is, maximal non-branching subgraphs – based on a constant threshold for

the maximal edge multiplicity in the chain, Mutect2 uses a version of its active

region likelihoods model to score chains. In this model, the role of possible variants

or errors is played not by pileup elements but by branching edges. Each chain has

a left likelihood ratio that considers the leftmost edge multiplicity of the chain

compared to the total out-multiplicity of its first vertex, and a right likelihood ratio

based on the rightmost edge multiplicity versus the total in-multiplicity of its last

vertex. The model learns a global error rate in a first pass where chains are not

pruned but chains with likelihood ratios below the threshold are used to determine

an empirical error rate. Then in the second pass this learned error rate is used to

calculate more refined likelihoods and prune chains from the graph. This adaptive

pruning is especially effective for samples with high and/or non-uniform read depth,

such as mitochondria, exomes, and RNA.

Somatic Genotyping

Mutect2 uses the GATK’s implementation of the Pair-HMM probabilistic model

for pairwise sequence alignment to assign a likelihood for each read to have been

sequenced from each candidate haplotype. This yields a matrix of read-haplotype

likelihoods for the tumor sample and, if present, the normal sample. Mutect2 con-

verts this matrix into a fragment-haplotype matrix by adding log-likelihoods of

paired reads[2] These fragment-haplotype matrices are converted to fragment-allele

matrices at each locus where any haplotype differs from the reference by setting

a fragment’s allele likelihood to be its maximum likelihood among haplotypes ex-

hibiting that allele. Mutect2’s somatic likelihoods model for genotyping based on

a fragment-allele likelihood matrix is inherently multiallelic. Pair-HMM gives the

fragment-allele likelihoods matrix ℓra ≡ P (read r|allele a). We assume a latent vec-

tor f of allele fractions with a Dirichlet prior P (f) = Dir(f |α) and assign each

fragment a latent indicator z such that zra = 1 if read r was sequenced from DNA

supporting allele a and 0 otherwise. f is the prior for z: P (z|f) =
∏

r

∏
a f

zra
a . The

[1]Since this this has not been published elsewhere, we document the assembly of

both Mutect2 and HaplotypeCaller in great detail in the supplementary material.
[2]This treats errors in paired reads as independent, which is correct for sequencing

error. To account for possible shared PCR error Mutect2 caps the quality scores of

bases where paired reads overlap so that their sum is bounded by an effective PCR

quality score.
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full-model likelihood is therefore

L(A) = P (R, z, f |A) = Dir(f |α)
∏

a

∏

r

(faℓra)
zra , (1)

where A is the set of alleles. We describe the mean field variational Bayes approach

to marginalizing f and z to obtain the model likelihood as a function of A in the

supplementary material.

The likelihood ratio for an allele is defined as the model evidence when the allele

is excluded from A, keeping all other alleles, dividing by the model evidence when

A includes all alleles.

Filtering

The companion GATK tool FilterMutectCalls filters the potential somatic variants

output by Mutect2 based on the annotations that Mutect2 emits. FilterMutectCalls

first estimates the probability that each candidate is a somatic variant, as opposed

to a germline variant, sequencing error etc. It then chooses the probability threshold

that maximizes the estimated F score – the harmonic mean of recall and precision

– and filters accordingly. Error probabilities are derived from several different error

models, the simplest of which are hard filters that assign an error probability of 1

when an annotation exceeds some threshold. These include filters for variants with

an excess of low-quality supporting bases, poor mapping quality, support coming

exclusively near the end of reads, a large mismatch in lengths between variant- and

reference-supporting fragments, and local haplotypes with too many variants. Fil-

terMutectCalls also filters sites in a “panel of normal” blacklist, where the panel

of normals is obtained by running Mutect2 on a set of normal samples and black-

listing all sites that appear in more than one sample’s calls with the GATK tool

CreateSomaticPanelOfNormals.

In addition to these hard filters FilterMutectCalls applies several probabilistic

models for error modes that can be explicitly modeled. The germline model cal-

culates the probability that a variant is a germline event by subjecting reads to a

diploid genotyping model[3] The normal artifact model applies the somatic genotyp-

ing model to the matched normal and learns a parameter representing the extent

to which this serves as a proxy for artifacts in the tumor. The contamination model

uses the estimate of cross-sample contamination from the GATK tool Calculate-

Contamination to calculate the probability that variants are due to contamination.

The short tandem repeat (STR) model handles insertions and deletions that may

be due to polymerase slippage. Finally, there are models for strand bias and orien-

tation bias artifacts, the latter of which is crucial for good performance on FFPE

samples.

Many of these models compute a posterior probability of error by comparing the

likelihoods of some artifact against the likelihood of somatic variation. The latter

depends on a somatic clustering model that determines the spectrum of tumor

allele fractions and the overall somatic mutation rate. This and all other aspects of

filtering are discussed in detail in the supplement.

[3]By using the optional tumor segmentation input generated by the GATK tool

CalculateContamination, this diploid model can account for copy-number variation.

Otherwise it assumes that het allele fractions equal 1/2.
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Results

We have validated Mutect2 against several truth data sets: the ICGC-TCGA-

DREAM Somatic Mutation Calling Challenge [2] synthetic bams, in vitro mixtures

of germline samples, normal sample replicates, and a large set of TCGA WES bams

with matched WGS bams. All of our validations are run with default settings of

Mutect2 and FilterMutectCalls, with one exception: for the in vitro mixtures we

turn off the germline filter and the panel of normals because the true “somatic”

mutations are really common germline variants.

DREAM Challenge

We evaluated Mutect2 against the first four synthetic WGS tumor-normal pairs

from the DREAM Challenge. These bams are from real data, with “somatic vari-

ants” spiked in in silico using BamSurgeon [3] and hence have known truth data.

We ran Mutect2 and FilterMutectCalls on each pair, excluding the same masked

intervals as the original DREAM challenge, and measure sensitivity and precision

with respect to the synthetic truth data. That is, our metrics are identical to those

of the Challenge and of its public leaderboard[4]. Note that challenges 1 and 2 did

not contain indels. Table 1 summarizes the results from these evaluations.

Table 1 ICGC-TCGA-DREAM Somatic Mutation Calling Challenge

Challenge Total true variants Sensitivity Precision
DREAM 1 SNV 3281 0.975 0.954
DREAM 2 SNV 3979 0.979 0.944
DREAM 3 SNV 6391 0.929 0.966
DREAM 3 indel 6494 0.897 0.976
DREAM 4 SNV 11826 0.843 0.959
DREAM 4 indel 10288 0.814 0.984

Normal-Normal Calls

A popular way to measure the false positive rate of somatic variant callers is to

assign one normal sample as a “tumor” and a technical replicate of the same sample

as the “matched normal.” In this case, any calls are by definition false positives[5].

We ran Mutect2 and FilterMutectCalls on the 12 = 4 × (4 − 1) ordered pairs of

four NA12878 exome replicates prepared and sequenced at the Broad Institute.

We summarize these results below in Table 2. The total covered territory of these

exomes is about 37 Mb, so a total of 7 false positives corresponds to a false positive

rate of one call per 5 Mb.

Normal mixtures

We prepared WES libraries from in vitro mixtures of 5, 10, and 20 samples from

the 1000 Genomes Project, replicated this three times for each mixture, and se-

quenced the mixtures to obtain simulated subclonal tumor samples with a range

[4]Mutect2 performs at or near the top of each leaderboard, although note that

teams were allowed an unlimited number of submission after which they saw their

performance each time. Thus a tool run with default settings is at a very significant

handicap.
[5]Somatic mosaicism in normal samples and mutation in culture account for some

true positives but these generally occur at undetectably low allele fractions and at

a negligible rate compared to callers’ error rates.
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Table 2 Total SNV, Indel false positives in normal-normal calls on NA12878 replicates

Tumor
Normal

1 2 3 4 5 6

1 0,0 0,1 0,0 2,0 3,2
2 0,0 2,0 1,1 2,0 2,0
3 0,4 0,0 0,1 0,1 0,1
4 0,0 0,0 0,0 0,0 1,0
5 0,2 0,1 0,0 4,3 0,1
6 0,1 0,1 1,1 0,1 0,1

of variant allele fractions. For example, a mixture of 20 samples in which one was

homozygous for a variant and one was heterozygous would exhibit an allele fraction

of (1 + 2)/(2 × 20) if mixing proportions were roughly equal. By calculating the

mixing fractions from the average allele fraction of singleton heterozygous alleles

and obtaining germline genotypes from HaplotypeCaller, we were able to generate

a large set of variants with known allele fractions. In order to avoid artifacts in

our truth data we excluded variants with a population allele frequency of less than

0.001 in gnomAD. We thereby obtained a truth set of confident variants from which

we could measure the sensitivity of Mutect2, although by excluding some variants

from the truth set we lose the ability to measure precision. We then ran Mutect2

on all replicates of each mixture and aggregated the results by bins of predicted

allele fraction and depth. We plot these aggregated sensitivity results for SNVs and

indels in Figures 1

Figure 1 SNV sensitivity in mixtures of normal samples

TCGA WGS

Our final validation is based on the MC3 [4] dataset of TCGA calls. We used tumor-

normal pairs from the MC3 analysis that had both WES and WGS sequencing,

excluding a handful of pairs that had undergone whole-genome amplification or

were marked as the non-preferred pair (eg metastasis instead of primary tumor).
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Figure 2 Indel sensitivity in mixtures of normal samples

For each pair, we converted the MC3 MAF into a VCF annotated by which caller

had called each variant. We ran Mutect2 and merged all Mutect2 calls, filtered and

unfiltered, into the MC3 VCF to create a maximal set of candidate variations. It

is expected that this union of all callers’ outputs, which includes filtered Mutect2

calls with low tumor log odds, contains essentially all true mutations. To determine

which of these calls are true, we validated against the matched WGS using the

GATK 4 tool ValidateBasicSomaticShortMutations, requiring at least two reads to

confirm a variant. We also calculated the power for the WGS to confirm a variant,

which is important for low-allele fraction mutations. If a variant had sufficient power

(greater than 0.8) and was not seen in the WGS pair we counted it as a false

positive. If it was not seen in the WGS pair and was underpowered, we counted it

as undetermined. If it was seen in the WGS pair, regardless of power we counted it

as a true positive. Then for each caller and for each pair we calculated the sensitivity

and precision against this validated truth data set. The callers against which we

compared Mutect2 were those in the MC3 dataset: VarScan 2 [5], SomaticSniper [6],

Mutect [7], RADIA [8], and MuSE [9] for SNVs and Pindel [10], VarScan 2 [5], and

Indelocator [11] for indels.

So far we have performed this analysis on 65 samples with both WES and WGS

tumor-normal pairs. In subsequent versions of this manuscript we will extend the

analysis to 929 samples[6] We have also observed that although the WGS samples

have relatively long read lengths of 150 bases they still exhibit a significant number

of mapping errors in the truth data. Since Mutect2 is more aggressive about map-

ping error than all other tools this tends to systematically penalize the sensitivity

of Mutect2 and overestimate the precision of other callers. We are working on a

rigorous justification of these informal observations.

[6]Due to an unforeseen unavailability of TCGA data on the cloud for several months

we have not yet been able to do this.
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Figure 3 SNV sensitivity and precision of six callers on MC3 dataset

Figure 4 Indel sensitivity and precision of four callers on MC3 dataset
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