Calling Variadic Functions from a Strongly-typed Language

Matthias Blume

Toyota Technological Institute at Chicago
blume@tti-c.org

Abstract

The importance of providing a mechanism to call C functions from
high-level languages has been understood for many years and, these
days, almost all statically-typed high-level-language implementa-
tions provide such a mechanism. One glaring omission, however,
has been support for calling variadic C functions, such as printf.
Variadic functions have been ignored because it is not obvious how
to give static types to them and because it is not clear how to gen-
erate calling sequence when the arguments to the function may not
be known until runtime. In this paper, we address this longstanding
omission with an extension to the NLFFI foreign-interface frame-
work used by Standard ML of New Jersey (SML/NJ) and the ML-
ton SML compiler. We describe two different ways of typing vari-
adic functions in NLFFI and an implementation technique based
on the idea of using state machines to describe calling conventions.
Our implementation is easily retargeted to new architectures and
ABISs, and can also be easily added to any HOT language imple-
mentation that supports calling C functions.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors

General Terms Languages

Keywords foreign-function interfaces, compilers, interpreters

1. Introduction

Most statically-typed high-level languages provide a mechanism
for calling C functions. Such a mechanism is required to allow
access to system services and the wide selection of C libraries.
Because C is an unsafe language with a weak type system, there
has been significant focus on the problem of assigning high-level
types to C functions [FLMP99, Blu01, CFH'03]. None of this
existing work, however, addresses the problem of typing variadic
C functions, such as

int printf (const char *, ...);

The ellipses in this function prototype specifies that calls to this
function may take zero or more arguments in addition to the char-
acter pointer. Since this prototype does not fix the number or types
of arguments to print£, it is hard to give it a strong static type.
Furthermore, in a functional language, such as ML, a variadic func-
tion should be a first-class value that can be used at many, possibly

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ML’08, September 21, 2008, Victoria, BC, Canada.

Copyright (© 2008 ACM 978-1-60558-062-3/08/09. .. $5.00.

Mike Rainey

University of Chicago
mrainey@cs.uchicago.edu

John Reppy

University of Chicago
jhr@cs.uchicago.edu

unknown, call sites, which means that we cannot have a fixed mar-
shaling policy for its arguments.

In this paper, we describe an approach to supporting variadic
C functions as first-class citizens in strongly-typed languages,
such as ML or Haskell. We have implemented this mechanism
in the SML/NJ compiler as an extension to Blume’s NLFFI mech-
anism [Blu01], but the techniques are not specific to SML/NJ.

Our approach requires a minor effort on behalf of the program-
mer. To make a variadic call, the programmer supplies just two
pieces of information: the C header file containing the function
prototype and the call site in ML. The foreign-function interface
handles everthing else.

There are two main obstacles to supporting variadic functions
in ML: the first is providing a typing scheme that is both statically
checkable while supporting variable arity functions. One approach
is to define a tagged union of argument types and to represent the
arguments as a list of tagged values. We reject this approach be-
cause it does not fit well with the NLFFI embedding of the C type
system. Instead, we use a technique suggested by Danvy for typing
unparsing functions [Dan98]. The second, and more difficult, ob-
stacle is implementing a call to a foreign variadic function, when
we do not have static knowledge of either the number or types of
arguments. To address this problem we use a state-machine based
model of calling conventions [BD95, OLRO06] that is interpreted at
call time. Since this interpreter must be implemented in machine
code and is specific to the host operating system and architecture,
we generate it from a declarative description.

1.1 Motivation

Since most C functions are not variadic, this restriction on foreign-
interface mechanisms has not been viewed as severe, but there are a
number of compelling examples where support for calling variadic
functions is required. Formatted I/O is the most common example,
which include not only the C standard I/O library, but I/O opera-
tions for many other common C libraries, such as curses, SQLite,
and MPI. Another example are libraries for constructing data struc-
tures, such as RPC marshaling and the ATerm library [ATe].

The Cocoa libraries on Mac OS X are written in Objective-C,
which means that to access the native GUI components one has to
be able to interoperate with Objectice-C objects. The Objective-C
runtime has a C interface; specifically, the function

id objc_msgSend (id, SEL, ...);

can be used to send a message specified by SEL to the object
specified by id. By providing support for variadic functions, we
make it possible to interoperate with Objective-C libraries, such as
as Cocoa.

1.2 Contributions

This paper makes the following contributions:

e QOur design enables a concise implementation, and as a conse-
quence provides new justification for fully supporting variadic
functions in a foreign-function mechanism.

® We describe how to handle the static typing of variadic func-
tions in the NLFFI type framework.

e We describe an interpreter for generating the calling sequences
for variadic functions.

e Our implementation isolates machine dependencies in a declar-
ative specification of the calling convention and uses the ML-
Risc code-generation framework to generate the interpreter
from a single portable source code.

e The generated interpreter is an assembly program with C calling
conventions that can be compiled and linked into other language
implementations.

1.3 Roadmap

The rest of the paper is organized as follows. In the next section, we
review the way in which NLFFI embeds the C type system into the
ML type system. Then in Section 3, we describe two approaches to
typing variadic functions in NLFFI. Sections 4 through 7 describe
the implementation of variadic calls. We then discuss related work
in Section 8 and conclude in Section 9.

2. NLFFI

NLFFI [Blu0O1] is a foreign function interface for Standard ML.
It was originally developed for the SML/NJ compiler and has
subsequently been adapted to work with MLton as well. The main
design principle behind NLFFI is to follow the idea of data-level
interoperability [FPROO, FPRO1]. This principle means that all
C types and interfaces are made directly available to the high-
level language by presenting them as values of various abstract
types. These abstract types come equipped with operations that
closely correspond to syntactic constructs of the C language. As a
result, access to all C data can be done directly from the high-level
language, and there never is any need for writing low-level “glue”
code that deals with data bit-level data representation, marshaling
of function arguments and results, efc.

The ML-side type structure of these C-level data and operations
have been carefully designed in such a way that the ML type
system effectively enforces the same rules that would normally
be enforced by a C compiler. (Thus the choice of the acronym
“NLFFL” which stands for no longer foreign function interface,
a pun which is meant to express that the rules of the “foreign”
language are “natively” expressed and enforced by the type system
of the high-level language.)

Notice that NLFFI does not attempt to unify ML-side represen-
tatives of C types with commonly available ML types, even where
naively this would seem to make sense. For example, the C type
double is not represented by the ML type real (or, even better,
Real64.real). Instead, there is a new abstract type C.double
for which NLFFI provides conversion routines to and from ML’s
real. In short, the philosophy is to keep the two type worlds sep-
arate, but to also provide all necessary tools that make it possible
to write the code that mediates between these worlds directly in
the high-level language itself. One main advantage of this design
is that it fully separates the foreign interface from implementation
details of the high-level language, in particular the problem of data
representation.

NLFFI consists of two main parts.

e The first part is a library implementing the “fixed” part of the
interface, i.e., the part that corresponds to predefined types,
type constructors, and operations of the C language. A prime

example of such a fixed type constructor is C’s star (), a unary
type constructor taking a type T to the type of pointers to T.
Examples of fixed operations are C’s address-of operator (&)
and C’s pointer-dereferencing operator (also written).

The second part is a tool (called m1-nlffigen) for convert-
ing C interfaces containing type definitions as well as function-
and variable declarations into a corresponding ML interface.
This tool parses an actual C source or header file and uses the
front-end of a C compiler (implemented using SML/NJ’s CKit
Library') to extract the necessary information for constructing
the ML equivalent of the interface. Among other administrative
issues, the tool performs two important sub-tasks.

= It creates new ML-side abstract types representing freshly
declared C-side st ruct and union-types.

= It also issues special (non-standard) ML code that the ML
compiler later uses to generate calling sequences for every
function prototype encountered within the C interface.

Example: Suppose a C header file contains the following two
declarations:

extern double sin (double);
extern double atan2 (double, double);

For these two function declarations, m1-n1ffigen produces two
ML structures, named F_sin and F_atan?2, respectively. Among
other things, each of the structures contains a value component
fptr representing the C function pointer to the respective C func-
tion.? In particular, we have the following specifications:

val F_sin.fptr unit ->
(C.double —-> C.double) C.fptr
val F_atan2.fptr unit ->
(C.double * C.double -> C.double) C.fptr

For each fptr, NLFFI provides a wrapper (named f) as a
convenience, since the by far most common use is that of actually
invoking the underlying function. The wrapper includes built-in
conversions from and to ML’s native types, so that we would see
the following specifications:

val F_sin.f Real64d.real -> Realb64d.real
val F_atan2.f Real64.real * Realb4.real
—> Real64.real

3. NLFFI and variadic functions

The creation of calling sequences specific to function prototypes
in the C interface works only for “fixed” prototypes, i.e., those not
making use of C’s ellipsis notation. In the case of variadic calls,
it is not the prototype but the call site that determines the calling
sequence. Thus, NLFFI’s approach, which is based on using C-side
type information, breaks down at this point.

As aresult, NLFFI — like most of its foreign-function interface
brethren — has punted on the issue of variadic C functions. In this
paper, we explain how we have rectified this situation.

3.1 Call site specific type information

The type of a variadic C function does not fully specify how it can
be used. The details are left to each individual call site and must
be harvested there in order to generate the correct calling sequence
that adheres to the calling conventions. In a sense, we can think of
variadic C functions as being ad-hoc polymorphic, since the code
to be generated is determined by a process similar to overloading
resolution.

! The CKit Library is available from smln7j.org.

2The fptr values are actually suspensions, since access to the underlying
C values goes through a dynamic linking layer.

The SML language does not provide support for programmer-
declared overloading, which makes it difficult to mirror the behav-
ior of C directly, but one might imagine that it would be possible to
(ab)use SML’s parametric polymorphism. For example, print £
could be considered to have the type

val printf string -> 'a -> int

The type st ring represents the fixed (i.e., statically known) por-
tion of the argument list, while the universally quantified type
variable ’a represents the variable portion, corresponding to
print£’s C prototype.

int printf (const char *, ...);

Each call site would instantiate ’ a to a particular ground type,
which would then serve as the basis for determining the correct
calling sequence to be used at that site. For example, a call with
two arguments, a real and a int could simply be.

printf "x=%d y=%f" (3, Math.pi)

Here ’ a is instantiated to real * int, and the SML compiler
could make use of this information to generate the same calling
sequence that a C compiler would generate for

printf ("x=%d y=%f", 3, M_PI);

Unfortunately, this technique would not work robustly, because in
some sense the SML type system is too flexible. For example, it
lets us write code of the form.

fun myprintf fmt args =
printf ("xx " ° fmt) args

Here, the calling sequence for the foreign call of printf would
not be determined by its own call site, but by that of the surround-
ing n-wrapper myprint £, which itself is not a foreign function.
Allowing such things to happen seems to be in the spirit of the rest
of the language, but going down this path makes the treatment of
variadic foreign calls pervasive throughout large parts of the imple-
mentation or else requires whole-program analysis. These solutions
seem far too complicated to be worth the effort of designing and
implementing. Another solution is to force each call site of a vari-
adic foreign function to fully instantiate the type of its argument.
We reject this approach as well, since it would require a significant
change of the SML type system, as the polymorphism in the type of
printf would have to be distinguished from the polymorphism in
the type of native SML values.

3.2 Tagged argument lists

Since it seems difficult to harvest enough static information at the
call site of a foreign function, we adopt a more dynamic approach:
arguments of a variadic call are given as a sequence, for example a
list of SML values. Since the SML type system insists on homoge-
neous sequences, this requires that each argument be injected into
some sort of universal type. The standard technique is to define a
datatype that has one variant for each possible argument type.

Unfortunately, NLFFI provides an infinitely large family of
possible argument types (just like the C type system does). There
are int, double, int, doublex, intx%, doublexx, and
so forth. Of course, as far as calling conventions are concerned,
it is not really necessary to distinguish between different pointer
types as they all get represented identically as machine addresses.
NLFFI itself represents all pointers as such addresses, it merely
“dresses them up” as different abstract types using the technique of
phantom types. Thus, instead of using an explicit datatype, we can
define an abstract type arg and provide a set of injection functions.
Some of the injection functions, for example that for pointers, are
polymorphic and work on entire families of types.

type arg
val sint_arg C.sint -> arg
val double_arg
val ptr_arg

C.double -> arg
"o ptr -> arg
Variadic calls then take concrete lists of abstract args. For exam-
ple, the above call of print f becomes.
printf "x=%d y=%f"
[C.sint_arg 3, C.double_arg Math.pi]

3.3 Danvy-style typing

Instead of using a concrete list of args which requires explicit
injection of every value into the arg type, it is also possible to
employ a design that syntactically separates a specification of the
type sequence from the list of values. The trick is to use a variant of
Danvy’s technique for statically typing print £ in SML [Dan98].?
Suppose a particular call site of a variadic function that returns
a value of type ¢, provides arguments of types t1,...,t,. We cap-
ture this fact using an abstract type constructor va_sig which is
instantiated to type (t1 —> -> t, —> tr) va_sig. Let
t1,...,t; withe < n be a segment of the type list in such a variadic
signature. Borrowing the technique of difference lists from logic
programming, this sequence can be expressed as a pair (¢ —>
->t; —=> "a, ’"a), where ’a is a type variable. For this
purpose the NLFFI interface provides the two-argument type con-
structor vargs. We want to be able to combine a partial argument
specification of type

(tr —> -+ =>t; —> "a, "a) vargs
with a specification of type
(tig1 —>

to form a specification of type

-> t, —> 'b, ’'b) vargs

(tpy —> -> t, —> 'b, ’'b) vargs.

If ("a, "b) vargs is defined to be the type of functions from
"b va_sigto "a va_sig, then this is conveniently achieved
by SML’s predefined function composition combinator o. The iden-
tity function va_none serves as the neutral element and represents
an empty sequence of arguments. Ultimately, the values of type
vargs are constructed from primitive single-argument specifica-
tions of type (e, ’r) wvarg. Since this is defined to be syn-
onymous with (‘e -> "a, ’a) vargs, each primitive spec-
ification adds one curried argument to the overall signature.

type 'a va_sig

type ('a, ’'b) vargs = 'b va_sig -> 'a va_sig

type (e, 'a) varg = (‘e -> ’a, 'a) vargs

val va_none : (’'a, ’'a) vargs
For each NLFFI type or type family there is one value of type
varg:

(sint, '

val va_sint a) varg
val va_double

val va_ptr

(double, ’"a) varg
("o ptr, ’"a) varg
Each of these values corresponds to one of the above-mentioned in-
jection functions into the arg type. For convenience, our interface
also provides argument combinators with built-in conversions from
native ML types.

val va_ml_int (Int32.int, ’a) varg

val va_ml_double (Real6d.real, 'a) varg

3 Unlike OCaml’s format mechanism, Danvy’s solution relies just on
the basic principles of the ML type- and module system and does not
require any special compiler support. As a result, it is less ad-hoc and easily
generalizes to arbitrary situations that deal with variadic calls.

Notice that since type va_sig is abstract, all vargs values that
can ever be constructed have types of the form (¢, — - - -
"a, "a) vargs. As explained above, the type variable ’ a can
be further instantiated to extend the list of arguments on the right. In
a complete argument specification (i.e., one that is being presented
to va_call, see below), ’ a represents the return type.

A variadic function takes its arguments in two parts: a fixed one
(corresponding to the portion before the ellipsis in the C prototype)
and a variable one (corresponding to the ellipsis itself). To express
this, NLFFI defines an abstract type constructor and a function for
dispatching calls.

— t, —

type ('f, 'r) va_fptr
val va_call : ('f, ’'r) va_fptr ->
("a, 'r) vargs —> 'f -> 'a

Avalueof type (' £, ’'r) va_fptr represents a variadic func-
tion with fixed arguments of type ’ £ and a result of type ' r. The
variable part of the argument list is not mentioned here, since it is
chosen on a per-call basis.

The first argument to va_call is a pointer to the function to
be called. The corresponding specification of the variable part of
the arguments is given as the second curried argument. Recall that
its type has the form (¢1 — ---t, — ’'r, ’r) vargs where
ti,...,tn are the types of the individual values within the variable
portion of the argument list.

The signature of va_call forces ’ r to match the overall result
type. Therefore, if £ has type (¢, t.) va_fptr and spec has
type (t1 — -+ —t, — 'xr, ’'r) vargs, then the type of the
callva_call f spechasthetypety —t1 — - — t, — tp,
which is exactly what we desire.

In our running example, the va_fptr value representing
print £ would have the following type:*

val printf (string, sint) va_fptr
Auseof printf withan int and a double argument then looks
like this.

va_call printf (va_ml_sint o va_ml_double)
"x=%d y=%f" 3 Math.pi

In other words, the instantiated printf (without its arguments)
has the following type.

va_call printf (va_ml_sint o va_ml_double)
string —-> Int32.int -> Real64.real —-> sint

3.4 Implementation of the Danvy-style abstract interface

The abstract interface described above does not commit to a par-
ticular representation of its abstract type constructors. One simple
strategy is to fall back to a representation of argument lists as list
of tagged unions — at least internally.’

Danvy’s approach is to make use of continuation-passing style
in the implementation of the interface. In particular, type ’a
va_sig is the type of continuations that expect a list of argu-
ments (in NLFFI’s internal representation) and map it to a result of

type ’ a.

4 This is a slight simplification, as the actual type of the fixed argument
would be (schar, ro) obj ptr. This corresponds to C’s const
char ».

5 A more involved approach is to use the interface to drive the Staged
Allocation machinery (see Section 5) directly, which would make it possible
to avoid some intermediate data structures by immediately going to located
arguments (see Section 6).

datatype arg
= SINT_ARG of internal sint

| DOUBLE_ARG of internal_double
| PTR_ARG of internal_ addr

type 'a va_sig = arg list -> ’'a

type ('a, ’'b) vargs = 'b va_sig -> 'a va_sig
type (e, 'a) varg = (e -> 'a, "a) vargs
fun va_none s = s

Each predefined value of type varg adds one argument and
arranges for it to be pushed onto the list of tagged values collected
so far.

fun va_sint k 1 i = k (SINT_ARG i :: 1)
fun va_double k 1 d = k (DOUBLE_ARG d :: 1)
fun va_ptr k 1 p = k (PTR_ARG p :: 1)

Variadic function values are represented by closures that take
two arguments: the fixed portion of the arguments and the variable
portion represented as a list of arg values. When such a closure is
invoked, it combines fixed and variable portions into a single arg
list that is suitable for being used by the low-level mechanism for
dispatching a C call. Function va_call receives such a closure
together with its varargs specification as well as its fixed argu-
ments. It then “runs” the specification, causing it to pick up the
variable portion as additional curried arguments. The initial contin-
uation given to the specification receives these variable arguments
as a list of arg values. (Notice that the list contains the arguments
in reverse order.) At this point va_call has obtained all the nec-
essary ingredients, so it is now able to invoke the variadic function
closure.

type ("f, 'a) va_fptr = 'f x arg list -> ’'a

fun va_call f spec fixed =
spec (fn args => f (fixed, rev args)) []

The code for the function closure varies only in the part that
marshals the fixed arguments. Therefore, it is generated by the
ml-nlffigen tool based on the function’s C prototype. For the
example of print £, here is a sketch of what the generated code
looks like

type c_funptr = internal_addr

val printf funptr c_funptr =

fun printf_fptr (fixed, vargs) =

dispatch_lowlevel call

(printf_ funptr, PTR_ARG fixed vargs)

The only fixed argument of print £ is a C string, which means it

is a pointer value. Therefore, it gets added to the joint argument list
using the PTR_ARG tag.

We give a detailed description of the implementation of dispatch -

lowlevel_ call,i.e., the technically most difficult part, later in
the paper — beginning with Section 4.

3.5 Specialized protocols

In C there is no mechanism that reliably lets a variadic function de-
tect the end of its argument list. To cope with this problem, different
commonly used functions use different protocols for communicat-
ing this information from the caller to the callee.

For example, printf relies on the format string given as the
first and only fixed argument. Format specifications (substrings
starting with a %-character) within the format string indicate the
number and types of subsequent arguments. In other cases where
the type (or at least the representation) within the argument list does
not vary, one sometimes relies on passing a special “end marker,”
i.e., a value that is distinguishable from all possible arguments.
In C, such a value is often taken to be NULL. One example for
such a function is the Unix execl variant of the exec system
call. Another option is to precede the variable part with an integer

argument that specifies the number of values that follow. Other
conventions might require arguments to be passed in pairs or other
similar patterns.

These protocols are inherently unsafe, since they are designed
and implemented in an ad hoc fashion, so the compiler does not
know about them. More seriously, even if they were known to the
compiler, it would often not be possible to statically determine
whether the caller has provided correct information.

Although on the ML side we face the same inherent limitations,
the programmer can capture some of these protocols by hiding their
fragile parts behind abstractions. Implementing such abstractions
is quite easy under the list-of-tagged-values design of the interface.
We now illustrate how it can be done in the setting of Danvy-style
typing. For this we examine three of the cases mentioned above, ex-
cluding the print £ case since its solution was essentially already
given in Danvy’s original work [Dan98].

Example: end marker

To support the end marker NULL, our interface provides a special
combinator va_null.

val va_null : ('a, ’'a) vargs

Like va_none it does not alter the type of the curried function.
However, it causes a constant value to be passed at the specified
position. The low-level implementation of va_null is straight-
forward.

fun va_null k 1 = k (PTR_ARG NULI_const :: 1)

This idea can be generalized to provide arbitrary “constant” ar-
guments, i.e., values that are given within the specification itself
and which do not have a corresponding curried argument. The com-
binator va_const converts a value of type (e, ’'a) varg
into a function of type e -> ('a, ’a) vargs:

val va_const : ('e, ’'a) varg —>
e => ("a, "a) vargs
The following one-liner implements va_const; we will see a use
of it in our last example:
fun va_const ¢ x k1 =¢c k 1 x

Now let us use va_null to guarantee that calls to execl receive
the trailing NULL argument.® Recall that the C prototype is

int execl (const char *path, const char xarg, ...);
This results in the following “raw” NLFFI representative:’
val execl (string = string, sint) va_fptr

The “safe” version of execl, which always passes the required
trailing NULL without having to specify it, can be coded up simply
as

fun safe_execl spec path arg =
va_call execl (spec o va_null) (path, arg)

Example: argument count

Suppose function sum sums its n arguments of type double but
requires n to be passed as a fixed int argument first

double sum (int n, ...);
The raw NLFFI representative is then

val sum (sint, double) va_fptr

6 For the purpose of this example we do not enforce the other invariant,
namely that all arguments before the end marker must be strings. A tech-
nique for constraining arguments to particular types is shown later.

7Again, we simplify and write string for (schar, ro) obj ptr.

Behind an abstraction, we can count the number of arguments
within the specification — and at the same time restrict all argu-
ments to type double. The idea is to mimic the roles of types
va_sigand vargs using new abstract types ssigand svargs.
Here a value of type ’ a ssig is a partially constructed specifica-
tion paired with the number of elements in it

structure Sum :> sig
type 'a ssig

type ("a, 'b) svargs = 'b ssig -> ’"a ssig

val sdouble (double -> ’"a, ’'a) svargs

val safe_sum : (’a, double) svargs -> ’a
end = struct

type 'a ssig = (’'a, double) vargs * int

type ('a, 'b) svargs = 'b ssig -> ’'a ssig

fun sdouble (s, n) = (va_double o s, n+l)

fun safe_sum spec =let

val (spec’, n) = spec (va_none, 0)

in va_call sum spec’ n end
end

In the body of function safe_sum we first run the “outer” spec-
ification, resulting in the argument count n together with the full
“inner” specification to be handed off to va_call. Since the only
constructor for svargs is sdouble, it is guaranteed that all ar-
guments to safe_sum will be of type double.

This approach guarantees that the first argument to sum will
specify the correct number of arguments. A similar approach can
be used to check for consistency in the use of functions such as
printf, where the first argument implies not only the number
of additional arguments but also their types. Of course, such a
consistency check would occur at run time.®

Example: pairing arguments

Suppose we have a function plot that takes one string argu-
ment and then a list of int-double pairs. Moreover, let the value
0 mark the end of the list. Like the C prototype

void plot (const char x, ...);
the raw NLFFI representative does not capture these invariants

val plot (string, unit) va_fptr

Again, the solution is to hide the raw plot function behind an
abstract interface. Its overall structure is similar to that of the sum
example, except psig is literally an abstract copy of va_sig.

structure Plot :> sig
type 'a psig
type ('a, 'b) pvargs = 'b psig -> ’'a psig
val sint_double
(sint -> double -> ’a, ’'a) pvargs

val plot : (’a, unit) pvargs —-> string -> ’a
end = struct
type 'a psig = ’"a va_sig

type ("a, 'b) pvargs = 'b psig -> ’'a psig
fun sint_double s = va_sint (va_double s)
fun plot spec =
va_call plot (spec o va_const va_sint 0)
end

Notice the use of va_const applied to va_sint and the value
0, which causes the unconditional addition of that value to the end
of the argument list.

Calling
Conventions

|
|
: Staged Allocation Spec
:
|

Sequence of R/

Argument Types

locs

Sequence of
Arguments

argument values+locs=
located arguments

Figure 1. Three pieces of information go into the generation of a
run-time call: the calling conventions, the sequence of argument
types, and the sequence of corresponding argument values. The
time at which the sequence of types is known varies depending on
whether or not the function in question is variadic and on whether
the call is performed from C or as a foreign call from ML.

4. Variadic calls at the machine level

Despite being conceptually straightforward, the remaining piece of
a foreign-function interface is a challenge to implement. To make
a foreign call, we must execute a particular sequence of machine
instructions that first place arguments in specific machine registers
and stack locations, then call the foreign function, and finally obtain
the return result. We call this sequence of instructions the calling
sequence. On most architectures, calling sequences for variadic
functions are either identical to or are slightly more complex than
fixed-arity functions, but, as we will see, variadic calling sequences
are significantly trickier to support in ML.

Example: variadic calling sequence Here we consider the x86-
64 calling sequence of our running example.

printf ("x=%d y=%f", 3, 3.14);

To place arguments, we copy the first two to general-purpose reg-
isters using 64- and 32-bit moves respectively and copy the third to
a floating-point register using a 64-bit move. Because this function
is variadic, we must store the number of floating-point arguments
in the $rdx register. This step is only necessary for variadic func-
tions, and is the only variation from a fixed-arity function on the
x86-64. After we perform these steps, we jump to the code address
of print f. If the arguments had outnumbered the available regis-
ters, we would need to spill some to the stack.

The blueprint for generating calling sequences is the calling
convention. Calling conventions are a surprisingly difficult part of
implementing a compiler, as many researchers have noted [BD9S5,

8 Some C compilers perform this particular test (i.e., consistency of argu-
ments for print £ and its brethren) statically. However, this is a fairly brit-
tle ad-hoc solution, since it does not generalize to user-defined functions
and argument-passing protocols or even just the situation where the format
string is not statically known.

OLRO06]. Conventions tend to vary significantly across different ar-
chitectures and operating systems, and C conventions are no excep-
tion. The official definitions for C conventions consist of elaborate
and subtle rules that are often defined in prose. There have been
many documented cases where the conventions themselves were
buggy or imprecise or where compilers had incorrect encodings of
the conventions.

Language-based approaches have proven to be an elegant so-
lution for implementing calling conventions. Two successful ex-
amples of this approach are CCL [BD95] and staged alloca-
tion [OLRO6]. Their basic technique is as follows. They define
a domain-specific language for specifying calling conventions, and
an allocator machine. The allocator machine takes a calling con-
vention specification and a function prototype, and assigns the ar-
gument and return parameters to machine locations. For instance,
suppose we fed our print £ example to the allocator machine. We
would get back the locations we need for passing the parameters,
which are the two general-purpose registers and the floating-point
register. With these locations in hand, the compiler can easily gen-
erate the full calling sequence.

The final step of the language-based approach, statically gen-
erating the calling sequence, does not work for our variadic calls.
For reasons we describe below, we must instead rely on dynamic
techniques. As illustrated in Figure 1, there are three major pieces
of information that must be available by the time a foreign function
call is generated.

1. The calling conventions for the current combination of machine
architecture, operating system, and compiler.

2. The sequence of types corresponding to the arguments of a
particular call.

3. The sequence of argument values.

These three pieces become available at different times. Calling
conventions are fixed for a given compiler on a given platform.
At the other extreme, argument values generally do not become
available until the call is actually to be performed at runtime. The
time at which the types of the arguments become known differs
depending on the kind of function that is being called and also
depending on whether the call is native or foreign.

e For ordinary (fixed-arity) functions, the types are given by the
prototype. They do not vary with call sites.

e For variadic functions to be called from C, the types become
known locally on a per call site basis.

e For variadic functions to be called from ML, the types become
available along with the corresponding argument values at run-
i 9
time.

To generate the calling sequence for a particular call, one only
needs to know the first two pieces of information: the calling
conventions and the sequence of types. As we have explained, in
ML we do not have a good handle on the argument types until run
time. Thus, the caller must be able to perform any calling sequence
on the fly, which makes supporting variadic calls a thorny issue.
Because of these challenges, existing foreign-interface mecha-
nisms for strongly-typed languages omit support for variadic func-
tions. It turns out, however, that with the right choice of techniques
and the resuse of existing machinery for generating calling se-
quences, we can implement variadic function calls as a retargetable
and portable library. To do so, we must overcome a major techni-
cal challenge: how can we perform any calling sequence on the fly,

91In principle, at least for Standard ML, the types could be obtained from a
whole-program analysis. But this relies on certain fragile properties of the
type system, e.g., the absence of polymorphic recursion.

User program

fargl ... argn

FI Library

Argument assembly

\4
Located-argument
generator
SML
Runtime system Clasm
Y

Located-argument
interpreter

C Library

Figure 2. Calling farg, ... arg,, from SML

but at the same time maintain a reasonable complexity budget? Our
solution rests on the following two insights:

First insight We can re-use the language-based approaches, e.g.
staged allocation, to allocate machine locations just before we
need them. Although this step gets us most of the way to a
solution, we are seemingly stuck: somehow we need to turn
those locations into a calling sequence. One could imagine
using a just-in-time compiler to generate calling sequences on
the fly, but SML/NJ does not provide such a feature.

Second insight Instead of generating code, we can program an in-
terpreter to perform the calling sequence on the fly. For each
step of the calling sequence, the interpreter processes instruc-
tions such as, “move the 32-bit integer argument x into register
r”, or “move the 64-bit floating-point argument y into stack lo-
cation [”. We store these instructions in a data structure that we
have dubbed a located argument.

Figure 2 gives an overview of the way that a variadic-function
call is implemented in our system. As shown in this figure, making
the call to a variadic function f consists of the following steps:

1. A sequence of tagged arguments arg,, . ..
of argument locations loci, ..., loc,.

, arg,, to a sequence

datatype loc_kind
= GPR
| GSTK
| FPR
| FSTK

type req = (width * loc_kind * int)

Figure 3. Requests in staged allocation.

2. Convert each arg,/loc; pair to the located argument larg, and
then these located arguments are passed to the call-sequence
interpreter.

3. Interpret each larg, in order, and finally make the call to f.

The first two steps are implemented in SML, while the interpreter
is a machine-generated assembly routine.

5. Argument assembly

For this step of our implementation, we draw upon the technique
of staged allocation [OLR06]. We made this design choice for
several reasons. The implementation effort is minimal: the staged-
allocation machine, which is the bulk of the code, is defined by
a succinct operational semantics with 17 state transitions. Many
calling conventions are already supported, so getting the details
right is dead simple. And we have already implemented staged
allocation as a stand-alone library that is included with the MLRisc
code-generation framework.

The main idea of staged allocation is to view the placement of
parameters as an allocation problem. Each parameter is assigned
a request, which consists of an integer bit width; a kind, which
indicates the kind of location in which a parameter might be passed;
and an integer alignment that constrains the address of whatever
memory location holds the parameter. Figure 3 shows our encoding
of requests. For generality, the original staged-allocation work does
not specify all of the kinds that are necessary, but we can be explicit
and use only those necessary for C: integer registers and stack
locations and floating-point registers and stack locations.

We convert an argument to a request by obtaining the width,
kind and alignment. These details are architecture specific and
uninteresting, so for our discussion we assume that the following
function is available.

fun argToRequest (a : arg) =
(widthOfArg a,
kindOfArg a,
alignOfArg a)

Recall our example of printf from Section 4, We represent its
arguments as follows,

[PTR_ARG 0x102200, SINT_ARG 3, DOUBLE_ARG 3.14]

where the address 0x102200 is a pointer to the string "x=%d
y=%£f". On the x86-64 these arguments would yield the following
requests.

[(64, GPR, 8), (32, GPR, 8), (64, FPR, 8)]

5.1 Calling conventions

In staged allocation, we specify calling conventions in a small
formal language. Instructions in this language are called stages. A
stage receives a request and either modifies that request and passes
it on to a future stage or the stage attempts to allocate a location.
Calling conventions usually consist of two sequences of stages, one
that specifies how to pass parameters and one that specifies how to
return results.

Counters

structure SA = StagedAllocation
val [cParamStk, cParamGpr, cParamFpr] =
[SA.freshCounter (), SA.freshCounter (),
SA.freshCounter ()]
val [cRetGpr, cRetFpr] =
[SA.freshCounter (), SA.freshCounter ()]

Store

val store0 =
SA.init [cParamStk, cParamGpr, cParamFpr,
cRetFpr, cRetGpr]

Registers
val paramGprs = [rdi, rsi, rdx, rcx, r8, r9]
val paramFprs = [xmm0, xmml, xmm2, xmm3, xmm4,
xmm5, xmm6, xmm7]
val retGprs = [rax, rdx]
val retFprs = [xmm0O, xmml]

Argument-passing specification

val params SA.stage list = [
(x stage 1 x)
SA.WIDEN (fn w => Int.max (64, w)),
(x stage 2 x)
SA.CHOICE [(» stage 2.1 x)
(fn (w, k, store) => k = GPR,
SA.SEQ [
SA.BITCOUNTER cParamGpr,
SA.REGS_BY_BITS (cParamGpr, paramGprs)
1), (x stage 2.2 x)
(fn (w, k, store) => k = FPR,
SA.SEQ [
SA.BITCOUNTER cParamFpr,
SA.REGS_BY_BITS (cParamFpr, paramFprs)
1), (» stage 2.3 *)
(fn (w, k, store) =>
k = GSTK orelse k = FSTK,
SA.OVERFLOW {counter=cParamStk,
blockDirection=SA.UP,
maxAlign=16})
:I r
(» stage 3 x)

SA.OVERFLOW {counter=cParamStk,
blockDirection=SA.UP,
maxAlign=16}

]

Returning specification

val rets SA.stage list = [
SA.WIDEN (fn w => Int.max (64, w)),
SA.CHOICE [
(fn (w, k, store) => k = GPR,
SA.SEQ [

SA.BITCOUNTER cRetGpr,
SA.REGS_BY_BITS (cRetGpr, retGprs)l]),
(fn (w, k, store) => k = FPR,
SA.SEQ [
SA.BITCOUNTER cRetFpr,
SA.REGS_BY_BITS (cRetGpr, retFprs)])]

Figure 4. The x86-64 calling convention for staged allocation.

Example: x86-64 calling convention Figure 4 shows our encod-
ing of the C calling convention for the x86-64. We need several
pieces to make the full specification.

Counters These variables track the state of the allocation se-
quence. For example, the counter cPassStk holds the stack
offset and the counter cPassGpr holds the bits allocated to
the parameter-passing integer registers.

Store This container maps counters to their integer values.

Registers These lists include all the possible registers for passing
parameters and returning values.

Argument-passing specification This sequence of stages encodes
how to pass arguments. In the first stage, we widen the bit
width of the request up to 64 bits. We then enter a choice stage,
where we evaluate a predicate that receives the triple (w, k,
store) and makes a decision based on the kind k. If the
kind of request is an integer (Stage 2.1), we try to allocate a
general-purpose register. This process entails incrementing the
bit counter with the BITCOUNTER instruction and then pick-
ing out the next available register with the REGS_BY_BITS
instruction. The process is similar for floating-point requests
(Stage 2.2). In the case that we must pass the request in memory
(Stage 2.3), we allocate bytes from the overflow block, which in
our case is just the C stack. The direction UP causes us to al-
locate from higher to lower addresses. The alignment can be at
most 16-bytes. If none of the previous choices are taken (Stage
3), we allocate bytes for the request on the stack.

Returning specification This sequences of stages encodes how to
pass return parameters. The rules are similar to how we pass
arguments, except for a couple differences. Return parameters
use a separate set of registers, and there are no rules for passing
on the stack. This omission appears wrong, since the x86-64
conventions specify that structs are returned on the stack.
But because the caller is responsible for allocating stack space,
we do not need to worry about it here.

5.2 The staged allocation machine

The heart of staged allocation is an allocator machine that is de-
fined by an operational semantics. This machine takes a calling-
convention specification, a store, and sequence of requests, and it
returns a machine location. We represent machine locations by the
loc datatype.

datatype loc
= REG of reg
| BLOCK_OFFSET of int
| COMBINE of (loc % loc)
| NARROW of (loc * width * loc_kind)

Registers and stack offsets have the expected meaning. There are
also composite locations, which include combinations and narrow-
ing. Narrowed locations specify a necessary run-time type coer-
cion. As an example, to pass a char parameter on the x86-64, we
need to coerce it to a 1ong.

The allocate function implements a single step of the ma-
chine; each step consumes a calling convention, request, and store,
and returns a location and a modified store.

val allocate stage list => (reg * store)
-> (loc * store)
Using standard techniques, we lift our machine to operate on se-
quences of requests.
val allocateSeqg stage list => (req list * store)
-> (loc list * store)

5.3 Dynamically invoking staged allocation

The code in Figure 5 shows our run-time technique for invoking
staged allocation. To select the appropriate calling conventions,
we dynamically check the architecture and the operating system
if necessary.

Example: x86-64 locations If hand staged allocation the requests
from our print f example, we get back x86-64 registers for pass-
ing our parameters.

fun dynStagedAlloc regs = let
val (params, store0O) =
if (Compiler.architecture = "x86_64")
then (X8664CConv.params,
X8664CConv.store0)
else (* handle other machines «x)

val (seq, _) =
allocateSeq params (reqgs, store0)
in
seq
end

Figure 5. Calling staged allocation for different machines.

[NARROW (REG rdi, 64, GPR),
NARROW (REG rsi, 64, GPR),
NARROW (REG xmm0O, 64, FPR)]

Example: Sparc locations For variety, we consider our printf
example on the Sparc. We pass the first two parameters in general-
purpose registers as before, but pass the floating-point parameter in
two general purpose registers.
[NARROW (REG r8, 32, GPR),
NARROW (REG r9, 32, GPR),
COMBINE (
NARROW (REG rl0, 32, GPR),
NARROW (REG rll, 32, GPR))]

6. Located arguments

Conceptually, the runtime interpreter takes the list of locations
(type loc) and the corresponding list of argument values. Based
on the location information it places each argument in the correct
register or stack location and then dispatches the call by jumping to
the entry point of the function.

To minimize the complexity of the interpreter, it is useful to
pre-process its arguments by combining each argument value with
its location information. During this process we also flatten the
arguments. The resulting combination of a flattened argument and
its location is what we call a located argument. It contains just
enough information to encode a single step of the calling sequence.

® arg contains the actual argument data;
e k specifies the location kind as in staged allocation;
e width is the actual bit width of the argument;

® narrowing specifies a possible narrowing of the argument;

loc specifies either the register id or the stack offset for storing
the argument;

offset is the offset into the argument data. A nonzero offset
indicates that the argument is split across multiple hardware
locations. We scale the offset by the width field.

type located_argument = {
arg : arg,
k : loc_kind,
width : int,
narrowing
loc : int,
offset : int

}

Given an argument and a staged-allocation location, it is trivial
to create the corresponding located arguments. We support only a
single narrowing operation per location, as is sufficient for most
machines. Combined locations, on the other hand, require multiple
located arguments, with each differentiated by its of £set. Thus,

int option,

typedef voidx Word_t;
enum loc_kind { GPR=0, FPR, GSTK, FSTK };
struct located_arg_s {
union {
Word_t* p; long 1; int i;
char* s; double d;
} arg;
loc_kind k;
int width;
int narrowing;
int loc;
int offset;

Figure 6. The C encoding for located arguments.

we define the function below, which takes an argument and a
location and returns one or more located arguments.

val mkLocatedArg (arg * loc)

—=> located_argument list

‘We lift this function to sequences of arguments by using a pairwise
map, where the lengths of the two input lists are the same.

val mkLocatedArgs =
List.concat o ListPair.mapEgq mkLocatedArg

Returning to our printf example , we have the following
located arguments (on the x86-64).

[{ arg=PTR_ARG 0x102200, k=GPR, width=64,
narrowing=NONE, loc=rdi, offset=0 },
{ arg=SINT_ARG 3, k=GPR, width=32,
narrowing=SOME 64, loc=rsi, offset=0 },
{ arg=DOUBLE_ARG 3.14, k=FPR, width=64,
narrowing=NONE, loc=xmm0, offset=0 }]

7. The interpreter

Unfortunately, we cannot simply pass the located argument list
directly to our interpreter, since we are unable to know which way
SML/NIJ lays out this structure in memory. So, instead we marshal
the located arguments using a standard data layout.

val marshallocdArgs located_argument list

-> C.ptr
To keep the implementation portable, we require that the layout
conforms to that of the C struct in Figure 6.

In this process, we are also responsible for allocating space for
the located arguments. Our implementation currently uses heap
allocation through malloc for simplicity, but a more efficient
alternative is to allocate space on the stack.

7.1 Connecting ML and the interpreter

Although it is implemented as an assembly routine, we have chosen
to make our interpreter appear to outside code as an ordinary C
function. Specifically, the interpreter has a standard C prologue and
epilogue. This choice might be slightly less efficient than using
some specialized calling convention, but we believe that in this
case portability is more important. Because it has a fixed-arity C
prototype, any compiler that supports ordinary C calls can use our
interpreter.
We give our interpreter the static C interface below. It takes
a pointer to the vararg function we want to call and the located-
argument data structure, and carries out the vararg call.
extern voidx VarArgInterp (
void* varFun,
struct located_arg_s* locdArgs,
int nArgs);
With all these pieces in place, we can connect our ML pro-
gram to our interpreter. Figure 7 shows this implementation, which

fun dispatch_lowlevel_call (cFun, args) = let

val regs = List.map argToRequest args
val locs = dynStagedAlloc regs
val locdArgs =

mkLocatedArgs (args, locs)
val nLocdArgs = List.length locdArgs
val locdArgsForC =

marshallLocdArgs locdArgs

in
primApplyCFun (VarargInterp,
cFun,
locdArgsForC,
nLocdArgs)
end

Figure 7. Connecting ML to our interpreter.

for i in O nArgs-1
if locdArgs[i].kind = GPR
then if locdArgs[i].width = 32

then if locdArgs([i].narrowing = 0
then if locdArgs[i].loc = r0
then

let j = locdArgs[i].offset * 4
load.32 locdArgs([i].arg.s[j] into reg0

end for
call xvarFn

Figure 8. Pseudocode for our vararg interpreter. The temporary jJ
is the byte offset into the argument.

allocates locations, creates located arguments, marshals them for
C, and finally passes them to our interpreter. We use the com-
piler’s existing C-calling facility, which in our case is called
primApplyCFun. As mentioned before, nothing special happens
here, so any standard C-calling facility will do.

7.2 Implementing the interpreter

The pseudocode in Figure 8 is a sketch of our interpreter. For
each located argument, we wind through a series of alternatives
for where to place the argument. We represent each of these alter-
natives as a branch in the code. By doing so we free up as many
registers as possible, since we are effectively encoding all interme-
diate steps in the program counter. The interpreter first resolves the
kind, the width, the potentially necessary coercion, and the destina-
tion location. Next the interpreter places a chunk of the argument
in the destination.

The nested branching structure of the interpreter leads to tedious
and delicate implementations for each architecture. The x86-64, for
example, requires cases for each of its 16 general-purpose and 16
floating-point registers. For each register it requires cases for the
two possible sizes, an so on. In the end, the interpreter needs to
cover more cases than we care to encode by hand.

7.3 Generating the interpreter

Luckily, we can use an off-the-shelf tool to generate our interpreter
from a single source, and thereby keep all hand-written code in
ML. To accomplish this task we use MLRisc, the retargetable
code generator for SML/NJ [GGR94]. MLRisc models a generic
RISC architecture with a simple register-transfer language called
MLTree. We code our interpreter once as an MLTree program, and
generate it for each supported architecture. Since we are able to

functor GenCorelnterpFn (

val paramGprs reg list
val paramFprs reg list
val gprWidths width list
val fprWidths width list
val spReg T.rexp

val defaultWidth : width
val callerSaveRegs reg list
val callerSaveFRegs reg list
) ot
sig
val genCorelnterp : {
varFn : T.rexp,
locdArgsPtr: reg,
nArgs : T.rexp
} => T.stm list
end

Figure 9. Signature of our interpreter generator.

generate all of the cases automatically, the generator code turns out
to be fewer than 400 lines of SML code!

Our implementation generates MLTree programs, which are
defined in the module below.

structure T MLTREE

The relevant parts of this language are tree expressions, which have
the type T.rexp, and statements, which have the type T.stm.
Tree expressions perform operations over registers. The tree below,
for example, perfoms a 64-bit addition of a temporary register and
the value at the top of the stack.

T.ADD (64,
T.REG (64, tmpReg),
T.LOAD (64, T.REG(64, rsp)))

Statements are effectful operations that include stores, moves, and
control transfers. The statement below copies a 64-bit integer literal
into a temporary register.

T.MV (64, tmpReg, T.LI(64, 128))

Our interpreter consists of a single architecture-independent
core generator and several machine-specific wrappers. Figure 9
contains the signature for our core generator. We have implemented
this generator as an ML functor that takes some machine-specific
parameters and exports a generator function. More specifically, our
functor takes the lists of parameter registers, the possible register
widths, the expression containing the stack-pointer register, the
default bit width, and the caller-save registers.

Our core generator genCoreInterp takes a pointer to the
C function, a pointer to the located argument structure, and the
number of located arguments. The statements that the generator
returns are exactly those statements in Figure 8.

Each machine-dependent wrapper has a different instantiation
of the core generator functor, and has code for the C prologue and
epilogue. We show these pieces of code for x86-64 in Figures 10
and 11 respectively. To generate the C prologue and epilogue, we
place the architecture-independent code, coreStms, between the
C prologue and epilogue. We also initialize the arguments register
and the $rax register. As mentioned in Section 4, this register must
contain an upper bound on the number of floating-point registers
used in the call, so we initialize it to the number of possible floating-
point parameter registers.

Once we have generated the statements for our interpreter, ML-
Risc takes over and produces an assembly file. From here, it is easy
to generate a dynamically-linked library so that we can call the in-
terpreter from ML.

structure GenCorelInterpx8664 =
GenCorelnterpFn (

val paramGprs = paramGprs

val paramFprs = paramFprs

val gprWidths = [8, 16, 32, 64]
val fprWidths = [32, 64]

val spReg = T.REG(64, rsp)

val defaultWidth = 64

val callerSaveRegs = callerSaveRegs
val calleeSaveRegs = calleeSaveFRegs)

Figure 10. Instantiation of the core generator for x86-64.

fun genX8664Interp () = let
val lab = Label.global "VarArgInterp"
val argsReg = newReg ()
val coreStms =
GenCorelInterp.genCoreInterp {
cFun=paraml,
argsReg=argsReg,
nArgs=param3
}
in
(lab,
List.concat [
cPrologue
[T.MV (64, argsReg, param?)],
[T.MV (8, rax,
T.LI (8, List.length paramFprs))],
coreStms,
cEpilogue
]
1)

end

Figure 11. The x86-64 interpreter-generator wrapper.

8. Related work

As discussed in the text, the typing scheme for variadic functions
described in Section 3.3 was inspired by Danvy’s implementation
of unparsing functions in SML [Dan98]. The key difference be-
tween our work and his is that he was focused on providing a
strongly-typed variadic signature to a specific class of SML func-
tions, whereas we are providing a strongly-typed signature for vari-
adic C functions.

Java is an example of a strongly-typed language that has builtin
support for variadic functions. In Java, the arguments must all have
the same type and the compiler automatically assembles them into
a single array argument. In effect, Java uses the typing scheme
described in Section 3.2.

Our implementation of variadic function calls is influenced by
the work on state-machine-based descriptions of calling conven-
tions [BD95, OLRO06]. The difference between their work and ours
is the difference between compilers and interpreters. They use a
state machine to map a sequence of argument types to the calling-
sequence machine code, whereas we map the argument types to a
sequence of argument locations that are then interpreted to perform
the call.

There are at least two C libraries for constructing function calls
that have some similarities to our work. The GNU FFCall library
provides a mechanism for constructing variadic function calls at
runtime in C code.' It is designed to be used in embedded inter-

10There is no published description of FFCall, but the man-
ual pages are available at http://www.haible.de/bruno/
packages—ffcall.html.

preters, but could possibly be used to generate calling conventions
in a foreign-interface implementation. The main obstacle to such
use is that the FFCall API is implemented using C-preprocessor
macros. The implementation of variadic calls in FFCall consists of
several thousand lines of hand-written C code that embodies the
calling conventions of the specific architectures, whereas our gen-
erator is fewer than 400 lines of machine independent code.'!

The 1ibFFI library'? is also designed to support calling C func-
tions from interpreters, but, unlike FFCall, it does not directly tar-
get variadic functions."® To call a C function using libFFI, one first
prepares the call by passing libFFI an array of type descriptors (the
sequence of types in Figure 1), which yields a descriptor. The de-
scriptor is then combined with an array of arguments to make calls
to the function. This library is implemented using a combination of
hand-written, machine and ABI-specific C and assembly code.

9. Conclusion

Existing foreign interface mechanisms for statically-typed lan-
guages do not support variadic functions. In this paper, we have
described an extension to the NLFFI library to support variadic
functions. We showed how to handle the static typing of variadic
functions in the NLFFI framework. Next, we described an inter-
preter for performing variadic calls. We made two critical design
decisions to reduce the implementation complexity. First, we reuse
much of the compiler’s calling-convention framework and, second,
we generate our interpreter from a single source using the MLRisc
framework.

We have kept our implementation down to a relatively small
line count. Not counting the NLFFI component, we have about 600
lines of hand-written SML code, although we expect this number to
increase slightly as we prepare a full release. This number contrasts
with several thousand lines of handwritten C and assembly code to
support these platforms in libFFI. The table below breaks down the
different parts of our implementation by code size.

code base lines of SML code
argument assembly (staged allocation) <400
located arguments and marshaling < 200
interpreter generator <400

Note that the first code base, staged allocation, is part of a separate
library that the compiler also uses to generate C calls. So, even
though there are quite a few lines of code, we do not count them as
part of our variadic-call implementation.

We have implemented the mechanism for variadic calls on the
x86 and x86-64, although, since SML/NJ does not currently sup-
port the x86-64 ISA, we have only tested the interpreter on that
platform. We plan to extend our implementation to other architec-
tures, including the Sparc and PowerPC, in the near future.

Another benefit of our technique is retargetability. Because our
interpreter is an assembly program with C calling conventions, we
can port it to any compiler that supports C calls. We plan to port
our implementation to the MLton compiler in the near future.

References

[ATe] The ATerm Programming Guide. Available from http:
//homepages.cwi.nl/~daybuild/daily—-books/
technology/aterm-guide/aterm—guide.html.

T Of course, we are relying on the MLRisc framework’s knowledge of C
calling conventions.

12The 1ibFFI source and documentation is available from http://
sources.redhat.com/libffi/.

13 On many architectures it is possible to call variadic functions using libFFI
to set up the call, but it depends on the ABI.

[BD9S5]

[BluO1]

[CFH103]

[Dan98]

[FLMP99]

Bailey, M. W. and J. W. Davidson. A formal model of
procedure calling conventions. In Conference Record of POPL
'95: 22nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, San Francisco, California, 1995.
pp- 298-310.

Blume, M. No-longer-foreign: Teaching an ML compiler to
speak C “natively”. In N. Benton and A. Kennedy (eds.),
Proceedings of the First International Workshop on Multi-
Language Infrastructure and Interoperability (BABEL’01),
vol. 59 of Electronic Notes in Theoretical Computer Science,
New York, NY, September 2001. Elsevier Science Publishers.
Available from http://www.elsevier.nl/locate/
entcs/volume59.html.

Chakravarty, M. M. T., S. Finne, F. Henderson, M. Kowalczyk,
D. Leijen, S. Marlow, E. Meijer, S. Panne, S. Peyton Jones,
A. Reid, M. Wallace, and M. Weber. The Haskell 98 foreign
function interface 1.0: An addendum to the Haskell 98
Report. Available from http://www.cse.unsw.edu.
au/~chak/haskell/ffi/, 2003.

Danvy, O. Functional unparsing. Journal of Functional
Programming, 8(6), 1998, pp. 621-625.

Finne, S., D. Leijen, E. Meijer, and S. Peyton Jones.
H/Direct: A binary foreign language interface for Haskell.
In Proceedings of the Third ACM SIGPLAN International
Conference on Functional Programming, September 1999,
pp. 153-162.

[FPROO]

[FPRO1]

[GGRY4]

[OLRO6]

Fisher, K., R. Pucella, and J. Reppy. Data-level interoperabil-
ity. Technical report, Bell Labs, Lucent Technologies, April
2000. Available from http://moby.cs.uchicago.
edu.

Fisher, K., R. Pucella, and J. Reppy. A framework for
interoperability. In N. Benton and A. Kennedy (eds.),
Proceedings of the First International Workshop on Multi-
Language Infrastructure and Interoperability (BABEL01),
vol. 59 of Electronic Notes in Theoretical Computer Science,
New York, NY, September 2001. Elsevier Science Publishers.
Available from http://www.elsevier.nl/locate/
entcs/volume59.html.

George, L., F. Guillame, and J. Reppy. A portable and

optimizing back end for the SML/NJ compiler. In Fifth

International Conference on Compiler Construction, April
1994, pp. 83-97.

Olinsky, R., C. Lindig, and N. Ramsey. Staged allocation:
a compositional technique for specifying and implementing
procedure calling conventions. In POPL ’06: Conference
record of the 33rd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, New York, NY, USA,
2006. ACM, pp. 409-421.

