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Abstract

In plants, communication and molecular exchanges between different cells and tissues are dependent on the apo-
plastic and symplastic pathways. Symplastic molecular exchanges take place through the plasmodesmata, which 
connect the cytoplasm of neighboring cells in a highly controlled manner. Callose, a β-1,3-glucan polysaccharide, is 
a plasmodesmal marker molecule that is deposited in cell walls near the neck zone of plasmodesmata and controls 
their permeability. During cell differentiation and plant development, and in response to diverse stresses, the level of 
callose in plasmodesmata is highly regulated by two antagonistic enzymes, callose synthase or glucan synthase-like 
and β-1,3-glucanase. The diverse modes of regulation by callose synthase and β-1,3-glucanase have been uncovered 
in the past decades through biochemical, molecular, genetic, and omics methods. This review highlights recent find-
ings regarding the function of plasmodesmal callose and the molecular players involved in callose metabolism, and 
provides new insight into the mechanisms maintaining plasmodesmal callose homeostasis.
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Introduction

Callose, a β-1,3-glucan polysaccharide with β-1,6 branches, 
is involved in numerous plant processes, such as plasmodesmal 
and sieve pore regulation, pollen development, vascular di�er-
entiation, cell plate formation during cytokinesis, and responses 
to biotic and abiotic stresses (Chen and Kim, 2009; Amsbury 
et al., 2017). Plasmodesmata (PDs), symplastic junctions between 
cells, provide symplasmic nanochannels crossing the cell walls 
and connecting the plasma membranes of neighboring cells, 
and function as important pathways for intercellular commu-
nication and molecular exchanges. The cell-to-cell movements 
of a wide range of molecules through PDs are regulated by 
callose-dependent and callose-independent mechanisms (Lucas 
et al., 2009; Sager and Lee, 2014; Iswanto and Kim, 2017). The 
callose-independent mechanisms include alterations in PD fre-
quency, changes in PD structure, such as from the simple to the 

complex branched form, involvement of the actin cytoskeleton, 
and regulation of PD permeability by PD gating proteins (Lucas 
et al., 2009; Kumar et al., 2015). In callose-dependent regulation, 
the level of callose in the PD neck zone is important; high lev-
els of callose close PD channels, while and low levels of callose 
open them. In a recent review, Amsbury et al. (2017) provided an 
additional model wherein the structural and mechanical proper-
ties of callose are potentially linked to PD regulation. The level 
of callose is highly regulated by two antagonistic enzymes, cal-
lose synthase (CalS) or glucan synthase-like (GSL) and β-1,3-
glucanase (BG) (Chen and Kim, 2009) (Fig. 1, Table 1).

Numerous insightful reviews have been published on top-
ics such as PD components and regulation (Lucas et al., 2009; 
Burch-Smith and Zambryski, 2012; Sager and Lee, 2014; 
Kumar et  al., 2015; Kim, 2018), PD callose (Chen and Kim, 
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2009; Zavaliev et  al., 2011; De Storme and Geelen, 2014; 
Amsbury et al., 2017), the PD membrane (Tilsner et al., 2016), 
the plant vascular system (Lucas et al., 2013; Heo et al., 2017), 
intercellular movement (Gallagher et al., 2014; Han et al., 2014b; 
Kitagawa and Jackson, 2017), cell-to-cell and long-distance 
transport of phytohormones (Han and Kim, 2016; Lacombe 
and Achard, 2016), and PD regulation during biotic stress (Stahl 
and Faulkner, 2016; Cheval and Faulkner, 2018). In this article, 
we highlight recent �ndings regarding the function of PD cal-
lose and the molecular players involved in callose metabolism, 

and provide new insights into the mechanisms maintaining PD 
callose homeostasis.

Enzymes responsible for callose synthesis 
and degradation and plant development

Callose synthases in higher plants

There are 12, 10, 12, and ~10–13 GSL genes in Arabidopsis, 
rice, maize, and tomato, respectively, and most of them have a 

Fig. 1. Callose homeostasis at plasmodesmata (PDs) during plant development. (A) PD-associated callose synthases during diverse developmental 
processes. The glucan synthase-like (GSL) family and their homologs accumulate callose at the PD neck zone to close the PD channels. GSL8 and 
GSL4 are the two main enzymes that produce basal callose at PDs. CANNOT REACH THE ROOF 1 (CRR1) is an ortholog of Arabidopsis GSL8 in 
rice and is involved in vascular cell differentiation and ovary expansion. Arabidopsis GSL7 plays a role in callose synthesis at the PDs during sieve pore 
formation and phloem transport. Tie-dyed2 (TDY2) is a callose synthase of maize that regulates vascular maturation and phloem export. GSL12 and its 
gain-of-function form, cals3m, synthesize PD-associated callose in roots and in phloem companion cells. GSL4 synthesizes callose at PDs under normal 
conditions and is activated in response to reactive oxygen species and wounding. (B) Synthesis, delivery, and function of PD-localized β-1,3-glucanases 
(BGs). PdBG1, PdBG2, and AtBG_ppap are PD-localized BGs. GPI8 regulates GPI anchor attachment for GPI-anchored proteins in the endoplasmic 
reticulum (ER). Sterol-enriched vesicles and sterol-enriched membranes are required for the PD targeting of all three BGs. PdBG1 and PdBG2 are 
required for PD callose degradation during lateral root primordia (LRP) formation. Phospholipases (PLs) might play a role as a potential regulator of post-
translational BG modification.
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molecular weight of approximately 200 kDa (Verma and Hong, 
2001; Slewinski et al., 2012; Shi et al., 2014; https://solgenom-
ics.net). Biochemical and genetic evidence that GSLs produce 
callose was �rst obtained in studies of barley and tobacco pol-
len tubes (Turner et al., 1998; Li et al., 2003) and further sup-
ported by research reports in Arabidopsis (Hong et al., 2001a, 
b; Huang et al., 2009; Thiele et al., 2009; Guseman et al., 2010; 
Vatén et al., 2011).

GSLs possess a large central catalytic domain, which includes 
a UDP-glucose catalytic site and a glycosyltransferase domain, 
surrounded by multiple transmembrane domains (TMDs) and 
a putative N-terminal regulatory region (Hong et al., 2001a, b; 
Verma and Hong, 2001; Thiele et al., 2009). Although GSLs have 
no signal peptide that is required for the conventional secretion 
pathway, it seems that they need EXO70 family-mediated exo-
cysts for their subcellular localization. For example, EXO70H4 
was essential for the appropriate GSL5/PMR4 secretion and 
subcellular targeting in trichome cells (Kulich et  al., 2018). 
Highly specialized protein complexes of GSLs are required 
to regulate callose synthase activity in a sophisticated man-
ner (Schneider et al., 2016). In addition to GSLs, GSL com-
plexes include components such as UDP-glucose transferase 
1 (UGT1), Rho-like GTPase (Rop), RabA4c, tubulin, phrag-
moplastin (Phr), sucrose synthase (SuSy), and annexin (ANN), 
which are involved in activity regulation or targeting (Shin and 
Brown, 1999; Hong et  al., 2001a, b; Verma and Hong, 2001; 
Aidemark et al., 2009). However, the composition of the GSL 
complexes may be di�erent in the various callose synthesis pro-
cesses. For example, the GSL complex contains phragmoplastin 

in the cell plate but may not contain it at PDs (De Storme and 
Geelen, 2014). Identi�cation of tissue-speci�c components of 
the GSL complexes will be the next challenge in this �eld, and 
new biochemical proteomic approaches such as proximity-
dependent biotin identi�cation (BioID), which was recently 
used in a rice protoplast system (Lin et al., 2017), will be advan-
tageous for the identi�cation of those components.

The activity of callose synthase can be directly suppressed by 
free fatty acids such as linoleic and α-linolenic acids (Blümke 
et al., 2014). In addition, post-translational modi�cations such 
as phosphorylation and proteolysis may a�ect the activity and 
stability of the enzyme or its tra�cking. Several Arabidopsis 
GSL members, including GSL5, GSL10, and GSL12, are phos-
phorylated in response to various abiotic and biotic stresses 
(Schneider et al., 2016). In addition, some range of proteolysis 
is responsible for controlling the activity of callose synthase in 
plant species (Girard and Maclachlan, 1987). Recently, it has 
been suggested that the protease activity of OsMMP1 plays 
a role in the activation of callose synthase (Das et  al., 2018). 
However, the exact molecular mechanisms of enzyme activa-
tion by phosphorylation and proteolysis are not yet known.

Plasmodesmal callose synthases and plant 
development

Callose deposition determines the size exclusion limit (SEL) 
of PDs and hence their permeability (as well as the movement 
of large macromolecules). The gsl8/chorus (chor) Arabidopsis 
mutant shows reduced callose deposition in the cell plate 
and at PDs, higher symplastic permeability, and an increased 
SEL in epidermal leaf cells in comparison to wild-type plants. 
Moreover, SPEECHLESS (SPCH), a stomatal development 
regulator, shows ectopic distribution in the chor mutant due to 
a large SEL that allows the abnormal spread of SPCH to neigh-
boring cells. Hence, GLS8-mediated callose synthesis is crucial 
in the regulation of stomatal di�erentiation by restricting the 
allocation of SPCH (Fig. 1A) (Chen and Kim, 2009; Guseman 
et al., 2010). GSL8-mediated PD regulation is also essential for 
a normal phototropic response; a transcriptional feedback loop 
of auxin-ARF7-GSL8 has been identi�ed (Han et al., 2014a). 
However, considering the rapid auxin gradient formation and 
relatively slow callose deposition by transcriptionally regulated 
GSL8, it seems likely that rapid accumulation of callose during 
the phototropic response might require modulation by faster 
post-translational regulation.

CANNOT REACH THE ROOF 1 (CRR1) in rice encodes 
a protein homologous to Arabidopsis GSL8. Unlike the gsl8 
mutant (Chen and Kim, 2009; Thiele et al., 2009), a rice mutant 
of CRR1 did not show any defect in callose deposition in the 
cell plate and sieve pores (Song et  al., 2016), but caused PD 
callose reduction in a small number of vascular cells. The crr1 
mutants showed delayed ovary expansion and defective vascu-
lar cell patterning. Thus, the callose produced by CRR1 plays 
a role in determining vascular cell di�erentiation and initial 
ovary expansion (Fig. 1A). crr1 mutants exhibited aggregated 
sieve elements, similar to the clustered stomatal cells found in 
gsl8 mutants, suggesting that increased PD permeability may 
induce cell fate determinants to di�use from sieve element 

Table 1. Callose synthases and degrading enzymes

Gene name Gene ID Function

GSL1/CalS11 AT4G04970 Formation of the callose wall to separate 

microspores

GSL2/CalS5 AT2G13680 Callose synthesis during male gametophyte 

development

GSL4/CalS8 AT3G14570 Maintenance of basal PD callose and H2O2- 

induced PD callose

GSL5/CalS12 AT4G03550 Pollen development and fertility

Response to SA-, wound-, iron-, and pathogen- 

induced callose deposition

GSL6/CalS1 AT1G05570 Callose synthesis at the cell plate

SA-dependent callose synthesis

GSL7/CalS7 AT1G06490 Callose synthesis on phloem sieve elements

GSL8/CalS10 AT2G36850 Microspore development

Callose deposition at cell plates during 

cytokinesis

Callose deposition at PDs during the phototropic 

response

GSL10/CalS9 AT3G07160 Microspore development and plant growth

GSL12/CalS3 AT5G13000 Callose deposition at PDs in the stele, roots and 

phloem

AtBG_ppap At5g42100 Degradation of PD-associated callose

PdBG1 At3g13560 Callose degradation at LRP during lateral root 

development

PdBG2 At2g01630 Callose degradation at LRP during lateral root 

development

BG6 At4g16260 Copper-induced PD callose degradation

LRP, Lateral root primordia; PD, plasmodesma; SA, salicylic acid.
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precursor cells to their neighboring dedi�erentiated parenchy-
mal cells, resulting in clustered sieve element formation (Song 
et al., 2016).

Arabidopsis GSL7 knockout mutants exhibit reduced accu-
mulation of callose at the PDs in early-stage sieve plates and 
radial sieve element walls during sieve pore formation, result-
ing in sieve elements with fewer PD pores (Fig. 1A) (Xie et al., 
2011). Arabidopsis gsl7 mutant plants exhibit a reduced �ower-
ing stem length and smaller �oral organs, which may be caused 
by carbohydrate starvation (Barratt et  al., 2011). Pulse-chase 
experiments with 14CO2 revealed that the transport of sucrose 
produced in leaves is slower in gsl7 mutants than in wild-type 
plants. In contrast to the report by Xie et al. (2011), Barratt et al. 
(2011) claimed that pore function, rather than pore formation, 
is hampered. They proposed that callose deposition may reduce 
the e�ective pore length by restricting wall growth or render 
the pore a rigid and non-compressible tube with good �ow 
characteristics. An alternative explanation might be that thick 
callose cylinders present in the phloem sieve pores of wild-type 
plants provide an extension of pore size by its dynamic turn-
over (Barratt et al., 2011). In maize, Tie-dyed2 (tdy2), a callose 
synthase mutant, shows compromised early vein development 
along with defective phloem export (Fig. 1A) (Baker and Braun, 
2008; Slewinski et al., 2012). Transmission electron microscopy 
of tdy2 yellow leaf regions showed incomplete vascular di�eren-
tiation, suggesting that callose synthesis is required for vascular 
maturation. TDY2 interacts genetically with TDY1, an endo-
plasmic reticulum (ER)-localized transmembrane protein; the 
two mutants show very similar phenotypes, with excessive oil-
droplet accumulation in companion cells and defective phloem 
export. However, how TDY1 and TDY2 interact to promote 
the symplastic transport of both solutes and to control vascular 
development remains to be determined.

In another study, the dominant mutant cals3m/gsl12m showed 
elevated callose levels in the cell wall domain surrounding the 
PDs, decreased PD aperture, and impaired root development 
and phloem unloading (Fig.  1A) (Vatén et  al., 2011). Green 
�uorescent protein (GFP)-GSL12 is localized at PDs and the 
plasma membrane in plasmolyzed cotyledon epidermal cells, 
consistent with a role in PD callose synthesis. However, the 
mechanism by which cals3m functions as a dominant mutant is 
still unknown. The dominant property of cals3m also provides 
a tool for spatially and temporally controlling the PD aperture 
between plant tissues by establishing a transgenic line with a 
speci�c promoter driving the expression of cals3m. For example, 
PD-dependent movement of the transcription factor SHORT-
ROOT and microRNA-165 between the stele and the endo-
dermis has been identi�ed (Vatén et al., 2011). Recently, using 
inducible cals3m, Wu et al. (2016) elegantly showed that sym-
plastic signaling through PDs at the cell boundaries of the 
endodermis is critical for the coordinated growth and devel-
opment of the root (Wu et  al., 2016). Endodermal-speci�c 
expression of cals3m resulted in an increase in the number of 
cell layers and a misspeci�cation of surrounding cells, including 
stele and ground cells, in the root (Wu et al., 2016). In addition, 
cals3m has been successfully used to study PD function in the 
shoot apical meristem; cals3m expression resulted in reduced 
PD permeability, limited WUSCHEL (WUS) tra�cking, and 

abnormal stem cell initiation and maintenance, suggesting that 
PD function in organizing cells is essential for shoot apical 
meristem activity (Daum et al., 2014).

In summary, modulation of PD callose by GSLs is critical 
for plant development via the mechanism of controlling the 
symplastic transport of developmental signals and diverse sol-
utes. How the functional redundancy of GSLs is modulated 
and whether other uncharacterized Arabidopsis GSLs function 
at PDs remain to be determined.

β-1,3-glucanases degrade callose

BGs are hydrolytic enzymes that can catalyze the endo-type 
cleavage of 1,3-β-D-glucosidic linkages into single β-1,3-
glucan units. In plants, there are diverse sets of BG isoforms, 
classi�ed by primary structure, protein size, subcellular localiza-
tion, isoelectric point, and catalytic activity (Leubner-Metzger 
and Meins, 1999). Bioinformatic analyses have identi�ed 
approximately 50 BG-related genes in Arabidopsis, with some 
members that are inactive BGs; these genes are subdivided 
into 13 clusters on the basis of genealogical and expression 
analyses (Doxey et al., 2007; Levy et al., 2007). A sequence ana-
lysis de�ned �ve protein domain architectural classes of these 
Arabidopsis BGs; all contain an N-terminal secretion signal 
and a core glucosyl hydrolase family 17 domain, and some 
carry one or two repeats of carbohydrate binding module 43 
(CBM43). Furthermore, some members contain a C-terminal 
hydrophobic sequence, which includes a predicted glyco-
sylphosphatidylinositol (GPI)-anchor attachment motif for 
targeting the protein to the cell membrane (Borner et al., 2002; 
Levy et al., 2007; Benitez-Alfonso et al., 2013).

Plasmodesmal callose degradation pathways and 
plant development

BGs have been reported to degrade callose in a hydrolytic 
manner (Bachman and McClay, 1996). In Arabidopsis thali-
ana, the following three GPI-anchored BG proteins have 
been found to play a role in callose degradation at the PD: 
A.  thaliana β-1,3-glucanase_putative PD-associated protein 
(AtBG_ppap), PD-localized β-1,3-glucanase 1 (PdBG1), and 
PD-localized β-1,3-glucanase 2 (PdBG2) (Levy et  al., 2007; 
Benitez-Alfonso et al., 2013) (Fig. 1B). PdBG3, a PdBG1/2-
related protein, is also localized at the PDs, but its role in cal-
lose degradation is uncertain (Benitez-Alfonso et  al., 2013). 
PdBG1 and PdBG2 are both expressed in lateral root primor-
dia and are co-localized with the PD callose-binding protein 1 
(PDCB1) at PDs (Benitez-Alfonso et al., 2013). Double pdbg1/
pdbg2 mutants show an increased accumulation of callose at 
the PDs during lateral root development, with reduced cell-to-
cell macromolecular tra�cking, while this phenomenon was 
reversed in PdBG1 overexpression lines. In pdbg1 and pdbg2 
single mutants and the pdbg1/pdbg2 double mutant, lateral 
root density was signi�cantly higher than that in wild-type 
plants, but the PdBG1 overexpression line showed reduced lat-
eral root density. This phenotype results from the formation of 
clustered primordia with expanded domains of auxin-respon-
sive DR5 and GATA23 expression in the pdbg1/pdbg2 double 
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mutant (Benitez-Alfonso et  al., 2013). Lateral root initiation 
begins from the formation of auxin maximal founder cells in 
the pericycle cell layer, correlated with an increase in callose 
deposition. Thus, lateral root initiation is a highly regulated 
process that depends on the balance between callose synthesis 
and degradation. Although some sets of callose synthases and 
BGs are predicted to work simultaneously or subsequently in 
the same tissue, very few integrative studies characterizing the 
coordinated action of both antagonistic enzymes have been 
performed. The GSL enzymes involved in lateral root initiation 
remain to be determined.

AtBG_ppap, a GPI-anchored protein, was found to be local-
ized in the ER membrane and along the cell periphery in 
association with PDs. Genetic studies revealed that AtBG_ppap 
promotes intercellular tra�cking through the degradation of 
callose (Fig. 1B) (Levy et al., 2007; Zavaliev et al., 2013). GPI 
modi�cation of AtBG_ppap is su�cient and necessary for the 
PD targeting of the protein, as revealed by domain-swap ana-
lysis (Zavaliev et al., 2016). The importance of GPI-anchored 
proteins in PD regulation was shown by a missense mutation 
in Arabidopsis GPI8, a Cys protease that transfers an assem-
bled GPI anchor to proteins (Bundy et al., 2016). The gpi8-1 
mutation leads to a reduced accumulation of GPI-anchored 
proteins, higher levels of callose, and reduced PD permeability. 
PD targeting and tra�cking of GPI-anchored proteins seem 
to be dependent on a membrane lipid raft that contains a high 
proportion of sterols and sphingolipids (Fig. 1B) (Grison et al., 
2015; Iswanto and Kim, 2017).

In contrast to most GSLs, which are post-translationally reg-
ulated, PdBGs have not been reported to be subject to such 
regulation; they are mostly regulated at the transcriptional level. 
A  potential post-translational regulation can be performed 
by the cleavage of the lipid component of GPI by a range of 
phospholipases, including GPI-speci�c phospholipase D (GPI-
PLD), phosphatidylinositol-speci�c phospholipase C (PI-PLC), 
GPI-PLC, and phosphoesterases (Fig. 1B) (Takos et al., 2000). 
The release of free BGs might modulate protein conformation, 
enzyme activity and stability, and their freedom to travel through 
the apoplasm. Considering the fact that callose deposits through 
the thick cell wall center the neck region of PDs and that GPI-
anchored enzymes are attached to the plasma membrane, the 
mobility of PdBGs might be a critical factor for enzyme activity. 
PD callose regulation by phospholipases remains to be deter-
mined, and a reverse genetic approach will be useful to charac-
terize the putative function of phospholipases in the PD callose 
degradation pathway. A putative candidate protein (At1g74010) 
belongs to the calcium-dependent phosphotriesterase family, 
and was identi�ed from the PD proteomic approach used in a 
recent study (Kraner et al., 2017).

Plasmodesmal callose homeostasis in 
response to stress

In addition to the essential role of callose homeostasis during 
plant development, dynamic callose turnover by callose syn-
thases and degradation enzymes allows plants to rapidly modu-
late symplastic signaling in response to varying environmental 

signals. There has been some important progress in under-
standing callose-mediated PD regulation in response to various 
biotic and abiotic stresses.

Modulation of plasmodesmal callose in response to 
abiotic stresses

Representative studies on PD callose regulation in response 
to abiotic stresses include those on chilling stress (Rinne et al., 
2005; Bilska and Sowiński, 2010; Fromm et al., 2013), wound-
ing (Xie et  al., 2011; Cui and Lee, 2016), heat (Iglesias and 
Meins, 2000; Rinne et al., 2005), and heavy metals (Sivaguru 
et al., 2000; Ueki and Citovsky, 2002, 2005) (Fig. 2A). Maize leaf 
tips stimulated by chilling produced action potentials through 
the phloem and showed severely reduced intercellular move-
ment from the mesophyll to bundle sheath cells and reduced 
phloem transport of photoassimilates (Fromm et al., 2013). This 
reduction was correlated with increased callose content in the 
chilled leaves and was most likely caused by the occlusion of 
PDs and phloem sieve pores. The mechanism by which action 
potentials can induce callose accumulation is not clear, but the 
in�ux of calcium accompanied with an action potential might 
trigger the activity of callose synthases.

Oxidative stress or other stresses that result in the accumu-
lation of reactive oxygen species (ROS) or nitric oxide (NO) 
can induce callose deposition at PDs (Benitez-Alfonso et al., 
2009; Cui and Lee, 2016; Xiao et  al., 2018). Studies of gfp 
arrested tra�cking 1 (gat1), which encodes an m-type thiore-
doxin, indicated that ROS are key regulators of callose homeo-
stasis in Arabidopsis. The gat1 mutation resulted in increased 
PD-localized callose, similar to the response of wild-type 
plants treated with chemical oxidants (Benitez-Alfonso et al., 
2009). More recently, CalS8/GSL4 has been recognized as the 
key enzyme synthesizing PD callose in response to ROS, since 
the cals8-1 mutant arrests the induction of callose in response 
to H2O2 treatment and wounding (Fig.  2A) (Cui and Lee, 
2016). As GSL4 gene expression was not changed by H2O2 
treatment, ROS-dependent GSL4 activation should be under 
translational or post-translational regulation. The manner in 
which GSL4 activity is controlled remains to be elucidated. 
One potential mechanism is that signaling players such as 
receptor-like proteins (RLPs) or receptor-like kinases (RLKs) 
possessing a ROS sensor ectodomain may link the signal-
ing between ROS and GSL4 activation. PDLP members and 
cysteine-rich RLKs (CRKs) containing two DUF26 domains 
or NOVEL CYSTEINE RICH RLK (NCRK) carrying 
WXCXCX13–18CX3CXC repeats may be strong candidates 
for ROS sensors.

Tocopherols (vitamin E) are chloroplast lipophilic antioxi-
dants involved in the response to oxidative stress. In dicot and 
monocot plants, tocopherol de�ciency induces callose depo-
sition in vascular tissues and compromises transport of pho-
toassimilates from source leaves (Botha et  al., 2000; Ho�us 
et  al., 2004). Mutants with knocked-out or knocked-down 
expression of tocopherol cyclase, such as sucrose-export-defective 
(sxd1) in maize and StSXD1:RNAi in potato, exhibited a 
drastic reduction in tocopherols and vascular-speci�c callose 
deposition in source leaves, and displayed a defective sucrose 
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export phenotype (Russin et  al., 1996; Botha et  al., 2000; 
Ho�us et  al., 2004). In Arabidopsis, a similar phenomenon 
was observed during phloem loading under low-temperature 
conditions (Maeda et al., 2006). Arabidopsis vitamin E2 (vte2) 
mutants, which lack α-tocopherol (the major tocopherol in 
leaves), exhibited aberrant cell wall callose accumulation in 
the phloem parenchyma ‘transfer’ cells and impaired photoas-
similate export (Fig. 2A) (Maeda et al., 2006, 2014). GSL5 is 
responsible for the overaccumulation of callose in vte2 under 
low-temperature conditions. However, gsl5 mutants cannot 
suppress the photoassimilate export phenotype, suggesting 
that other GSLs function in the regulation of photoassimilate 
export (Maeda et al., 2014). Thus, tocopherol prevents abnor-
mal callose deposition in phloem parenchyma cell walls and is 
required to maintain the transport of photosynthesis products 
under cold conditions.

Several reports have demonstrated that heavy metal ions 
such as Al3+ and Cd2+ are also involved in regulating PD callose 
accumulation in plants (Bhuja et al., 2004; Piršelová et al., 2012; 
O’Lexy et al., 2018). The increase in calcium in the cytoplasm 
triggered by aluminum treatment induces callose accumulation 

(Bhuja et al., 2004). In addition, depolarization of the plasma 
membrane is required for aluminum-induced callose deposi-
tion in tobacco cells (Fig. 2A) (Sivaguru et al., 2005). A very 
recent study from O’Lexy et al. (2018) showed that applying 
an excess iron treatment to Arabidopsis seedlings resulted in 
the accumulation of callose in the phloem, which restricted 
the symplasmic movement of free GFP and carboxy�uorescein 
(O’Lexy et al., 2018). In contrast, copper-treated roots showed 
a signi�cant decrease in callose levels. Using genetic mutant 
screening, the authors identi�ed GSL5/CalS12 enzymes as 
being responsible for the iron response and AtBG_PPAP and 
BG6 for the copper response. Interestingly, copper levels in the 
meristem were dramatically higher in both atbg_ppap and bg6 
mutants relative to wild-type roots treated with excess copper 
(O’Lexy et al., 2018). This �nding suggested that PD signal-
ing/movement underlies the ability of the plant to properly 
maintain partitioning of copper when grown under conditions 
of excess copper.

Nutrient de�ciencies such as phosphate de�ciency can be 
sensed by plants. Interestingly, phosphate de�ciency induces 
callose accumulation only in the presence of a su�cient iron 

Fig. 2. Plasmodesmata (PDs)-associated callose balancing in response to abiotic and biotic stresses. (A) Callose balancing in response to abiotic 
stresses. In Arabidopsis thaliana, callose deposition at PDs upon wounding or treatment with reactive oxygen species (ROS) is dependent on GSL4. 
This signaling transduction happens through hypothetical ROS sensors. AtGAT1, an m-type thioredoxin, plays a role in blocking ROS-induced callose 
deposition. Under phosphate starvation conditions, LOW PHOSPHATE ROOT1 (LPR1) converts Fe2+ to Fe3+, generating ROS. In turn, high levels 
of accumulated ROS promote callose synthesis and deposition at the PD zone of root cells. Al3+-induced plasma membrane depolarization (PMD) 
and cytoplasmic calcium accumulation contribute to PD callose deposition and PD transport inhibition. In response to chilling, potato StSXD1 and 
Arabidopsis AtVTE2 function in tocopherol (vitamin E) synthesis, potentially causing a reduction in PD callose through BG-controlled callose degradation. 
Abscisic acid (ABA) suppresses BGs and induces callose synthase, resulting in callose deposition. In Populus, chilling induces the expression of 
several GA synthesis genes and subsequently up-regulates the transcription of several BGs. Functional BGs remove the PD callose and facilitate the 
plasmodesmal trafficking of FLOWERING LOCUS T (FT) and CENTRORADIALIS-LIKE1 (CENL1) to their target cells for release of dormancy. Arabidopsis 
AtBG_ppap promotes PD callose degradation in response to wounding. Dotted arrows indicate potential activation. (B) Callose balancing in response 
to biotic stresses. In response to Pseudomonas syringae infection or exogenous treatment with salicylic acid (SA), transcription of PDLP5 and GSL6 
is induced through SA signaling; in addition, PDLP5-regulated callose deposition is dependent on GSL6. PDLP5 might form a complex with GSL6 or 
indirectly activate GSL6. ‘Candidatus Liberibacter asiaticus’-infected citrus trees accumulate callose and show interrupted export of photoassimilates. 
Chrysanthemum stunt viroid (CSVd) infects the sensitive cultivars of Argyranthemum, resulting in high levels of PD callose in the shoot apical meristem. 
AtBG2 and AtBG3 were transcriptionally induced by turnip vein clearing virus (TVCV) and cucumber mosaic virus (CMV) infection; however, these two 
proteins are not involved in regulating PD callose degradation. TVCV-induced callose degradation is dependent on PD-localized AtBG_ppap. Potato 
spindle tuber viroid (PSTV) variants drive small RNAs that can suppress the tomato callose synthase genes CalS11-like and CalS12-like and might 
increase PD permeability.
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supply (Müller et al., 2015). Under low Pi/Fe ratio conditions, 
LOW PHOSPHATE ROOT1 (LPR1) functions as an apo-
plast ferroxidase, converting Fe2+ to Fe3+, and generates ROS, 
which induce callose synthesis and deposition at the PD zone 
of root cells in Arabidopsis (Fig.  2A) (Müller et  al., 2015). 
The enhanced PD tra�cking in the lpr1/lpr2 mutant in the 
absence of phosphate was visualized by a wide range of move-
ment of GFP and SHR-GFP expressed from pSUC2::GFP 
and pSHR::SHR:GFP, respectively. The authors indicated that 
12 GSL genes have no transcriptional changes in response to 
phosphate status. This result suggested potential post-tran-
scriptional regulations of callose synthases under conditions 
of limited phosphate. In addition, available knockout lines of 
GSLs including GSL4 (responsible for ROS response during 
wounding or exogenous H2O2 treatment) could not suppress 
the callose deposition phenotype, suggesting potential redun-
dancy among GSL members. Otherwise, GSL8 and GSL10, 
which were not tested due to their lethality in the seedling or 
gametophyte stages, might be the responsible enzymes (Müller 
et al., 2015).

BG also plays an important role in regulating PD callose 
during stress. AtBG_PPAP is a PD-localized BG, and atbg_ppap 
mutants showed an increase in callose levels at the PDs in com-
parison with wild-type plants in response to wounding (Levy 
et al., 2007). However, the expression level of AtBG_PPAP was 
not a�ected by wounding (Zavaliev et al., 2011).

Modulation of plasmodesmal callose in response to 
biotic stresses

In a similar fashion, diverse biotic stresses also lead to callose 
deposition at PDs. Cell-to-cell spread of viruses and the blast 
fungus was restricted after PD callose deposition (Be�a et al., 
1996), suggesting that PD callose deposition may be an early 
defense mechanism of plants in response to viral attack. Many 
viruses have been reported to induce PD callose accumulation, 
including the tobacco mosaic virus (TMV) (Wu and Dimitman, 
1970; Moore and Stone, 1972; Leisner and Turgeon, 1993; Be�a 
et  al., 1996), maize dwarf mosaic virus (Choi, 1999), potato 
virus X (PVX) (Allison and Shalla, 1974), tomato bushy stunt 
virus (Pennazio et  al., 1978), and broad bean wilt virus (Xie 
et  al., 2016). Ironically, some viral movement proteins (MPs) 
can induce host BGs, which accumulate in ER-derived vesi-
cles (Epel, 2009). It is still controversial whether the increase in 
BG expression is part of the plant’s defense or a viral strategy 
to open PDs to facilitate spread into neighboring cells (Vögeli-
Lange et  al., 1988; Epel, 2009). Zavaliev et  al. (2013) found 
that two AtBGs, AtBG2 and AtBG3, were transcriptionally 
induced by turnip vein clearing virus (TVCV) and cucum-
ber mosaic virus (CMV) infection. AtBG2 is secreted into the 
apoplast in the stress response mediated by salicylic acid (SA) or 
co-localized with TMV MP in ER bodies at the leading edge 
of TMV infection. AtBG2 seems to not be involved in regulat-
ing viral spread through PDs, as neither the atbg2 mutant nor 
AtBG2 overexpression in Nicotiana benthamiana a�ected TVCV 
infection, PD permeability, or callose deposition. Interestingly, 
another isoenzyme, AtBG_PPAP, was shown to localize at 
the PDs, and the knockout mutant of AtBG_PPAP showed 

increased PD callose deposition and decreased spread of TVCV, 
even though the transcript level of AtBG_PPAP is not changed 
by TVCV and CMV (Fig. 2B) (Zavaliev et al., 2013).

Recently, it was reported that chrysanthemum stunt viroid 
(CSVd) showed a di�erential ability to invade the shoot apical 
meristem in di�erent Chrysanthemum cultivars. A major di�er-
ence between sensitive and insensitive cultivars was the level 
of PD callose in the shoot apical meristem; a lower level of 
callose was found in the sensitive cultivars (Zhang et al., 2015). 
Interestingly, certain potato spindle tuber viroid variants have 
a virulence-modulating region that drives a small RNA that 
suppresses the tomato callose synthase genes CalS11-like and 
CalS12-like (Fig. 2B) (Adkar-Purushothama et al., 2015). The 
target sequence was also perfectly conserved in potato CalS11-
like and CalS12-like mRNAs, suggesting evolutionary conser-
vation in Solanaceae.

In response to Pseudomonas syringae, the SEL of PDs also 
reduces due to callose deposition at the PDs. Treatment 
with a bacterial pathogen induced the expression of 
PLASMODESMAL-LOCALIZED PROTEIN 5 (PDLP5) 
(Lee et al., 2011). Further, PDLP5 a�ected the plant’s vulner-
ability to bacterial pathogen invasion; PLDP5 overexpression 
lines were resistant to the virulent P.  syringae, while pdlp5-1 
mutants were sensitive (Lee et al., 2011). Additionally, the dye 
loading DANS assay showed that bacterial infection leads to 
reduced PD permeability through PDLP5-mediated callose 
deposition.

Upstream regulators of plasmodesmal 
callose balancing

Some PD-localized proteins are not directly involved in callose 
synthesis or degradation, but they can regulate the PD callose 
balance indirectly. Here, we mainly discuss the function of hor-
monal regulation, RLKs/RLPs, callose-binding proteins, and 
remorin-like proteins in PD regulation, and potential crosstalk 
between callose-dependent and actin-mediated PD regulation.

Hormonal regulation

Several phytohormones, such as indole-3-acetic acid (IAA), 
abscisic acid (ABA), gibberellin (GA), and SA, have been 
reported to be involved in PD callose regulation through 
the transcriptional modulation of callose synthase or callose-
degrading enzymes. Formation of an auxin gradient by polar 
auxin transport is an essential step in a range of auxin responses, 
including phototropism and gravitropism (Bennett et al., 1996; 
Noh et al., 2003; Sorefan et al., 2009). An auxin gradient across 
the Arabidopsis hypocotyl was correlated with the asymmet-
ric deposition of PD callose during the phototropic response 
(Han et al., 2014a). However, in GSL8-knockdown hypocot-
yls, asymmetric callose deposition and the auxin gradient are 
not formed, and thus no phototropic response occurs (Han 
et  al., 2014a). The perturbation in the auxin gradient seems 
to be caused by increased movement of auxin through open 
PDs in GSL8 RNAi lines. Interestingly, auxin can induce 
GSL8 expression through AUXIN RESPONSE FACTOR 7 
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(ARF7), a key auxin response transcription factor. Collectively, 
this work provides evidence that a positive feedback auxin–
callose-mediated regulation of PDs is essential to successfully 
form and maintain an auxin gradient during the phototropic 
response (Fig. 3A–C) (Han et al., 2014a).

ABA induces callose deposition at PDs during viral chal-
lenge; this serves as a mechanism that restricts viral cell-to-cell 
movement (Fraser and Whenham, 1989; Iriti and Faoro, 2008; 
Alazem et al., 2017). Application of exogenous ABA suppressed 
BG and induced callose synthase activity in rice (Fig. 2A) (Liu 
et al., 2017). ABA-mediated transcriptional down-regulation of 
BG was shown to be a key cause of increased callose deposition 
(Oide et al., 2013). Modulation of symplastic tra�cking by ABA 
also acts on the photoperiodically controlled dormancy mech-
anism in hybrid aspen. Short photoperiods increase the ABA 
level and induce the expression of the ABA receptor in Populus 
buds (Ruttink et  al., 2007; Karlberg et  al., 2010), and abi1-1 
dominant mutants have a disrupted dormancy phenotype. 
During a short-photoperiod treatment, Tylewicz et al. (2018) 
found that CALLOSE SYNTHASE 1, GERMIN-LIKE 10, 
and REMORIN-LIKE 1 and 2 were up-regulated, and that 
GH17-39, a glucanase, was down-regulated in wild-type hybrid 

aspen, but that this expression pattern was altered in abi1-1 
mutant plants. Consistent with these data, in contrast to the 
wild type, abi1-1 plants showed failure to close PDs by callosic 
dormancy sphincters after 5 weeks of the short-photoperiod 
treatment (Fig. 3D–M). The defective dormancy phenotype in 
abi1-1 can be rescued by the induction of callose deposition 
using PDLP1 overexpression without suppressing the defect-
ive ABA response, suggesting that PD closure is essential to 
dormancy and occurs downstream of ABA-mediated control 
of dormancy. From transcriptomic analysis, PICKLE (PKL), an 
antagonist of polycomb repression complex 2, was shown to 
work in the suppression of the callosic dormancy sphincter 
(Fig.  4A) (Tylewicz et  al., 2018). Reopening of closed PDs 
in dormant buds occurs only after prolonged exposure to 
chilling. Chilling or GA treatment induces the expression of 
several GA synthesis genes, subsequently resulting in BG pro-
duction. Ten putative Populus 1,3-β-glucanase genes encod-
ing orthologs of A.  thaliana BG_ppap were found and were 
observed to be di�erentially regulated by photoperiod, chilling 
(5 °C), and GA (Figs 2A and 4A). The BG-mediated PD open-
ing may allow movement of FLOWERING LOCUS T (FT) 
and CENTRORADIALIS-LIKE1 (CENL1) to their target 

Fig. 3. PD callose controls tropism and shoot dormancy. (A, B) Callose staining in a GSL8 RNAi line using immunogold transmission electron microscopy 
(TEM). Immunogold labeling of callose (black dots) in PDs (red arrowheads) of wild-type (A) and dsGSL8+dexamethasone (dex) (B) hypocotyls. Insets: 
higher magnification images. (C) Phototropic response in the GSL8 RNAi line and Col-0 wild type under –/+dex conditions. dsGSL8+dex seedlings 
exhibit defective phototropism. (D–G) Callose staining in an abi1 mutant using TEM. TEM micrographs of the apices of actively growing wild-type plants 
(D, E) and abi1-1 lines (F, G) showing callose-enriched electron-dense dormancy sphincters. Sphincters are observed during short photoperiods in the 
apices of wild-type plants but not abi1 mutants. (H–M). Control of dormancy break. PDLP1 expression and PKL down-regulation restore bud dormancy 
in abi1 plants. Buds after 11 weeks of a short photoperiod (upper panels) and buds following the shift to a long photoperiod (lower panels) are shown. 
From Han et al. 2014a. Auxin-callose-mediated plasmodesmal gating is essential for tropic auxin gradient formation and signaling. Developmental Cell 
28, 132–146, and Tylewicz et al. 2018. Photoperiodic control of seasonal growth is mediated by ABA acting on cell-cell communication. Science 360, 
212–215, with permission.
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cells for release of dormancy (Rinne et  al., 2011). Similarly, 
reactivation of symplastic communication is associated with 
para-dormant axillary bud break of Populus that contains a 
dwarfed shoot. Para-dormant axillary buds can grow out after 
stem decapitation, which triggers the expression of GA-related 
genes, and this may lead to the induction of BGs that hydrolyze 
callose at the sieve plates and PDs (Rinne et al., 2016).

SA and jasmonate (JA) are master hormones involved in plant 
defense. During the �g22-triggered innate immune response, 
SA signaling pathways induce PD closure through PD callose 
deposition, but CORONATINE INSENSITIVE 1 (COI1)-
dependent JA signaling pathways suppress callose accumula-
tion (Wang et al., 2013; Cui and Lee, 2016). Interestingly, an 
intact JA biosynthetic pathway was found to be required for 
proper callose deposition during the basal defense of tomato 
plants against necrotrophic pathogens (Scalschi et  al., 2015). 
This �nding suggests that callose-based immune responses 
during biotic and necrotic infections are controlled by inde-
pendent callose homeostasis pathways. PD callose deposition 
is enhanced through the action of GSL6/CalS1 and PDLP5, 
which is induced by SA. PDLP5-mediated callose deposition 
and the regulation of PD permeability in response to pathogen 
infection are dependent on the EDS1/ICS/NPR1-associated 
SA signaling pathway. PDLP5 activates the accumulation of 
SA that is required for PDLP5-mediated PD closure (Fig. 4A). 
PDLP5 was shown to modulate both basal and induced PD 
permeability (Lee et al., 2011; Wang et al., 2013). However, SA 
mutants showed normal basal PD permeability but a com-
promised induced PD closure response (Cui and Lee, 2016). 
In addition to this �nding, the high level of accumulated PD 
callose in PDLP5 overexpression lines was shown to be fully 
suppressed by a cals1 mutation, suggesting the involvement of 

GSL6/CalS1 as well as PDLP5 in the regulation of the callose 
level at PDs during SA-induced callose production. It remains 
to be determined whether PDLP5 and GSL6/CalS1 form a 
complex in response to environmental stimuli or up-regulated 
SA biosynthesis (Fig.  2B) (Cui and Lee, 2016). It would be 
interesting to determine how GSL6/CalS1 is involved in the 
mechanism that produces PD-associated callose in response to 
P. syringae infection or SA treatment.

Receptor-like kinases/receptor-like proteins

Many RLKs and RLPs, such as CRINKLY4 (CR4), 
FLAGELLIN SENSING 2 (FLS2), and PDLPs, have been 
reported to be localized at PDs (Thomas et al., 2008; Faulkner 
et al., 2013; Stahl et al., 2013). Maize CR4, a receptor kinase 
implicated in the determination of aleurone cell fate, promotes 
the lateral movement of signaling molecules between aleurone 
cells (Tian et  al., 2007). Arabidopsis CR4 is also co-localized 
with callose stained by aniline blue at the PDs of root meristem 
cells, but it is not clear whether this functions upstream of callose 
metabolism (Stahl et  al., 2013). Pattern recognition receptors 
(PRR) such as the RLK FLS2 recognize the pathogen-associ-
ated molecular pattern (PAMP) �agellin. Activated FLS2 inter-
acts with the LRR-RK BRASSINOSTEROID RECEPTOR 
1-ASSOCIATED KINASE 1 (BAK1, also known as SERK3) 
(Chinchilla et al., 2007; Heese et al., 2007; Roux et al., 2011; 
Sun et  al., 2013). This complex phosphorylates the receptor-
like cytoplasmic kinase BOTRYTIS INDUCED KINASE 1 
(BIK1) (Veronese et al., 2006; Lu et al., 2010; Zhang and Zhou, 
2010). Flagellin-triggered responses include an increase in 
cytosolic calcium ion concentration, an oxidative burst (a rapid 
increase in ROS), the activation of mitogen-activated protein 

Fig. 4. Upstream regulators of PD callose balancing. (A) Hormone signaling in PD callose regulation. Auxin signaling through TIR1/AFBs auxin 
co-receptors and the ARF7 transcription factor regulates the expression of GSL8. ABA regulates the expression of GSL and BG in a PKL-dependent 
manner. GA is sensed by receptor GIDs and activates the expression of BGs. GSL6 and PDLP5 are transcriptionally regulated by SA signaling and 
contribute to PD callose accumulation. X, Unknown factors. (B) FLS2-triggered innate immune signaling involved in PD callose regulation. The three 
putative ROS sensors PDLP, CRK, and NCRK are proposed. Upward arrows represent increased callose, downward arrows represent decreased callose.
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kinases (MAPKs) and calcium-dependent protein kinases 
(CDPKs), callose deposition, and stomatal closure (Fig.  4B) 
(Segonzac and Zipfel, 2011; Zipfel and Robatzek, 2010).

The generation of apoplastic ROS after the recognition of 
PAMPs such as �g22 might function upstream of callose depos-
ition. Apoplastic ROS can be produced by the plasma mem-
brane NADPH oxidases (RBOHs) when they are activated by 
BIK1 and CDPK (Kadota et al., 2014). Recently, the phosph-
oinositide-speci�c phospholipase C2 (PI-PLC2) was shown to 
function downstream of FLS2 and upstream of RBOHD by dir-
ect binding. PI-PLC2 RNAi lines showed a reduced ROS level 
and reduced ROS-dependent responses such as callose depos-
ition and stomatal closure (D’Ambrosio et al., 2017). However, 
the mechanism by which �g22 PAMP-induced ROS controls 
callose deposition remains to be identi�ed. One possibility is 
that ROS may act through Ca2+ that can be sensed by CML pro-
teins. A PD-localized Ca2+ binding protein, CALMODULIN-
LIKE 41 (CML41), whose expression is transcriptionally 
up-regulated by �g22, was required for PD callose deposition 
(Fig.  4B) (Xu et  al., 2017). The action of CML41 was spe-
ci�c to the �g22-FLS2 signaling pathway, but not fungal chitin, 
although chitin-LYSIN MOTIF DOMAIN-CONTAINING 
GLYCOSYLPHOSPHATIDYLINOSITOL-ANCHORED 
PROTEIN 2 (LYM2) signaling can mediate a reduction in PD 
permeability through an unknown pathway (Faulkner et  al., 
2013). Since callose synthases were reported to be activated 
by calcium ions, and we detected through yeast two-hybrid 
screening that a CML member can bind to GSL8 (S.W. Wu 
et al., unpublished results), it is highly plausible that CML41 
can directly activate some GSL members (Fig. 4B). It will be 
interesting to test this hypothesis in the near future. As previ-
ous studies revealed that �g22 induced callose deposition in a 
PMR4/GSL5-dependent pathway, GSL5 might be a targeted 
regulation enzyme of CML41 in response to �g22 treatment 
(Luna et al., 2011; Leslie et al., 2016).

PDLP1 was identi�ed from a proteomic analysis of cell wall 
extracts from suspension-cultured Arabidopsis cells (Bayer 
et al., 2006). The PDLP family is composed of eight members, 
all of which show PD targeting. PDLPs carry two extracel-
lular DUF26 domains, one TMD domain in the middle, and 
one cytoplasmic C-terminal short tail. The DUF26 domain 
contains a C-X(8)-C-X(2)-C motif that forms three intramo-
lecular disul�de bridges (Miyakawa et al., 2009). The DUF26 
domain was found in the large superfamily of cysteine-rich 
RLKs (CRKs) and cysteine-rich secreted proteins (CRSPs); 
the role of this domain is not clear, although it may function to 
sense the apoplastic ROS status.

PDLPs are targeted to the PDs through a COPII-dependent 
secretory pathway; the signal peptide and TMD domain are 
both necessary and su�cient for PD localization. The double 
knockout mutants pdlp1/pdlp2 and pdlp1/pdlp3 both showed 
increased PD permeability, while in PDLP1 overexpression 
lines the intercellular tra�c of free GFP through PDs was 
dramatically blocked (Thomas et  al., 2008). Another report 
indicated that PDLP1 is highly expressed in Hyaloperonospora 
arabidopsidis (a downy mildew pathogen)-infected cells and 
that PDLP1 overexpression enhances callose deposition 
in the encasement of H.  arabidopsidis haustoria and restricts 

infection by this pathogen (Caillaud et al., 2014). By contrast, 
the pdlp1/pdlp2/pdlp3 triple mutant has reduced callose depos-
ition and showed more sensitivity to H. arabidopsidis inocula-
tion. Overexpression of the TMD-C-terminal (TMCT) from 
PDLP1 also results in elevated callose deposition, suggesting 
that TMCT domains are involved in triggering callose depos-
ition (Caillaud et al., 2014).

Callose-binding proteins

PDCBs are PD-localized proteins with speci�c in vitro callose-
binding activity. PDCBs comprise an N-terminal signal pep-
tide, an X8 domain (CBM43), an unstructured region in the 
middle, and a GPI anchor motif at the C-terminus (Simpson 
et al., 2009). There are 11 PDCB-like proteins in Arabidopsis. 
PDCB2 and PDCB3 are the most conserved homologs of 
PDCB1, and all three proteins are localized in the neck zone 
of PDs. pdcb2 and pdcb3 single mutants and the pdcb2/pdcb3 
double mutant did not exhibit any clearly defective PD pheno-
type, suggesting that they are functionally redundant with 
PDCB1. In addition, PDCB1 overexpression lines showed 
enhanced accumulation of PD callose and arrested intercellu-
lar tra�cking through PDs (Simpson et al., 2009). Interestingly, 
researchers failed to generate PDCB2 overexpression lines; 
this �nding hints at the vital role of PDCB2 in plant develop-
ment. PDCB1 acts as a positive regulator of PD callose depos-
ition. To explore the true function of the PDCB family would 
require a pdcb1 knockout line or a pdcb1/pdcb2/pdcb3 triple 
mutant in order to analyze the in vivo function of PDCBs. The 
CRISPR-associated protein-9 nuclease system provides new 
and helpful technology to address such issues, and would be 
e�ective at revealing the mechanism by which PDCBs regulate 
PD-associated callose accumulation.

Regarding callose homeostasis, accumulated callose should 
activate the callose degradation pathway. A plausible specula-
tion is that callose can be perceived by the CBM43 of PdBGs 
or RLPs/RLKs that possess lectin domain(s) that can bind to 
callose and trigger negative feedback signaling to maintain cal-
lose homeostasis. There are 75 lectin RLKs in Arabidopsis and 
173 in rice (Vaid et al., 2013). In mammals, dectin-1, which has 
a C-type lectin domain, was characterized as a callose PAMP 
receptor protein and functions in defense signaling in response 
to fungal infection. One unique member of the RLKs with a 
C-type lectin domain with signi�cant homology to dectin-1 
is found in both Arabidopsis and rice. It will be interesting to 
explore whether these C-type lectin domain RLKs have cer-
tain roles in callose homeostasis.

Remorin-like proteins

Recently, the rice gene GRAIN SETTING DEFECT1 
(GSD1), which encodes a remorin protein speci�c to vascu-
lar plants, was shown to function in controlling grain setting 
(Gui et  al., 2014). GSD1 was localized in the plasma mem-
brane and PDs of phloem companion cells. Its overexpression 
or dominant mutation resulted in increased callose deposition 
and abnormalities in the phloem transport of photoassimilates, 
resulting in a higher sugar concentration in the leaves and a 
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lower sugar concentration in the phloem exudates. GSD1 
requires S-acylation for plasma membrane attachment and 
interacts with ACTIN1 in association with PDCB1, a potential 
PD callose regulator (Gui et al., 2015). A high level of remor-
ins a�ects the ability of PVX to increase PD permeability and 
reduces its movement in transgenic tomatoes (Ra�aele et al., 
2009; Perraki et al., 2014). Remorin proteins have been sug-
gested to be typical lipid raft proteins. Functional lipid rafts 
are essential for proper PD function. PD lipid rafts display 
enriched levels of sterols. Blocking sterol synthesis impaired 
the PD localization of the GPI-anchored proteins PdBG2 
(a β-1,3-glucanase) and PDCB1, resulting in altered callose 
homeostasis (Grison et al., 2015). In cotton, suppressed expres-
sion of the gene GhSCP2D, which encodes a putative sterol 
carrier protein, reduced the sterol content during �ber devel-
opment and was associated with callose deposition at the PDs 
due to reduced expression of PD-targeting β-1,3-glucanases 
(GhPdBG3-2A/D), leading to reduced �ber PD permeability 
(Zhang et al., 2017). These data support the notion that sterol, 
a component of lipid rafts, is required for maintaining sym-
plastic permeability by PdBG-mediated callose degradation. 
It will be interesting in future studies to investigate how the 
amount of sterol in lipid rafts directs the PD localization of 
GPI-anchored proteins and the delivery mechanism of other 
non-GPI-anchored proteins to the PDs.

Potential crosstalk between callose-dependent and 
actin-mediated PD regulation

In addition to callose-dependent PD regulation, the actin 
cytoskeleton-mediated pathway seems to be important in 
modulating PDs (Aaziz et  al., 2001; Lucas et  al., 2009; Chen 
et  al., 2010; Kumar et  al., 2015; Pitzalis and Heinlein, 2017). 
Actin and some actin-associated proteins were detected at PDs 
(Radford and White, 1998; Faulkner et al., 2009), but the exist-
ence of actin �laments in PDs is not clear. The function of 
actin �laments at PDs is indirectly supported by pharmaco-
logical studies; destabilization of actin �laments increases PD 
permeability, while increased stabilization of actin �laments is 
associated with reduced PD permeability (Ding et  al., 1996; 
Su et al., 2010). Similarly, it has been suggested that CMV MP 
increases PD channels by severing actin �laments (Ding et al., 
1996; Su et al., 2010), possibly by controlling F-actin networks 
functioning as a molecular �lter to control the permeability of 
PDs (Chen et al., 2010).

So far, a direct relationship between PD callose dynam-
ics and actin �lament dynamics has not been determined. 
However, there are a few clues indicating a potential link 
between them. A study using tobacco pollen tubes showed that 
actin �laments and endomembrane dynamics are critical for 
the distribution of callose synthase, suggesting that callose syn-
thases are assembled in the ER and transported through Golgi 
bodies and/or vesicles moving along actin �laments (Cai et al., 
2011). Whether PD-localized GSL complexes use similar path-
ways for their targeting remains to be determined. Next, the 
PD-localized remorin protein GSD1 interacts with ACTIN1 
(Gui et al., 2015). Although the biological signi�cance of this 
interaction has not yet been determined, it is very plausible 

that actin may function to organize PD localization of the 
remorin proteins that a�ect the recruitment of callose-associ-
ated proteins. Interestingly, a recent report showed that a muta-
tion in ACTIN DEPOLYMERIZING FACTOR 3 reduced 
the level of total callose during the later stages of aphid her-
bivory (Mondal et al., 2017). Our own studies have also found 
that ADF3 modulates the level of PD callose (R. Kumar et al., 
unpublished results). Further exploration of some endogenous 
actin-binding proteins will reveal crosstalk between PD callose 
and actin �lament dynamics.

Concluding remarks and future 
perspectives

Callose is a polysaccharide that plays a critical role in regulat-
ing the PD SEL and the symplastic pathway. Several callose 
synthases and β-1,3-glucanases have been identi�ed as being 
involved in maintaining callose homeostasis at the PD zone; 
these �ndings have dramatically expanded our knowledge of 
callose-dependent PD regulation. In addition to developmen-
tal cues, several environmental cues, such as light, ROS, viruses, 
pathogens, and cold, could act as upstream signals and a�ect 
callose turnover. In recent decades, various signaling compo-
nents have been found that coordinate PD callose accumula-
tion and PD permeability in response to external cues, but the 
mechanisms by which they act to control PD callose at the 
molecular level remain to be explored.

Future research might uncover details of how transcription 
factors regulate the expression pattern of glucan synthases and 
β-1,3-glucanase in response to speci�c signals. In addition, 
post-translational regulation seems likely to be responsible for 
the rapid and e�ective callose deposition and degradation pro-
cesses at the PD zone. An understanding of how the inter-
action partners regulate the enzymatic activity of GSLs and 
BGs will provide more information to link speci�c signals with 
callose homeostasis.

The identi�cation of tissue-speci�c components of the GSL 
complexes, ROS sensors involved in PD callose regulation, sig-
nal-transducing factors of secondary messengers such as Ca2+ 
and ROS, and post-translational modulators such as kinases 
and PI-PLC will be the next challenge in this �eld. Finally, 
it will be interesting to investigate what characteristic of lipid 
rafts is required for PD localization of GPI-anchored proteins, 
and what relationship exists between PD callose and actin �la-
ment dynamics.

One long-term and meaningful �eld of research in agricul-
ture is how to e�ciently increase yield and elevate the assimi-
lation of photosynthetic products into the harvested organs. 
The temporal and spatial control of callose deposition and 
degradation during phloem transport o�ers an opportunity to 
enhance the transport of photoassimilates from the source tis-
sue to sink tissues, where the sucrose is converted to starch as 
a major portion of the harvest yield. Exploring PD regulation 
mechanisms might be helpful in improving agricultural prod-
uctivity. In addition, the development of stress-tolerant crops 
can enhance crop productivity. One practical possibility is that 
by using CRISPR/Cas9 genome editing technology, callose 
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synthase can be modi�ed to produce viroid resistance alleles. 
Understanding the molecular mechanisms underlying callose-
mediated PD regulation during biotic and abiotic challenges 
will provide ways to apply PD engineering for the improve-
ment of agronomical crop traits.
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