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Abstract. Reputed by their low-cost, easy-access, real-time and valu-
able information, social media also wildly spread unverified or fake news.
Rumors can notably cause severe damage on individuals and the soci-
ety. Therefore, rumor detection on social media has recently attracted
tremendous attention. Most rumor detection approaches focus on rumor
feature analysis and social features, i.e., metadata in social media. Unfor-
tunately, these features are data-specific and may not always be available.
In contrast, post contents (including images or videos) play an important
role and can indicate the diffusion purpose of a rumor. Furthermore,
rumor classification is also closely related to opinion mining and senti-
ment analysis. Yet, to the best of our knowledge, exploiting images and
sentiments is little investigated. Considering the available multimodal
features from microblogs, notably, we propose in this paper an end-to-end
model called deepMONITOR that is based on deep neural networks, by
utilizing all three characteristics: post textual and image contents, as well
as sentiment. deepMONITOR, concatenates image features with the joint
text and sentiment features to produce a reliable, fused classification. We
conduct extensive experiments on two large-scale, real-world datasets.
The results show that deepMONITOR achieves a higher accuracy than
state-of-the-art methods.

Keywords: Social networks - Rumor detection - Deep neural networks.

1 Introduction

Nowadays, more and more people consume news from social media rather than
traditional news organizations, thanks to social media features such as informa-
tion sharing, real time, interactivity, diversity of content and virtual identities.
However, conveniently publishing news also fosters the emergence of various
rumors and fake news that can spread promptly through social networks and
result in serious consequences.
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To detect rumors on microblogs, which we particularly target in this paper,
most existing studies focus on the social features available in social media. Such
features are post metadata, including the information on how post propagate, e.g.,
the number of retweets, followers, hashtags (#), user information, etc. To exploit
such features, many innovative solutions [4, 23] have been proposed. Unfortunately,
these features are not always available, e.g., in case the rumor has just been
published and not yet propagated, and do not indicate the purpose of a rumor,
which is one of its most important aspects. Moreover, although social features are
useful in rumor analysis, contents reveal more relevant in expressing the diffusion
purpose of rumors [17]. Hence, in this paper, we analyse message contents from
three aspects to automatically detect rumors in microblogs.

First, social media messages have rich textual contents. Therefore, under-
standing the semantics of a post is important for rumor detection. Attempts
to automate the classification of posts as true or false usually exploit natural
language processing and machine learning techniques that rely on hand-crafted
and data-specific textual features [4, 16]. These approaches are limited because
the linguistic characteristics of fake news vary across different types of fake news,
topics and media platforms. Second, images and videos have gained popularity
on microblogs recently and attract great attention. Rich visual information can
also be helpful in classifying rumors [10]. Yet, taking images into account for
verifying post veracity is not sufficiently explored, with only a few recent studies
exploiting multimedia content [11,10]. Third, liars can be detected, as they tend
to frequently use words carrying negative emotions out of unconscious guilt [20].
Since emotion is closely related to fake news [1], analyzing emotions with opinion
mining and sentiment analysis methods may help classifying rumors.

Automating rumor detection with respect to one of the three characteristics
mentioned above is already challenging. Hand-crafted textual features are data-
specific and time consuming to produce; and linguistic characteristics are not
fully understood. Image features and emotions, which are a significant indicators
for fake news detection in microblogs, are still insufficiently investigated.

To address these limitations, we propose an end-to-end model called deep-
MONITOR, based on deep neural network that are efficient in learning textual or
visual representations and that jointly exploits textual contents, sentiment and
images. To the best of our knowledge, we are the first to do this. Hence, deep-
MONITOR can leverage information from different modalities and capture the
underlying dependencies between the context, emotions and visual information
of a rumour.

More precisely, deepMONITOR is a multi-channel deep model where we
first employ a Long-term Recurrent Convolutional Network (LRCN) to capture
and represent text semantics and sentiments through emotional lexicons. This
architecture combines the advantages of Convolutional Neural Network (CNN) for
extracting local features and the memory capacity of Long Short-Term Memory
Networks (LSTM) to connect the extracted features well. Second, we employ the
pretrained VGG19 model [26] to extract salient visual features from post images.
Image features are then fused with the joint representations of text and sentiment
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to classify messages. Eventually, we experimentally show that deepMONITOR
outperforms state-of-the-art rumor detection models on two large multimedia
datasets collected from Twitter.

The remainder of this paper is organized as follows. In Section 2, we survey
and discuss related works. In Section 3, we thoroughly details the deepMONITOR
framework. In Section 4, we experimentally validate deepMONITOR, with respect
to the state of the art. Finally, in Section 5, we conclude this paper and hint at
future research.

2 Related Works

Most studies in the literature address the automatic rumor detection task as
feature-based. Features can be extracted from text, social context, sentiment
and even attached images. Thus, we review existing work from the following two
categories: single modality-based rumor detection and multimodal-based rumor
detection.

2.1 Monomodal-based Rumor Detection

Textual features are extracted from textual post contents. They are derived
from the linguistics of a text, such as lexical and syntactic features. In the
literature, there is a wide range of textual features [4, 25]. Unfortunately, linguistic
patterns are highly dependent on specific events and the corresponding domain
knowledge. Thus, it is difficult to manually design textual features for traditional
machine learning-based rumor detection models. To overcome this limitation, a
Recurrent Neural Network (RNN) can learn the representations of posts in time
series as textual features [18].

Social context features represent user engagements in news on social media,
such as the number of mentions(@), hashtags(#) and URLs [25]. Graph structures
can capture message propagation patterns [27]. However, as textual features,
social context features are very noisy, unstructured and require intensive labor
to collect. Moreover, it is difficult to detect rumors using social context-based
methods when the rumor has just popped up and not yet propagated, i.e., there
is no social context information.

Visual features are typically extracted from images and videos. Very few
studies address the verification of multimedia content credibility on social media.
Basic message features are characterized [8,27] and various visual features are
extracted [11]. Visual features include clarity, coherence, diversity and clustering
scores, as well as similarity distribution histogram. However, these features remain
hand-crafted and can hardly represent complex distributions of visual contents.
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Sentiment features are emotional signals. There exists a relationship between
rumors and sentiments in messages and an emotion feature, i.e., the ratio of the
count of negative and positive words, can be built [1]. Besides, emotion features
can also be extracted with respect to emotional lexicons from news contents [6].

2.2 Multimodal Rumor Detection

To learn feature representations from multiple aspects, deep neural networks, and
especially CNNs and RNNs, are successfully applied to various tasks, including
visual question answering [2], image captioning [12] and rumor detection [10, 28].
In [10] authors propose a deep model uses attention mechanisms to fuse and
capture the relations between visual features and joint textual/social features.
Yet, it is very hard to identify high-level visual semantics in rumor detection,
compared with object-level semantics in traditional visual recognition tasks. As
a result, there is no mechanism that explicitly guarantees the learning of this
matching relation in the attention model.

Zhou et al.[28] propose a neural-network-based method named SAFE that
utilizes news multimodal information for fake news detection, where news repre-
sentation is learned jointly by news textual and visual information along with
their relationship (similarity). Assessing the similarity between text and image
helps classify rumors where objects in the image are not mentioned in the text.
Yet, other types of rumors escape this rule, e.g., caricatures widely used by
journalists, where the text might be very different from the image, while it does
not necessarily mean that the article is fake.

3 deepMONITOR Model

In this section, we formally define the problem and introduce some key notations,
then introduce the components of deepMONITOR.

3.1 Problem Definition and Model Overview

We define a message instance as M = {T, S, V} consisting of textual information
T, Sentiment information S, and visual information V. We denote Cr, Cg and
Cy the corresponding representations. Our goal is to learn a discriminable feature
representation C); as the aggregation of 7', S and V for a given message M, to
predict whether M is a fake (§ = 1) or a real message (§ = 0). First, we learn text
with a CNN, then we merge the output with a sentiment vector with two stacked
LSTMs, which generates a joint representation Crg for these two modalities.
Visual feature Cy is obtained with a pretrained deep CNN model. Finally, Crg
and Cy are concatenated to form the final multimodal feature representation
Cyy of message M. C)y is the input of a binary classifier that predicts whether
the message instance is fake or real. A global overview of deepMONITOR is
presented in Figure 1.
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Fig. 1. Overview of deepMONITOR

3.2 LSTM Networks

For completeness, we present a brief introduction of the sequential LSTM model.
LSTM is a special type of feed-forward RNN that can be used to model variable-
length sequential information. Its structure is shown in Figure 2.

hi
Ct-1 a I‘\ fJ
€3, O >
Y
X )
hi_y [o] o] _ir.
NI J
IL‘;,I

Fig. 2. Structure of an LSTM cell

Given an input sequence {x1,z3..., 27}, & basic RNN model generates the
output sequence {y1,¥ys...,yr}, where T' depends on the length of the input.
Between the input layer and the output layer, there is a hidden layer, and the
current hidden state h; is estimated using a recurrent unit:

he = f(hi—1,2¢) (1)
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where z; is the current input, h;_1 is the previous hidden state and f can be
an activation function or other unit accepting both z; and h;_; as input and
producing the current output h;.

To deal with vanishing or exploding gradients [3, 21] in learning long-distance
temporal dependencies, LSTMs extend basic RNNs by storing information over
long time periods in elaborately designed memory units. Specifically, each LSTM
cell ¢ is controlled by a group of sigmoid gates: an input gate i, an output gate o
and a forget gate f that remembers the error during error propagation [9]. For
each time step ¢, the LSTM cell receives input from the current input x;, the
previous hidden state h;_; and the previous memory cell ¢;_1. These gates are
updated [5, 9] as follows:

iy = o(Wize + Wihi—1 +b;) (2)
fo=o(W]ay +Wihi 1 +bp) 3)
op =0(Wlxy +W7hi_1 +b,) (4)
é = tanh(Wixy + Wihe—1 + be) (5)
c=ftOa1+u 0O (6)

hi = op © tanh(c;) (7)

where W WS W are weight matrices for corresponding gates, and b, are
bias terms that are learned from the network. ® denotes the element-wise
multiplication between two vectors. o is the logistic sigmoid function. tanh is the
hyperbolic tangent function. The input gate ¢ decides the degree to which new
memory is added to the memory cell. The forget gate f determines the degree
to which the existing memory is forgotten. The memory cell ¢ is updated by
forgetting part of the existing memory and adding new memory ¢.

3.3 Multimodal Feature Learning

Text Feature Extraction To extract informative features from textual contents,
we employ a CNN. CNNs have indeed been proven to be effective in many fields.
We incorporate a modified CNN model, namely a Text-CNN [15], in our textual
feature extraction. The architecture of the Text-CNN is shown in Figure 3.

The Text-CNN takes advantage of multiple filters with various window sizes to
capture different granularities of features. Specifically, each word in the message
is first represented as a word embedding vector that, for each word, is initialized
with a pretrained word embedding model. Given a piece of message with n words,
we denote as T; € R* the corresponding k dimensional word embedding vector
for the i** word in the message. Thus, the message can be represented as:

Tl:n :Tl @TQ@®Tn (8)

where @ is the concatenation operator. To produce a new feature, a convolution
filter with window size h takes the contiguous sequence of h words in the message
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as input. For example, the feature t; generated from a window size h starting
with the i*"* word, can be represented as:

t; = O'(Wc-Tié:i—&-h—l + bc) (9)

where, W, € R" and b. € R are the weight and bias of the filter, respectively,
and o is the rectified linear activation function (ReLU). This filter is applied to
each possible window of h words in the message to produce a feature map:

t= [t17t27 "'7tn7h+1] (10)

For every feature vector t € R"~"*1 we then apply a max-pooling operation
to capture the most important information. Now, we get the corresponding
feature for one particular filter. The process is repeated until we get the features
of all filters. In order to extract textual features with different granularities,
various window sizes are applied. For a specific window size, we have d different
filters. Thus, assuming there are ¢ possible window sizes, we have ¢ x d filters in
total. Following the max-pooling operations, a flatten layer is needed to ensure
that the representation of the textual features Cp, € R°*? is fed back as input
to the LSTM network.

Note that the Text-CNN above is only capable of handling a single message,
transforming it from input words into an internal vector representation. We want
to apply the Text-CNN model to each input message and pass on the output of
each input message to the LSTM as a single time step. Thus, We need to repeat
this operation across multiple messages and allow the next layer (LSTM) to build
up internal state and update weights across a sequence of the internal vector
representations of input messages. Thus, we wrap each layer in the Text-CNN in
a Time-Distributed layer [14]. This layer achieves the desired outcome of applying
the same layers multiple times and providing a sequence of message features to
the LSTM to work on.

Sentiment Feature Extraction We hypothesize that incorporating emotional
signals into the rumor classification model should have some benefits. To ex-
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tract emotional signals from messages, we adopt a lexicon-based approach, i.e.,
the Valence Aware Dictionary and sEntiment Reasoner (VADER), which is a
lexicon and rule-based sentiment analysis tool that is specifically attuned to
sentiments expressed in social media [7]. This model is sensitive to both the
polarity (positive/negative) and the intensity (strength) of emotion. VADER
relies on a dictionary that maps lexical features to emotion intensities known as
sentiment scores. The sentiment score of a text can be obtained by summing up
the intensity of each word in the text. In addition, we calculate some textual
features that express specific semantics or sentiments, such as emotional marks
(question and exclamation marks) and emoticons. We form the initial sentiment
representation Cs = [s1, 82, ..., 87, where [ is the dimension of sentiment features
and s; is the scalar value of the i*" dimension. We first use a fully connected layer
(S-fc in Figure 1) to output a proper representation of sentiment vector Clg;:

Cs) = Ws;Cs (11)

where W, are weights in the fully-connected layer. Then, we use a Repeat Vector
layer [13] to ensure that C's, has the same dimension (3D) as the representation
of the textual features C7,. To connect the extracted features well, the represen-
tations of sentiment and those of textual features are then concatenated and fed
as input to a two-stacked LSTM. Stacking LSTM hidden layers makes the model
deeper, enables a more complex representation of our sequence data, and captures
information at different scales. At each time step ¢, the LSTM takes as input
[CT,/, Cs)), i.e., the concatenation of the it" message Cr,, and the transformed
sentiment feature C's,. The resultant joint representation of text and sentiment
features, denoted as Crg € RP, has the same dimension (denoted as p) as the
visual feature representation that is addressed in the next subsection. The whole
process is illustrated in Figure 4.

Time
Distributed
Word Wrapper

Embedding
) = Text-CNN = LSTM LSTM

cr

Tweet
—b Text-cNN  ——>ED-$ LSTM |-p| LSTM
;i ! v v @

1
VADER Sentiment - Text-CNN —[* LSTM LSTM (= . Crs

Lexicon ]
L~
{
e o0 9 ~ -
Sentiment H & » A i
entimen : ' Ul !
i & Repeat Vector layer to
Victor 8 pes y
duplicate features to create
® O ® O rtmessepsxrestureamsy

Fig. 4. Fusion process of text and sentiment features with Text-CNN and LSTM
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Image Feature Extraction The images attached to messages form the input
of the visual sub-network (the bottom branch in Figure 1). We employ the
pretrained VGG-19 model [26] to generate visual neurons as image features. We
retain all front layers of the VGG-19 model and remove the last dense output
layer, as well as the classification output layer. We extract the features from all
images and store them into files. The benefit is that the very large pretrained
VGG-19 does not need to be loaded, held in memory and used to process each
image while training the textual submodel. For each loaded visual feature, we
add a fully connected layer (Vis-fc in Figure 1) to adjust the dimension of the
final visual feature representation Cy € RP, as follows:

Cv = ¢(WysCy,,,) (12)

where Cy,, is the visual feature representation obtained from pretrained VGG-19,
W,y is the weight matrix of the fully connected layer and v denotes the ReLU
activation function. The resultant joint representation of textual and sentiment
features C'rg and the visual feature representation Cy, are then concatenated to
form the final multimodal feature representation of a given message, denoted as
Cy =Crs & Cy € R?.

3.4 Model Learning

Till now, we have obtained the joint multimodal feature representation C; of
a given message M, which is fed into a first fully connected layer with ReLu
activation function, and a second fully connected layer with sigmoid activation
function to predict whether the messages are fake. The output of the sigmoid
layer for the i*" message, denoted as p(C);:), is the probability of this post being
fake:

p(Cari) = o(Wapap(Wap1 Cpyi)) (13)
where Wgyp1 and Weypo are weights in the two fully-connected layers, C'yy: is the
multimodal representation of the i*" message instance and o and v are the

sigmoid and ReLu functions, respectively. We employ the cross-entropy to define
the detection loss of i*" message:

L(M') = —y"log p(Cri) — (1 = y") log (1 = p(Cars)) (14)
where 7’ represents the ground truth label of the i** message instance with 1
representing false messages and 0 representing real messages. To minimize the

loss function, the whole model is trained end-to-end with batched Stochastic
Gradient Descent:

N
Z y'logp(Car:) + (1 — y') log (1 — p(Caz:))] (15)

where N is the total number of message instances.
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4 Experimental Validation

In this section, we first detail two real-world social media datasets used in our
experiments. Then, we present the state-of-the-art rumor detection approaches,
followed by the details of our experimental setup. We finally analyze the perfor-
mance of deepMONITOR with respect to existing methods.

4.1 Datasets

To provide a fair evaluation deepMONITOR’s performance, we conduct exper-
iments on two real-world social media datasets collected from Twitter. Let us
first detail both datasets.

FakeNewsNet [24] is one of the most comprehensive fake news detection
benchmark. Fake and real news articles are collected from the fact-checking
websites PolitiFact and GossipCop. Ground truth labels (fake or true) of news
articles in both datasets are provided by human experts, which guarantees the
quality of labels. We consider that all the tweets that discuss a particular news
article bear the truth value, i.e., the label of the article, because it contributes
to the diffusion of a rumor (true or false), even if the tweet denies or remains
skeptical regarding the veracity of the rumor.

Since we are particularly interested in images in this work, we extract and
exploit the image information of all tweets. We first remove duplicated and
low-quality images. We also remove duplicated tweets and tweets without images,
finally obtaining 207,768 tweets with 212,774 attached images. We carefully split
the training and testing datasets so that tweets concerning the same events are
not contained in both the training and testing sets.

DAT@Z20 is a novel dataset we collected from Twitter. More concretely, we
retrieve all statements and reports of various nature verified by human experts
from a fact-checking website; specifically contents published on June 15, 2020.
To guarantee a high quality ground truth, we retain only the data and metadata
from 8,999 news articles explicitly labeled as fake or real. To extract tweets that
discuss news articles, we create queries with the most representative keywords
from the articles’ abstracts and titles. Then, we refine keywords by adding,
deleting or replacing words manually with respect to each article’s context. We
use the Twitter API to obtain the searched tweets by sending, as arguments, the
queries prepared previously. Moreover, we employ Twitter Get status API to
retrieve the available surrounding social context (retweets, reposts, replies, etc.)
of each tweet.

Since we aim to build a multimedia dataset with images, we collect both the
tweets’ textual contents and attached images. Thus, from the 2,496,982 collected
tweets, we remove text-only tweets and duplicated images to obtain 249,076
tweets with attached images. Finally, we split the whole dataset into training
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and testing sets and ensure that they do not contain any common event. Tweets
take the label of the news articles they refer to, for the same reason as above.
The detailed statistics of the two datasets are shown in Table 1.

Table 1. Dataset statistics

. . FakeNewsNet DAT@Z20
Statistics \ Dataset True Fake | Overall | True Fake | Overall
News articles 17,441 | 5,755 | 23,196 | 2,503 6,496 8,999
News articles with images| 17,214 | 1,986 | 19,200 455 858 1313
All Tweets 1,042,446|565,314(1,607,760|875,205|1,621,775|2,496,982
Tweets with images 161,743 | 46,025 | 207,768 | 81,452 | 167,624 | 249,076
Images 163,192 | 49,582 | 212,774 | 93,147 | 202,651 | 295,798

4.2 Experimental Settings

To learn a textual representation of tweets, we use the pretrained GloVe word
embedding model [22] after standard text preprocessing. We obtain a k = 50-
dimensional word embedding vector for each word in both datasets. One reason
to choose the GloVe model is that the embedding is trained on tweets. We set
the Text-CNN network’s filters number to d = 32 and the window size of filters
to {4, 6, 8}. We extract 14 sentiment features from both datasets (Table 2). The
hidden size of the fully connected layer of sentiment features is 32. The joint
representation of text and sentiment uses a first LSTM with hidden size 64 and
a second LSTM with hidden size 32.

Table 2. Sentiment features’ details

Feature

Vader Negative/Positive/Neutral/Compound Score

# positive/negative words, Fraction of positive/negative words
# sad/happy emoticons, # exclamation/question mark

# uppercase characters, words/characters

Image features come from the output of the antepenultimate layer of the
pretrained VGG-19 model, to generate a 4096-dimensional vector. This vector
is fed to a fully connected layer with hidden size 32. The final multimodal
feature representation is fed into a fully connected layer with hidden size 10.
deepMONITOR uses a batch size of 64 instances. In our experiments, each
dataset was separated into 70% for training and 30% for testing. The number of
iterations is 100 in the training stage with an early stopping strategy on both
datasets. The learning rate is 1072,
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4.3 Baselines

We compare deepMONITOR with three groups of baseline methods: monomodal
methods, multimodal methods, and a variant of deepMONITOR.

Monomodal Methods We propose three baselines, where text, sentiment and
image information are used separately for rumor classification.

— Text: deepMONITOR, using textual information only.
— Image: deepMONITOR using visual information only.
— Sent: deepMONITOR using sentiment information only.

Multimodal Methods We compare deepMONITOR with two state-of-the-art
methods for multi-modal rumor detection.

— att-RNN [10] is a deep model that employs LSTM and VGG-19 with
attention mechanism to fuse textual, visual and social-context features of
news articles. We set the hyper-parameters as in [10] and exclude the social
context features for a fair comparison.

— SAFE [28] is a neural-network-based method that explores the relationships
(similarities) between the textual and visual features in news articles. We set
the hyper-parameters as in [28].

Eventually, we also include a variant deepMONITOR- of deepMONITOR,
where sentiment information is removed.

4.4 Performance Analysis

We first present the general performance of deepMONITOR by comparing it with
baselines. Then, we conduct a component analysis by comparing deepMONITOR
with its variants. Finally, we analyze the LRCN part. We use accuracy, precision,
recall, and F} score as evaluation metrics.

General Performance Analysis Table 3 shows the experimental results of
baselines and deepMONITOR on FakeNewsNet and DAT@Z20. We can observe
that the overall performance of deepMONITOR is significantly better than
the baselines in terms of accuracy, recall and F; score. Moreover, the general
performance of multimodal methods is deepMONITOR > SAFE > att-RNN.
deepMONITOR indeed achieves an overall accuracy of 94.3% on FakeNewsNet set
and 92.2% on DAT@Z20, which indicates it can learn effectively the joint features
of multiple modalities. Compared to the state-of-the-art methods, deepMONITOR
achieves an accuracy improvement of more than 6% and 8% with respect to SAFE;
and 15% and 18% with respect to att-RNN, on FakeNewsNet and DAT@Z20,
respectively.
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Table 3. Performance comparison

deep att- deep
Text Image Sent |y NyroRr- | RNN[SAFE MoNTTOR
Acc. [0.865| 0.776 |0.650 0.874 0.799 | 0.888 0.943
Prec.|0.875| 0.775 [0.638 0.932 0.787 | 0.866 0.934
FakeNews| Rec. |0.852| 0.778 [0.698 0.808 0.823 | 0.943 0.955
Net Fy ]0.863| 0.777 |0.667 0.865 0.805 | 0903 0.944
Acc. |0.840| 0.714 |0.568 0.885 0.742 | 0.842 0.922
Prec.|0.847] 0.728 [0.574 0.928 0.774 | 0.843 0.938
DAT@Z20| Rec. [0.829| 0.684 |0.532 0.836 0.582 | 0.903 0.905
F; |0.838] 0.705 [0.552 0.880 0.665 | 0.872 0.921
08 0,8
04 04
0.2 0,2
(a) FakeNewsNet (b) DATQZ20

Fig. 5. Component analysis results

Component Analysis The performance of deepMONITOR and its variants
are presented in Table 3 and Figure 5. Results hint at the following insights.

1. Integrating tweets’ textual information, sentiment and image information
performs best among all variants. This confirms that integrating multiple
modalities works better for rumor detection.

. Combining textual and visual modalities (dleepMONITOR-) performs better
than monomodal variants because, when learning textual information, our
model employs a CNN with multiple filters and different word window
sizes. Since the length of each message is relatively short (smaller than 240
characters), the CNN may capture more local representative features, which
are then fed to LSTM networks to deeply and well connect the extracted
features.

. The performance achieved with textual information is better than that of
visual information. Textual features are indeed more transferable and help
capture the more shareable patterns contained in texts to assess the veracity
of messages. The reason is probably that both dataset have sufficient data
diversity. Thus, useful linguistic patterns can be extracted for rumor detection.

. Visual information is more important than sentiment information. Although
images are challenging in terms of semantics, the use of the powerful tool
VGG19 allows extracting useful features representations.
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5. The performance achieved with sentiment information is the worst among
multimodal variants, because without textual and visual contents, the actual
meaning of tweets is lost. However, its contribution is non-negligible since the
use of sentiment features (deepMONITOR- vs. deepMONITOR) can improve
accuracy by 6% and 4% on FakeNewsNet and DAT@Z20, respectively.

LRCN Analysis In this subsection, we analyze the importance of the LRCN
component from the quantitative and qualitative perspectives.

Quantitative Analysis From deepMONITOR, we design two new models, removing
the text-CNN in the first (deepMONITOR-CNN), and the two LSTM networks
in the second (deepMONITOR-LSTM). Then, we run the two models on the
FakeNewsNet dataset. Figure 6 displays the results in terms of F} score and
accuracy. Figure 6 shows that both accuracy and F} score of deepMONITOR
are better than those of deepMONITOR-CNN and deepMONITOR-LSTM.

038

0,6

04

0,2

deepMONITOR-LSTM  deepMONITOR-CNN deepMONITOR

mAccuracy mRecall mF1

Fig. 6. Performance comparison of the LRCN component

Qualitative Analysis To further analyze the importance of the LRCN component in
deepMONITOR, we qualitatively visualize the feature representation C'rg learned
by deepMONITOR, deepMONITOR-~CNN and deepMONITOR-LSTM on the
testing data of FakeNewsNet with t-SNE [19] (Figure 7). The label of each post is
fake (orange color) or real (blue color). We can observe that deepMONITOR-CNN
and deepMONITOR-LSTM can learn discriminable features, but the learned
features are intertwined. In contrast, the feature representations learned by
deepMONITOR are more discriminable and there are bigger segregated areas
among samples with different labels. This is because, in the training stage, the
Text-CNN can effectively extract local features and the LSTM networks connect
and interpret the features across time steps. Thus, we can draw the conclusion
that incorporating the LRCN component is essential and effective for the task of
rumor detection.
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(a) deepMONITOR-LSTM (b) deepMONITOR-CNN (c) deepMONITOR

Fig. 7. Visualizations of learned latent text and sentiment feature representations on
the testing data of FakeNewsNet (the orange colored points are fake tweets and the
blue ones are real)

5 Conclusion

In this paper, we propose deepMONITOR, a deep hybrid model for rumour
classification in microblogs. The model extracts and concatenates textual, visual
and sentiment information altogether. For a given message, we first fuse text and
emotional signals with an LRCN network, which is an appropriate architecture
for problems that have a 1-dimension structure of words in a sentence, such
as microblog posts. This joint representation is then fused with image features
extracted from a pretrained deep CNN. Extensive experiments on two large-
scale dataset collected from Twitter show that deepMONITOR outperforms
state-of-the-art methods.

A future line of research is to further investigate the contribution of sentiment
features in the detection of rumors. Dedicating a deep submodel for learning
such features instead of using our current, lexicon-based approach could indeed
further improve the performance of deepMONITOR.
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