
Calling the Cloud: Enabling Mobile Phones
as Interfaces to Cloud Applications

Ioana Giurgiu, Oriana Riva, Dejan Juric, Ivan Krivulev, and Gustavo Alonso

Systems Group, Department of Computer Science, ETH Zurich
8092 Zurich, Switzerland

{igiurgiu,oriva,alonso}@inf.ethz.ch

Abstract. Mobile phones are set to become the universal interface to
online services and cloud computing applications. However, using them
for this purpose today is limited to two configurations: applications ei-
ther run on the phone or run on the server and are remotely accessed
by the phone. These two options do not allow for a customized and
flexible service interaction, limiting the possibilities for performance op-
timization as well. In this paper we present a middleware platform that
can automatically distribute different layers of an application between
the phone and the server, and optimize a variety of objective functions
(latency, data transferred, cost, etc.). Our approach builds on existing
technology for distributed module management and does not require new
infrastructures. In the paper we discuss how to model applications as a
consumption graph, and how to process it with a number of novel algo-
rithms to find the optimal distribution of the application modules. The
application is then dynamically deployed on the phone in an efficient
and transparent manner. We have tested and validated our approach
with extensive experiments and with two different applications. The re-
sults indicate that the techniques we propose can significantly optimize
the performance of cloud applications when used from mobile phones.

Keywords: Mobile phones, cloud applications, OSGi, performance.

1 Introduction

Mobile phones are set to become a main entry point and interface to the grow-
ing number of cloud computing services and online infrastructures. They are
also increasingly perceived as the most convenient access point for a variety of
situations: from payments to ticket purchase, from carrying boarding passes to
hotel check-in, from browsing a shop catalog to activating a coffee machine.

Today, the implementation of such scenarios is limited by the lack of flexibility
in deploying mobile phone applications. They either run entirely on the server,
typically incurring large data transfer costs, high latencies, and less than optimal
user interfaces; or they run entirely on the phone, thereby imposing many limita-
tions on what can be achieved due to the constraints of mobile phone hardware,
as well as placing an undue burden on the end users who need to install, update,

J.M. Bacon and B.F. Cooper (Eds.): Middleware 2009, LNCS 5896, pp. 83–102, 2009.
c© IFIP International Federation for Information Processing 2009

84 I. Giurgiu et al.

and manage such applications. In this paper we explore how to deploy such ap-
plications in a more optimal way by dynamically and automatically determining
which application modules should be deployed on the phone and which left on
the server to achieve a particular performance target (low latency, minimization
of data transfer, fast response time, etc.). Having such a possibility creates a
wealth of opportunities to improve performance and the user experience from
mobile phones, turning them into an open, universal interface to the cloud.

To optimally partition an application between a mobile phone and a server, we
approach the problem in two steps. First, we abstract an application’s behaviour
as a data flow graph of several inter-connected software modules. Modules encap-
sulate small functional units supplied by the application developer. Each module
provides a set of services, and modules are connected through the correspond-
ing service dependencies. Through an offline application profiling, modules and
service dependencies are characterized in terms of their resource consumption
(data exchange, memory cost, code size), thus providing the knowledge base for
the optimization process. Given this graph, in the second step, a partitioning
algorithm finds the optimal cut that maximizes (or minimizes) a given objec-
tive function. The objective function expresses a user’s goal such as to minimize
the interaction latency or the data traffic. Moreover, the optimization also takes
into account a mobile phone’s resource constraints such as memory and network
resources available.

We propose two types of partitioning algorithms: ALL and K-step. We look
at the problem both as a static and dynamic optimization. In the first case,
the best partitioning is computed offline by considering different types of mobile
phones and network conditions. In the second case, the partitioning is computed
on-the-fly, when a phone connects to the server and specifies its resources and
requirements. ALL fits the first scenario, while K-step the second one.

Our approach does not require new infrastructures as it uses existing software
for module management such as R-OSGi [1] and a deployment tool like Al-
fredO [2], that can support the actual distributed deployment of an application
between a phone and a server.

This paper makes the following contributions. First, we model the partitioning
problem and the algorithms that can solve it. Second, we show the effectiveness
of this approach with two prototype applications. Third, we present a compre-
hensive evaluation involving realistic application scenarios of mobile phones. Our
measurements show that the system can quickly identify the optimal partition
given various phone constraints, and provide an improvement of tens of seconds
compared to the case in which the phone hosts the entire application or leaves
all the service logic on the server.

The rest of the paper is organized as follows. The next section gives an
overview of the AlfredO platform we use. Section 2.2 describes how application
profiling is used to produce an application’s consumption graph, while Section 3
presents the partitioning algorithms. Section 4 evaluates our approach and Sec-
tion 5 describes an application using it. We then conclude and discuss limitations
and open problems of your approach as well as related work.

Calling the Cloud: Enabling Mobile Phones as Interfaces 85

2 Flexible Module Deployment

This section starts by providing background on AlfredO and then describes how
application profiling is used to generate a consumption graph.

2.1 AlfredO Overview

We use AlfredO [2] to carry out the physical distribution of an application’s
modules between a mobile phone and a server. AlfredO is based on OSGi [3],
which has been traditionally used to decompose and loosely couple Java appli-
cations into software modules. In the OSGi terminology, software modules are
called bundles, and bundles typically communicate through services, which are
ordinary Java classes with a service interface.

Given an OSGi-based application with a presentation tier, a logic tier, and
a data tier, where each tier consists of several OSGi bundles, AlfredO allows
developers to decompose and distribute the presentation and logic tiers between
the client and server side, while always keeping the data tier on the server.

In a typical example of interaction, the minimal requirement for interacting
with a certain application is to acquire the presentation tier. Once AlfredO has
built the presentation tier, the logic tier’s services can be invoked. This happens
by either redirecting invocations to remote services provided by the server side
or by acquiring and running some parts of the logic tier locally.

Figure 1 shows an example of client-server interaction. Both devices run OSGi
with the R-OSGi [1] bundle installed, which enables remote service execution
across OSGi platforms. The AlfredO system consists of three bundles: AlfredO-
Client and Renderer on the client, and AlfredOCore on the server.

Upon explicit discovery (e.g., using a service discovery protocol such as SLP [4]
provided by R-OSGi) or by direct connection to a known address (e.g., the re-
mote server periodically broadcasts invitations), the connection is established
and the client requests a selected application. Using one of the available parti-
tioning algorithms (described in the next section), AlfredOCore computes the
optimal deployment for such an application, and then returns to AlfredOClient

R
-O

S
G

i

A
lfr

ed
O

C
lie

nt

R
en

de
re

r

B
un

dl
e

A

P
ro

xy
 (

B
un

dl
e

B
)S1

S3

S2

OSGi
(Concierge)

R
-O

S
G

i

A
lfr

ed
O

C
or

e

B
un

dl
e

A

B
un

dl
e

B

S1

S3

S2

OSGi
(Concierge)

SWT

AWT

ApplicationApplication

Fig. 1. AlfredO architecture

86 I. Giurgiu et al.

the application’s descriptor (also explained later) and the list of services to be
fetched. The application’s descriptor is used by the Renderer to generate the
corresponding AWT or SWT user interface, while AlfredOClient fetches the
specified services via R-OSGi.

In the general case, a server provides bundles offering services. If a client
wants to use a server’s service, the server provides the client with the service
interface of such a service. Then the R-OSGi framework residing on the client
side generates from the service interface a local proxy. The local proxy delegates
service calls of the client to the remote server and each proxy is registered with
the local R-OSGi service registry as an implementation of the particular service.
If it happens that the service interface references types provided by the original
service module and these are located on the server side, the corresponding classes
are also transmitted and injected into the proxy module.

Alternatively, rather than invoking a remotely executing service, a client can
decide to fetch it. In the example in the figure, if the client wants to acquire S1,
the corresponding bundle A is transferred to the client side and plugged into the
OSGi platform. When the client receives the service interface of S1, it is also
provided with a list of the associated service’s dependencies. Let us assume that
S1 depends on S2, and S2 depends on S3, which are both offered by another
bundle B. The client can either acquire only S1 and create a local proxy for S2
and S3, or it can also acquire S2 and S3.

2.2 Application Profiling

The first step in optimizing an application’s deployment is to characterize the
behaviour of such an application through a resource consumption graph. We
assume applications to be built using the OSGi module system, but the same
method could be extended to work with applications modularized in other ways.

We instrument every bundle composing the application to measure the con-
sumed memory, the data traffic generated both in input and output, and its
code size. We then execute the instrumented application on one or multiple
phone platforms and collect on a debug channel the amount of consumed re-
sources. Each bundle’s cost represents how much a phone has to pay if it wants
to acquire and run that particular bundle locally.

In our optimization problem, we focus mainly on user interface type of func-
tionality, since these are the modules that are more likely to be suitable for
moving and running on a resource-constrained mobile phone. In addition, the
large heterogeneity of the mobile platforms encountered today and the lack of
one reference CPU architecture for mobile phones makes it hard to obtain stable
estimations for CPU consumption that could be correctly applied to interactions
with non-profiled phone platforms. We therefore simplify the profiling process
by omitting a bundle’s CPU cost.

An application developer classifies bundles as movable and non-movable based
on their computation needs. Non-movable bundles are computing-intensive com-
ponents that are bound to always execute on the server side. This simplification
has so far proven sufficient for the interactive applications we have considered

Calling the Cloud: Enabling Mobile Phones as Interfaces 87

and that AlfredO primarily targets, since the most critical factor in the overall
performance is usually the amount of transferred data.

The profiling output is then used to generate the application descriptor. A
snippet of the descriptor used in the example of Figure 1 is the following:

<tier>

<requires>

<service name="S3" data="350"/>

</requires>

<provides>

<service name="S2"/>

</provides>

<memory>155</memory>

<code>30</code>

<type>movable</type>

</tier>

This descriptor specifies that service S2 requires S3 for its execution (i.e., S2
depends on S3) and the total amount of data that needs to acquire from S1
and return to S3 is 350 bytes. Other requirements include the memory cost of S2
when executed on the phone, and the size of the bundle to which it is associated.

2.3 Consumption Graph

The output of the profiling process is used to represent the application as a
directed acyclic graph G = {B, E}, where every vertex in B is a bundle Bi and
every edge eij in E is a service dependency between Bi and Bj . Each bundle Bi

is characterized by five parameters:

– type: movable or non-movable bundle,
– memoryi: the memory consumption of Bi on a mobile device platform,
– code sizei: the size of the compiled code of Bi,
– inji: the amount of data that Bi takes in input from Bj ,
– outij : the amount of data that Bi sends in output to Bj .

Figure 2 shows an example of a graph consisting of 6 bundles. We call this
an application’s consumption graph. Notice that although our implementation
currently considers these five parameters, the model is generic enough to be
easily extended with more variables.

In this work we make the simplifying assumption that every bundle exposes
only one service, i.e., bundle:service mapping is 1:1. This implies that a bundle
can be interconnected to multiple bundles, but always through the same service
interface. As ongoing work, we are relaxing this assumption by differentiating
among the type and number of service dependencies.

The graphs we consider for optimization are not extremely large because, first,
we focus on the presentation layer, and, second, modularity is not at the class
or object level, but at the functional level. Therefore, we expect applications to
have in most cases a few tens of modules.

88 I. Giurgiu et al.

1 1

2 2

3 3

5 5
6 6

4 4

21
12

42

24

53

35

31

13

52

25

65

56

i i

i i

Fig. 2. Example of application’s consumption graph

3 Partitioning Algorithms

In this section, we describe the AlfredO’s algorithms used to optimize an ap-
plication’s distribution between a phone and a server. The server is assumed to
have infinite resources, while a client is characterized by several resource con-
straints. We start by describing how the optimization problem is defined and
which assumptions are made, and then present the partitioning algorithms.

3.1 Optimization Problem

The partitioning problem seeks to find a cut in the consumption graph such that
some modules of the application execute on the client side and the remaining
ones on the server side. The optimal cut maximizes or minimizes an objective
function O and satisfies a phone’s resource constraints. The objective function
expresses the general goal of a partition. This may be, for instance, minimize the
end-to-end interaction time between a phone and a server, minimize the amount
of exchanged data, or complete the execution in less than a predefined time.

A phone’s constraints include memoryMAX , the maximum memory available
for all potentially acquired bundles, and code sizeMAX , the maximum amount
of bytes of compiled code a phone can afford to transfer from the server.

Let us consider an application consisting of n bundles of type movable, de-
noted as B = {B1, ..., Bn}. A configuration Cc is defined as a tuple of par-
titions from the initial set of bundles, < Bclient, Bserver >, where Bclient =
{Ba|a ∈ [1, ..., k]} and Bserver = {Bb|b ∈ [1, ..., s]} with Bserver

⋂
Bclient = φ

and Bserver

⋃
Bclient = B.

An example of objective function that we will use to evaluate our approach
minimizes the interaction latency between a phone and a server, while taking
into account the overhead of acquiring and installing the necessary bundles. This
can be modelled in the following way:

minOCc = min(
t<k∑
i=1

w∑
j=1

(inij + outji) ∗ fij

α
+

k∑
i=1

code sizei

β
+

w<s∑
i=1

proxy costi)

Calling the Cloud: Enabling Mobile Phones as Interfaces 89

The first part in the function models the cost due to the application’s data
exchange when k bundles run on the mobile phone and t bundles out of these
have dependency relationships with w bundles residing on the server side. As we
consider only movable bundles with a very low computation cost, this mainly
consists of communication cost. The parameter α approximates the capacity of
the communication link between the client and server achievable in real settings
and also takes into account the overhead imposed by the device platform to set
up the communication. Depending on the type of interaction a user may invoke
a certain module multiple times. This is modelled through the fij parameter
which specifies how many times the communication between i and j occurs.

The second part models the cost to fetch, install, and start the k bundles on
the mobile phone. The parameter β takes into account the capacity of the com-
munication link as well as the installation overhead. The third part represents
the cost for building the local proxies necessary to interact with the w remote
bundles. Notice that the f parameters appears only in the first member as hav-
ing one or multiple interactions solely affects the amount of data sent back and
forth between the mobile device and the server, while the cost of shipping the
code and building local proxies remains the same.

Given the objective function and the consumption graph we want to find the
optimal partition. Although many tools exist for graph partitioning, they do not
prove to be suitable for our problem. Tools like METIS [5] are designed specifi-
cally for partitioning large scientific codes for parallel simulation. Moreover, they
apply heuristic solutions in order to create a fixed number of balanced graph
partitions, thus fixing predefined seeds and not allowing for flexibility. Other
tools like Zoltan [6] represent an application as a graph, where data objects are
vertices and pairwise data dependencies are edges. The graph partitioning prob-
lem is then to partition the vertices into equal-weighted parts, while minimizing
the weight of edges with endpoints in different parts. This approach does not
allow for unlimited and unspecified capacity for the server partition, and ex-
pects a single weight on each edge and each vertex. This constraint limits the
applicability of the method, since it cannot support heterogeneity of different
platforms.

Another option is to consider traditional task scheduling algorithms. However,
the main drawback of task scheduling is that it does not fit a non-deterministic
data flow model, since it assumes that all tasks are executed exactly once. There-
fore, it does not fit scenarios where a user may interact with an application
several times and spontaneously.

We therefore propose an alternative approach with two novel algorithms.

3.2 Pre-processing

Before running the actual algorithms, we pre-process the consumption graph to
reduce the search space, but without eliminating optimal solutions. For large
graphs, this step is essential to reduce the graph size and therefore the number
of possible configurations, thus improving the algorithm’s performance. The idea
is to identify bundles that yield a very high cost and therefore cannot be moved

90 I. Giurgiu et al.

to the client or bundles that exchange a lot of data, and therefore should always
execute on the same device.

Given a consumption graph G = {B, E}, if the cost of an edge eij ∈ E is
such that inij + outji > dataMAX , then Bi and Bj are merged into one bundle
Bi: all input and output edges are updated accordingly, and the cost of the new
bundle Bi is given by the sum of the relative costs of the old Bi and Bj .

3.3 ALL Algorithm

After the pre-processing step, two classes of algorithms can be applied to find
the optimal cut. The reason for having two different algorithms is that the
optimization problem can be looked as a static problem, where the optimal
partitioning for several types of mobile devices is pre-computed offline or as a
dynamic problem where the partition must be calculated on-the-fly, once a mo-
bile connects and communicates its resources. In this work, we consider both
options and we propose ALL for offline optimization and K-step for online opti-
mization.

The ALL algorithm always guarantees to find the optimal cut. It operates in
three steps. First, it generates all “valid” configurations. Given B, we define C =
{Cc|c ∈ [1, ..., m]} the set of all valid configurations, where m is the total number
of configurations obtained by traversing the consumption graph in an adapted
topological order that combines both breadth-first and depth-first algorithms. A
valid configuration is such that if bundle Bp and Bq belong to Bclient, if Bp and
Bq are not connected through a direct edge epq, then all bundles on the possible
paths between Bp and Bq also belong to Bclient.

Second, for all valid Cc configurations with k being the number of bundles to
be fetched, installed, and run on the phone, it chooses the ones that satisfy the
phone’s constraints:

1.
∑k

i=1 memoryi ≤ memoryMAX ;
2.

∑k
i=1 code sizei ≤ code sizeMAX ;

Third, the algorithm evaluates the objective function for each valid configuration
and chooses the one providing its maximum (or minimum) value.

3.4 K-Step Algorithm

While the ALL algorithm inspects all possible configurations and identifies the
“global” optimal cut, the K-step algorithm evaluates a reduced set of configura-
tions and finds a “local” optimum. The K-step algorithm is therefore by design
faster than the ALL algorithm, but can be less accurate.

Instead of generating all configurations and then choosing the best ones, this
algorithm computes the best configuration at every step and on-the-fly. At the
beginning, K-step adds to the current configuration the entry node of the graph
and computes the current value for the objective function. Then, at each step, it
adds K new nodes to the current configuration, only if these new nodes provide a
configuration with an objective value larger (the goal is maximize O) or smaller

Calling the Cloud: Enabling Mobile Phones as Interfaces 91

(the goal is minimize O) than the current one and if the phone’s constraints are
still respected. Depending on K, the algorithm can add one single node (K=1) or
a subgraph of size K (K>1) computed by combining depth-first and breadth-first.

More specifically, at each step the algorithm maintains a queue containing
all nodes in the graph (not yet acquired) within a distance of K hops from all
nodes present in the current configuration. The algorithm generates all possi-
ble configurations with the nodes in the queue and the nodes already added to
the current configuration. It then evaluates the objective function for each new
possible configuration. If any of the new configurations provides an objective
value better than the current one, then a new local optimum has been found.
However, the K nodes enabling such a configuration are added only if their re-
source demands respect the phone’s constraints. If the constraints are violated,
the algorithm will evaluate them for the second best new configuration and so
forth until a better configuration respecting the phone’s constraints is found. If
none of the new configurations provide a better objective value, while satisfying
the phone constraints, the algorithm stops and returns the current configuration.
Otherwise, if a configuration is found, the new K nodes are added to the current
configuration and removed from the queue. The queue will be updated and the
evaluation continues. The algorithm ends when the queue is empty or when the
objective value cannot be improved any further.

4 Evaluation

To evaluate our approach we have explored two directions. First, we have built
from scratch a prototype application and used it to test our algorithms under
various resource and network constraints. This application is specifically designed
to allow several configurations and stress the operation of the algorithms. Second,
we have taken an existing application for home interior design and modified it
to support our approach. In this section we focus on the experiments with the
first application, while the second use case is presented in the next section.

In all results presented in the following the client runs on a Nokia N810
Internet tablet and the server on a regular laptop computer (Intel Core 2 Duo
T7800 at 2.60 GHz). N810 handhelds, released in November 2007, run Linux
2.6.21, have a 400 MHz OMAP 2420 processor, 128 MB of RAM, and 2 GB of
flash memory built in. N810 devices were connected to the laptop either through
IEEE 802.11b in ad hoc mode or through Bluetooth.

4.1 Application Bundles and Service Dependencies

The prototype application we built implements some of the image composition
functions of the interior design application described in the next session. This
is a very interactive application exhibiting a good mixture of light and heavy
processing components. Using it a user can upload an image of his/her house
and a photo of a furniture item, position the furniture item on top of the house
plan, set several properties such as object focus, rotation, color, and dimension,
and then invoke specialized image processing libraries for image composition.

92 I. Giurgiu et al.

4

7

6

5

13

14

8

2
12

3

translation

diffusion small image

large image

16

1817

9 10

11

band select

15 19

rotation
sharpen

blur

init

metadata

properties

shear

reduce

contourcrystallize

maximize
oil

upper

lower

1

Fig. 3. Application graph

This application was built using the OSGi module system. The entire appli-
cation consists of bundles with varying requirements in terms of processing and
communication resources. The service dependencies between bundles generate
the graph configuration shown in Figure 3, where we can identify two flows of
bundles that process the small image (the furniture item in this case) and the
large image (the house image) separately, and then merge through bundle 15
and 19. The heavy computation bundles, namely 14, 15 and 19, are marked as
non-movable by the developer (in dark gray in the figure).

In the following experiments, we consider the objective function described in
Section 3.3. The goal is to minimize the end-to-end interaction time observed
by the client, including the time necessary to acquire and install the necessary
code at the beginning of the interaction.

4.2 Startup Process

We start by analyzing the startup time of some selected configurations. We
measure the time necessary to fetch, install, and start the necessary bundles to
be run locally as well as to generate the R-OSGi proxies necessary for invoking
services of remote bundles. The results are shown in Table 1.

The fetching time obviously increases with the number and size of the bun-
dles acquired. The installation time is typically of 1–1.5 seconds per bundle.
The proxy generation time depends on how many service dependencies exist
with remote bundles. For example, in the first case, init has 3 dependencies:
translation, properties, and metadata. Although the fetching and installa-
tion overhead can be even 30 seconds, as in the last case when 15 bundles are
acquired, our algorithms opt for these kinds of configuration only when the per-
formance gain is high enough. For smaller configurations, such as the first few

Calling the Cloud: Enabling Mobile Phones as Interfaces 93

Table 1. Startup time (average and [standard deviation]) with Bluetooth

Configuration Fetch & Install Proxy generation Total time
size (bytes) time (ms) num time (ms) (ms)

1 13940 4776 [180] 3 1044 [339] 5820
1–4 38907 9512 [100] 3 852 [66] 10364
1–5,12,14 98226 15006 [214] 5 1367 [196] 16373
1–4,6,13,16–18 82212 18650 [299] 4 1511 [176] 20161
1–6,9,12,13,16–18 109616 22666 [376] 8 2165 [221] 24831
1–6,8–13,16–18 135454 30413 [2180] 4 660 [93] 31073

cases, the overhead is comparable to the startup time of other common applica-
tions on mobile phones (e.g., text editor, web browser, etc.).

Once the interaction with an application ends, all the modules that have been
fetched on the mobile device are erased such to free the phone’s memory. This
guarantees to consume resources only during the interaction.

4.3 Interaction Time

To assess the effectiveness of our algorithms in identifying the configuration that
minimizes the given objective function, we first run some grounding experiments
where we quantify the cost and performance of each valid configuration of the
application’s bundles. The performance is in this case the overall interaction time
as observed by the user. The cost is the extra price in terms of fetched bundle
code and allocated memory a client has to pay to run some bundles locally.

Figure 4(a) shows the interaction time both with WiFi and Bluetooth, and
Figure 4(b) the resource consumption in terms of size of shipped code and mem-
ory consumed on the tablet. The pair of images submitted to the application is
< 100kB, 30kB >. As the number of configurations for the given application’s
graph is more than 100, we report results for 25 random configurations.

 0

 10

 20

 30

 40

 50

 60

 70

 1 5 10 15 20 25

in
te

ra
ct

io
n

tim
e

(s
)

configuration

Bluetooth
WiFi

(a) Interaction time

 0

 20

 40

 60

 80

 100

 120

 140

 1 5 10 15 20 25
 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

to
ta

l c
od

e
si

ze
 (

kB
)

to
ta

l m
em

or
y

si
ze

 (
kB

)

configuration

Total code size
Total memory size

(b) Resource consumption

Fig. 4. Overall interaction time (a) and resource consumption (b)

94 I. Giurgiu et al.

These experiments allow us to draw two important conclusions. First, there
is no clear correlation between the interaction latency observed by the end-user
and the number and size of bundles acquired by the client. There are cases in
which acquiring more code does increase the interaction latency of more than 10
seconds (for example, passing from configuration 20 to 21) and others in which
the opposite occurs (for example, passing from configuration 11 to 10). Second,
there is a large variation in performance with even 60 seconds of difference from
one configuration to the other. This indicates that there is potential to use the
proposed algorithms to select the best configuration.

4.4 Multiple Service Invocations

The space of improvement is much larger than that shown by the previous results.
Indeed, in running those experiments the test was configured for a “minimal
number of iterations” (i.e., one invocation of every service). However, in reality
this rarely occurs. For example, in setting the position, dimension, or rotation
of a furniture item a user may need multiple iterations and will rarely get the
properties set in a satisfying manner at the first attempt. Moreover, a user will
typically place more than one furniture item in the same room thus invoking the
same operations multiple items.

In these tests we investigate the impact of the number of iterations on the
overall time. To this purpose we select 7 example configurations. In Figure 5
we plot the results obtained with the same images of before. The overall time
includes the overhead for acquiring and installing the remote bundles and build-
ing the local proxies, and the actual interaction time measured using WiFi.
The overhead installation time is 8.5 seconds for the Bclient = {1, 2, 3}, 12
seconds for Bclient = {1, 2, 3, 4}, and 16–18 seconds for all other configura-
tions.

As the number of iterations increases different configurations may provide
better or worse performance. In the graph in Figure 5(a), we compare the per-
formance of the configuration Bclient = {1, 2, 3} with Bclient = {1, 2, 3, 4} when
the number of invocation of bundle 4 increases, and of Bclient = {1, 2, 3, 4, 5}
with Bclient = {1, 2, 3, 4, 5, 12} when the number of invocations of bundle 12
increases. The question in both comparisons is when it is convenient to acquire
an additional bundle such as 4 or 12 respectively. In the first pair of configura-
tions we see that acquiring bundle 4 becomes convenient only when the number
of interactions with bundle 4 is above 2. Otherwise, the overhead of acquiring
bundle 4 is higher than the benefit provided. With the second pair of configura-
tions, acquiring bundle 12 is always more convenient and with 6 iterations the
performance gain is more than 14 seconds.

In Figure 5(b), we see the opposite behaviour. While with one iteration the
performance of all configuration is similar, with an increasing number of config-
urations the acquisition of bundle 16 or 17 becomes less and less convenient as
the number of invocations of bundle 16 and 17 respectively increases.

The number of iterations of certain operations is therefore a key factor in
deciding on the best configuration. This parameter can be estimated by averaging

Calling the Cloud: Enabling Mobile Phones as Interfaces 95

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6

ov
er

al
l t

im
e

(s
)

number of iterations

Bclient=1,2,3
Bclient=1,2,3,4

Bclient=1,2,3,4,5
Bclient=1,2,3,4,5,12

(a) Increasing invocations of 4 and 12

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6

ov
er

al
l t

im
e

(s
)

number of iterations

Bclient=1,2,3,4,6,13
Bclient=1,2,3,4,6,13,17
Bclient=1,2,3,4,6,13,16

(b) Increasing invocations of 16 and 17

Fig. 5. Overall time with multiple service invocations with WiFi

over the behaviour of a few user interactions and it is strongly application-
dependent. For example, a user interacting with a vending machine will more
likely invoke the operations only once, unless in case of errors. Instead, in an
application as the one considered that includes a visualization of the properties
set, it is more likely to expect multiple iterations of the same function. These
results clearly show that even light operations, such as bundle 4 that simply
positions an image on top of another, can provide a high performance gain if
performed locally (with 6 iterations, more than 12 seconds).

4.5 Algorithm Performance

The last set of tests quantifies the performance of the two proposed algorithms,
ALL and K-step. We consider several user scenarios, with varying memMAX and
codeMAX constraints and two different consumption graphs. Table 2 presents
the results obtained.

In the first consumption graph (“one iteration app”), every bundle is invoked
exactly once. Therefore, we expect few components to be acquired on the client
side, since the fetching overhead is in most cases higher than the performance
gain. As expected, ALL provides in all scenarios the optimal solution. As the
optimal solution always correspond to an early cut in the graph, the 1-step and
3-step algorithms also find the best solution.

The second consumption graph (“multiple iteration app”) models the situa-
tion in which a user invokes an application’s functions (i.e., bundles) multiple
times. In this case, acquiring some bundles locally allows for a larger improve-
ment of the performance. In most cases the optimal solution is to acquire 5 or
more bundles, except in the first case where the phone’s constraints do not allow
for large acquisitions. The results of the three algorithms vary quite a lot, with
3-step outperforming 1-step in all cases.

Although the performance of ALL and K-step with an increasing K is typi-
cally the best, there exists a trade-off between processing time and accuracy of
the solution. We explore this by measuring the processing time of ALL, 1-step,

96 I. Giurgiu et al.

Table 2. ALL and K-step performance

Scenario Algorithm One iteration app Multiple iteration app
Conf O Error Conf O Error

memMAX : 1MB ALL 1 14.45 0.03 1,4 39.37 0.02
codeMAX : 50kB 1-STEP 1 14.45 0.03 1,4 39.37 0.02

3-STEP 1 14.45 0.03 1,4 39.37 0.02

memMAX : 10MB ALL 1,4 11.66 0.07 1,4,6,13 38.2 0.05
codeMAX : 50–100kB 1-STEP 1,4 11.66 0.07 1,4,6 50.53 0.32

3-STEP 1,4 11.66 0.07 1,4,6,13 38.2 0.05

memMAX : 20–30MB ALL 1,4 11.66 0.07 1,4,5,12 38.07 0.06
codeMAX : 50kB 1-STEP 1,4 11.66 0.07 1,4,5,6 47.72 0.32

3-STEP 1,4 11.66 0.07 1,4,5,12 38.07 0.06

memMAX : 20–30MB ALL 1,4 11.66 0.07 1,4–6,12,13,16 37.76 0.06
codeMAX : 100kB 1-STEP 1,4 11.66 0.07 1,4–6,13,16-18 49.78 0.24

3-STEP 1,4 11.66 0.07 1,4–6,12,13,16–18 45.51 0.14

 0.1

 1

 10

 100

 1 2 3 4

ov
er

al
l t

im
e

(s
)

number of edges

1-step
3-step
5-step

All

Fig. 6. Processing time for ALL, 1-step, 3-step and 5-step

3-step, and 5-step with an application graph consisting of 50 bundles and a
varying number of bundle dependencies. Results are shown in Figure 6.

The processing time of all algorithms increases as the average number of edges
from each node in the graph increases. This happens because a larger number
of graph cuts become possible. The 5-step algorithm can be even 10 times faster
than ALL and 1-step even 100 times faster.

We can conclude that while ALL suits an offline optimization, the K-step algo-
rithm fits better dynamic scenarios where the decision has to be made on-the-fly.
While 1-step can easily incur in a wrong local optimum, 3-step or 5-step provide
a limited error.

Calling the Cloud: Enabling Mobile Phones as Interfaces 97

5 Use Case

In addition to building the image composition application and assess the algo-
rithms performance, we also took an existing application and applied AlfredO to
it. This experience helped us to quantify the effort necessary to use AlfredO with
real-world applications and to better identify the limitations of our approach.
To this purpose, we used the open source Sweet Home 3D [7] application. This
is a quite popular application for home interior design, which allows users to
browse furniture items, place them in a 2D plan of their house, and visualize a
3D preview of it.

To run this application on a mobile phone several problems need to be con-
sidered. First, the application is too computational intensive to run on a phone
platform. Second, its user interface uses Java Swing components, not supported
by standard Java implementations available on phone platforms (i.e., Java ME
CDC or CLDC). Third, considering the user interface of the application, the
limited screen size of the phone would not allow for a good user experience.

To solve these problems, one possible solution would be to re-implement the
entire application and customize it to the phone platform’s characteristics. In-
stead, AlfredO solves these problems in a much faster way and provides a more
extensible approach capable of integrating future extensions of the application.

We applied AlfredO by first modularizing the application and running it on
the OSGi platform. As the application was originally designed according to the
Model-View-Controller design pattern, this allowed us to quickly identify its
main functional components. The current modularization accounts for 13 bun-
dles. However, we are currently working on further decomposing some of the iden-
tified bundles to provide even more flexibility. A second modification we made
was providing other alternative user interfaces implemented using the Java AWT
library, which is supported by existing phone platforms. We currently support
three different user interfaces with an increasing level of complexity. Also, having
three rather than one user interface provides more flexibility and customization.

In the application’s graph this translates in having different entry points to the
same application. The appropriate entry point is selected by taking into account
additional properties of the phone client such as screen size, color resolution,
etc. Once the entry point is selected our algorithms are applied to determine the
best graph cut and the corresponding configuration.

At a high-level, three classes of configurations can be supported. The simplest
case is when the phone client acts only as a mouse controller of the remote
application. The output returned to the mobile phone consists of a screenshot
of the application display. This kind of interaction reuses the MouseController
concepts we presented in [2].

A second possibility shown in Figure 7(b) is when the phone acquires the user
interface necessary to select furniture items and specify their width and position
(as x,y coordinates) locally. On the server side, items are placed accordingly in
the 2D plan and the 3D preview is generated. A final option shown in Figure 7(c)
is when the phone supports item selection and also placement in the 2D plan.

98 I. Giurgiu et al.

(a) SweetHome 3D server

(b) Catalog list and item placement on
a N810

(c) Catalog list, item placement and map
preview on N810

Fig. 7. Sweet Home 3D application running on a server (a) and on Nokia N810
handhelds (b and c)

Within each of these three types of configuration, different distributions of the
application components are possible depending on the algorithm’s decision. The
overhead introduced by our modularization approach was found to be negligible
compared to the original application.

6 Limitations and Open Problems

The experiment of using AlfredO with an existing application helped us to define
better its scope of applicability and limitations.

In many applications, the user interface and the service logic are tightly cou-
pled in complex relationships. This means that a modularization at the level of
service logic requires changes at the user interface too. As we saw with Sweet
Home 3D, we modularized the application into several bundles and identified
three high-level functionalities, such as catalog selection and item placement,
2D plan operations, and 3D rendering and visualization. In order to support
these functions alone or all together, we needed to provide different user in-
terfaces: one that displays a list of furniture items and a table with the item
properties, one that adds to the first interface a 2D plan, and one that adds a
further image panel for 3D functions. On the other hand, we saw how with a

Calling the Cloud: Enabling Mobile Phones as Interfaces 99

much simpler application, such as the one for image composition that we built,
one user interface was enough to allow high flexibility at the service level.

Our experience has shown that AlfredO can work well with both types of
application. Obviously, more complex applications require to be modularized,
but the effort has proven to be reasonable. In the case of Sweet Home 3D, a
Master student, with no knowledge of the application and OSGi, took less than
two months to modularize it and build the three user interfaces described in
Section 5. Thereby, we expect that for simpler applications, less than a month
would be enough to make them run on AfredO. Furthermore, the advantage of
AlfredO is that it builds on existing technology for distributed module manage-
ment, based on the OSGi standard. OSGi is maintained by the OSGi Alliance
with many major players of the software industry, such as IBM, Oracle, and SAP,
and also device vendors, such as Nokia, Ericsson, Motorola. Moreover, OSGi has
been used in several applications including Eclipse IDE [8] and we expect that
in the future more and more developers will be acquainted with it.

Finally, our algorithms require profiling of the resource consumption of an ap-
plication’s bundles and their inter-communication. We instrumented our appli-
cations manually, however there are tools available or under study for automatic
profiling of applications. Some are discussed in the related work section.

7 Related Work

There is a considerable amount of reseach on how to automatically partition and
distribute applications based on resource profiling. One of the very early work
in this context was the Interconnected Processor System (ICOPS) [9]. ICOPS
used scenario-based profiling to collect statistics about resource requirements.
Static data such as procedure inter-connections and dynamic statistics about
resource usage were then combined to find the best assignment of procedures
to processors. ICOPS was the first system using a minimum cut algorithm to
select the best distribution. On the other hand, ICOPS considered very small
programs of seven modules and only three of these could be moved between the
client and server. A more recent work in this context is Coign [10]. Coign assumes
applications to be built using components conforming Microsoft’s COM. It builds
a graph model of an application’s inter-component communication by scenario-
based profiling. The application is then partitioned to minimize execution delay
due to network communication. Several other works exist such as [11].

Our techniques share with these systems the idea of building a graph model of
the application and applying a graph-cutting algorithm to partition it. However,
we differ from them in several aspects. We do not focus on building a tool for ap-
plication resource profiling, but rather on dynamically optimizing the interaction
with an application given the constraints of the current execution environment.
On the other hand, these or similar tools could be integrated in AlfredO to au-
tomatically characterize the resource requirements of an application’s modules
or even partition a non-modularized application. This would allow to extend
AlfredO to non-OSGi applications.

100 I. Giurgiu et al.

A second important difference is the concept of “distribution” itself. The
algorithms we propose do not target distributing an application on a cluster of
machines or a cloud infrastructure, but rather installing all or parts of it in order
to use on a mobile phone. The decision is intrinsically client-driven. In this sense,
AlfredO is closer to a web browser that provides access to Internet services and
requires the user to install plugins.

Finally, AlfredO is designed to work in heterogeneous and dynamic contexts.
Clients exhibit large variability in terms of device platforms, local resources, type
of network communication, etc. This heterogeneity needs to be captured by the
optimization problem and hidden to the end user.

Related work is also in the context of other non-phone specific distributed
systems. For example, in the context of sensor networks systems like Wish-
bone [12], Tenet [13], VanGo [14], in the context of mobile ad hoc networks with
SpatialViews [15], and in the context of cluster computing with Abacus [16]. All
these systems are not applicable to our problem space for different reasons. For
instance, Wishbone partitions programs to run on multiple and heterogeneous
devices in a sensor network. Wishbone is primarily concerned with high-rate data
processing applications, aims at statically minimizing a combination of network
bandwidth and CPU load, and is used at compile time. Abacus dynamically
partitions applications and filesystem functionality over a cluster of resources.
It primarily targets data-intensive applications and attempts to optimize the
placement of mobile objects, by using a fixed objective function that combines
variations in network topology, application cache access pattern, application data
reduction, contention over shared data and dynamic competition for resources
by concurrent applications. Our techniques target less computational- and data-
intensive applications and provide support for multiple objective functions.

The vision of pervasive computing [17], as the creation of physical environ-
ments saturated with a variety of computing and communication capabilities, is
also relevant to our work. The solutions proposed in that context allow devices
to interact with the surrounding environment by either statically preconfiguring
the devices and the environment with the necessary software [18], or by moving
around the necessary software through techniques such as mobile agents [19,20].
The first approach can work only in static environments or to support applica-
tions that are accessed on a very frequent basis. The second approach is more
flexible, but it is not used in practice due to security issues.

We address the problem in a different manner. To use an application on a mo-
bile phone, today a user has two options: 1) install the application locally or 2)
if this is available in the Internet, access it through a web browser. We propose
a new model where the phone is seen as an application controller. The minimal
configuration sees a phone that acquires only a user interface, thus achieving
high security. For more advanced and optimized interactions, some parts of the
application can be installed. The acquisition of an application occurs in a more
controlled manner and with clearly identified boundaries dependent on the re-
source constraints of the mobile device and the type of network communication.

Calling the Cloud: Enabling Mobile Phones as Interfaces 101

8 Conclusions

We have presented our approach to automatically and dynamically distributing
several components of an application between a mobile and a serve in order
to optimize different objective functions such as interaction time, communica-
tion cost, memory consumption, etc. Compared to the current state-of-the-art
in building applications on mobile phones, our approach enables an efficient de-
ployment of several types of applications on mobile phones thus allowing these
resource-constrained platforms to achieve better performance with a controlled
overhead. Our optimization has focused so far only on the client side and has
assumed the server’s resources to be infinite. As future work, we are investigating
how to extend our application’s model to include also CPU consumption and
include into the optimization problem also how the server side can be distributed
over a cloud infrastructure with heterogeneous resources.

Acknowledgments

The work presented in this paper was supported by the Microsoft Innovation
Cluster for Embedded Software (ICES) and the ETH Fellowship Program. We
thank Jan Rellermeyer for his advise and help during the development of AlfredO
on top of R-OSGi.

References

1. Rellermeyer, J.S., Alonso, G., Roscoe, T.: R-OSGi: Distributed applications
through software modularization. In: Cerqueira, R., Campbell, R.H. (eds.)
Middleware 2007. LNCS, vol. 4834, pp. 1–20. Springer, Heidelberg (2007)

2. Rellermeyer, J.S., Riva, O., Alonso, G.: AlfredO: An Architecture for Flexible
Interaction with Electronic Devices. In: Issarny, V., Schantz, R. (eds.) Middleware
2008. LNCS, vol. 5346, pp. 22–41. Springer, Heidelberg (2008)

3. OSGi Alliance: OSGi Service Platform, Core Specification Release 4, Version 4.1,
Draft (2007)

4. Guttman, E., Perkins, C., Veizades, J.: Service Location Protocol, Version 2. RFC
2608, Internet Engineering Task Force, IETF (1999),
http://www.ietf.org/rfc/rfc2608.txt

5. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

6. Boman, E., et al.: Zoltan: Parallel partitioning, load balancing and data-
management services user’s guide. Sandia National Laboratories (2007)

7. Sweet Home 3D: (2009), http://www.sweethome3d.eu/
8. Eclipse Foundation: Eclipse (2001), http://www.eclipse.org
9. Stabler, G.: A system for interconnected processing. PhD thesis, Providence, RI,

USA (1975)
10. Hunt, G., Scott, M.: The coign automatic distributed partitioning system. In: Pro-

ceedings of the 3rd symposium on Operating systems design and implementation
(OSDI 1999), pp. 187–200. USENIX Association (1999)

http://www.ietf.org/rfc/rfc2608.txt
http://www.sweethome3d.eu/
http://www.eclipse.org

102 I. Giurgiu et al.

11. Hamlin, J., Foley, J.: Configurable applications for graphics employing satellites
(cages). In: Proceedings of the 2nd annual conference on Computer graphics and
interactive techniques (SIGGRAPH 1975), pp. 9–19. ACM, New York (1975)

12. Newton, R., Toledo, S., Girod, L., Balakrishnan, H., Madden, S.: Wishbone: Profile-
based Partitioning for Sensornet Applications. In: Proceedings of the 5th Sympo-
sium on Networked Systems Design and Implementation (NSDI 2009), pp. 395–408
(2009)

13. Gnawali, O., Jang, K.Y., Paek, J., Vieira, M., Govindan, R., Greenstein, B., Joki,
A., Estrin, D., Kohler, E.: The Tenet architecture for tiered sensor networks. In:
Proceedings of the 4th international conference on Embedded networked sensor
systems (SenSys 2006), pp. 153–166. ACM, New York (2006)

14. Greenstein, B., Mar, C., Pesterev, A., Farshchi, S., Kohler, E., Judy, J., Estrin, D.:
Capturing high-frequency phenomena using a bandwidth-limited sensor network.
In: Proceedings of the 4th international conference on Embedded networked sensor
systems (SenSys 2006), pp. 279–292. ACM, New York (2006)

15. Ni, Y., Kremer, U., Stere, A., Iftode, L.: Programming ad-hoc networks of mobile
and resource-constrained devices. In: Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and implementation (PLDI 2005),
pp. 249–260. ACM, New York (2005)

16. Amiri, K., Petrou, D., Ganger, G., Gibson, G.: Dynamic Function Placement for
Data-intensive Cluster Computing. In: Proceedings of the 18th USENIX annual
technical conference (USENIX 2000), pp. 307–322 (2000)

17. Weiser, M.: The Computer for the Twenty-First Century. Scientific Ameri-
can 265(3), 94–104 (1991)

18. Want, R., Pering, T., Danneels, G., Kumar, M., Sundar, M., Light, J.: The personal
server: Changing the way we think about ubiquitous computing. In: Borriello, G.,
Holmquist, L.E. (eds.) UbiComp 2002. LNCS, vol. 2498, pp. 194–209. Springer,
Heidelberg (2002)

19. Fuggetta, A., Picco, G.P., Vigna, G.: Understanding code mobility. IEEE Trans-
actions on Software Engineering 24(5), 342–361 (1998)

20. Kindberg, T., Barton, J., Morgan, J., Becker, G., Caswell, D., Debaty, P., Gopal,
G., Frid, M., Krishnan, V., Morris, H., Schettino, J., Serra, B., Spasojevic, M.:
People, places, things: Web presence for the real world. In: Proceedings of the 3rd
IEEE Workshop on Mobile Computing Systems and Applications (WMCSA 2000),
p. 19 (2000)

	Calling the Cloud: Enabling Mobile Phones as Interfaces to Cloud Applications
	Introduction
	Flexible Module Deployment
	AlfredO Overview
	Application Profiling
	Consumption Graph

	Partitioning Algorithms
	Optimization Problem
	Pre-processing
	ALL Algorithm
	K-Step Algorithm

	Evaluation
	Application Bundles and Service Dependencies
	Startup Process
	Interaction Time
	Multiple Service Invocations
	Algorithm Performance

	Use Case
	Limitations and Open Problems
	Related Work
	Conclusions
	References

