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Universal Lax pairs (the root type and the minimal type) are presented for Calogero-
Moser models based on simply laced root systems, including E8. They exist with and without
spectral parameters and they work for all of the four choices of potentials: the rational,
trigonometric, hyperbolic and elliptic. For the elliptic potential, the discrete symmetries
of the simply laced models, originating from the automorphism of the extended Dynkin
diagrams, are combined with the periodicity of the potential to derive a class of Calogero-
Moser models known as the ‘twisted non-simply laced models’. For untwisted non-simply
laced models, two kinds of root type Lax pairs (based on long roots and short roots) are
derived which contain independent coupling constants for the long and short roots. The
BCn model contains three independent couplings, for the long, middle and short roots. The
G2 model based on long roots exhibits a new feature which deserves further study.

§1. Introduction

In a previous paper 1) a new and universal formulation of Lax pairs of Calogero-
Moser models based on simply laced root systems was presented. This paper is
devoted to further developments and refinements of the Lax pairs 2) - 5) and the
Calogero-Moser models themselves, with an emphasis on the symmetries of the
simply laced as well as the twisted and untwisted non-simply laced models. The
Calogero-Moser models 6) are a collection of completely integrable one-dimensional
dynamical systems characterised by root systems and a choice of four long-range
interaction potentials: (i) 1/L2, (ii) 1/ sin2 L, (iii) 1/ sinh2 L and (iv) ℘(L), where L
is the inter-particle “distance”.

Besides various direct applications of the models to lower dimensional physics
ranging from solid state to particle physics, 7) elliptic Calogero-Moser models are
attracting attention owing to their connection with (supersymmetric) gauge theory,
classical soliton dynamics, 3) Toda theories and infinite dimensional algebras. The
Seiberg-Witten curve and differential and N = 2 supersymmetric gauge theory are
analysed in terms of elliptic Calogero-Moser models with the same Lie algebra. 8), 11)

The untwisted and twisted Calogero-Moser models are known to reduce to Toda
models in a certain limit. 4), 5) The affine algebras acting on Toda models are relatively
well understood. This fosters the expectation that the elliptic Calogero-Moser models
(with Lie algebraic properties from the root system and toroidal properties from the
potential) open a way to a greater symmetry algebra than the affine algebras. 12)

In this paper we address the problem of the symmetries of the Calogero-Moser
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models and the associated Lax pairs, in particular, the amalgamation of the Lie
algebraic properties originating from the root structure and the toroidal properties
from the elliptic potential. As a first step we present the universal Lax pairs with
and without spectral parameters for all four choices of potential for Calogero-Moser
models based on simply laced root systems. There are two types of universal Lax
pairs, the root type and the minimal type. 1) The root type Lax pair is represented
on the set of roots itself. It is intrinsic to the root system and it applies to all of
the models based on root systems, including E8, for which construction of a Lax
pair had been a mystery for more than twenty years. The minimal type Lax pair is
represented on the set of weights belonging to a minimal representation. 1), 13) Every
Lie algebra, except for E8, has at least one minimal representation. The minimal
type Lax pair provides a unified description of all known examples of Calogero-Moser
Lax pairs and adds some new ones. 1) - 5)

As a second step, we uncover a discrete symmetry of elliptic Calogero-Moser
models based on simply laced root systems. All simply laced root systems, except
for E8, have a symmetry under the automorphism(s) of the Dynkin diagram or its
extended version. By combining the symmetry under the automorphism with the
periodicity of the elliptic potential, a non-trivial discrete symmetry of the models
is obtained. New integrable dynamical systems can be derived from the elliptic
Calogero-Moser models by restricting the dynamical variables to the invariant sub-
space of the discrete symmetry. This process is known as ‘reduction’ or ’folding’.
It is an important and useful tool in Toda lattices and field theories, 14), 15) another
class of integrable models based on root systems. In the present case we obtain
so-called twisted non-simply laced Calogero-Moser models.

The untwisted non-simply laced models can also be obtained by folding the
simply laced models. 1) In the reduced models, however, the coupling constants for
the long and short roots have a fixed ratio, since the simply laced models have
only one coupling. In order to exhibit the fuller symmetry of the untwisted non-
simply laced models, root type Lax pairs with independent coupling constants are
constructed as a third step. There are two kinds of root type Lax pairs for non-
simply laced models, one based on long roots and another on short roots. Both are
straightforward generalisations of the root type Lax pair for simply laced systems,
except for the G2 case based on long roots. This case requires a new set of functions
in the Lax pair. A simple example of the new set of functions is given. The BCn

model contains three independent couplings, for the long, middle and short roots.
This paper is organised as follows. In §2 we present the universal Lax pairs with

and without spectral parameters for all four choices of potential for Calogero-Moser
models based on simply laced root systems. In §3 certain discrete symmetries of
Calogero-Moser models based on simply laced root systems are introduced. Twisted
non-simply laced Calogero-Moser models are derived by folding with respect to this
symmetry. In §4 two kinds of root type Lax pairs with independent coupling con-
stants, one based on long roots and the other on short roots, are constructed for all
of the untwisted non-simply laced models. The BCn model has three independent
couplings. Section 5 is devoted to summary and comments.
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§2. Universal Lax pairs for Calogero-Moser models
based on simply laced algebras

In order to set the stage and introduce notation, let us recapitulate our previous
results on the universal Lax pairs for the Calogero-Moser models based on a simply
laced root system ∆. For the elliptic potential, the universal Lax pairs without a
spectral parameter were reported in a previous paper. 1) Here we include those with
a spectral parameter.

The basic ingredient of the model is a root system ∆ associated with semi-
simple and simply laced Lie algebra g with rank r. The roots α, β, γ, · · · are real r
dimensional vectors and are normalised, without loss of generality, to 2:

∆ = {α, β, γ, · · ·}, α ∈ R
r, α2 = α · α = 2, ∀α ∈ ∆. (2.1)

We denote by Dim the total number of roots of ∆.
The dynamical variables are the canonical coordinates {qj} and their canonical

conjugate momenta {pj} with the Poisson brackets:

q1, · · · , qr, p1, · · · , pr, {qj, pk} = δj,k, {qj , qk} = {pj , pk} = 0. (2.2)

In most cases we denote them by r dimensional vectors q and p,∗)

q = (q1, · · · , qr) ∈ R
r, p = (p1, · · · , pr) ∈ R

r,

so that the scalar products of q and p with the roots α · q, p · β, etc., can be defined.
The Hamiltonian is given by (g is a real coupling constant)

H =
1
2
p2 − g2

2

∑
α∈∆

x(α · q)x(−α · q), (2.3)

in which x(t) is given (2.11)–(2.19) for various choices of potentials.
As is well known, with the help of a Lax pair, L and M , which expresses the

canonical equation of motion derived from the Hamiltonian (2.3) in an equivalent
matrix form,

L̇ =
d

dt
L = [L,M ], (2.4)

a sufficient number of conserved quantities can be obtained from the trace:

d

dt
Tr(Lk) = 0, k = 1, · · · . (2.5)

Two types of universal Lax pairs, the root type and the minimal type, were con-
structed. The matrices used in the root type Lax pair bear a resemblance to the
adjoint representation of the associated Lie algebra, and they exist for all models.
Thus the root type Lax pair provides a universal tool for proving the integrability

∗) For Ar models, it is customary to introduce one more degree of freedom, qr+1 and pr+1 and

embed all of the roots in R
r+1 .
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490 A. J. Bordner, R. Sasaki and K. Takasaki

of Calogero-Moser models. The ‘minimal’ types provide a unified description of all
known examples of Calogero-Moser Lax pairs. They are based on the set of weights
of minimal representations of the associated Lie algebras. The important guiding
principle for deriving these Lax pairs is the Weyl invariance of the set of roots ∆
and of the Hamiltonian. For details, see Ref. 1).

2.1. Root type Lax pair

The detailed structure of the simply laced root system ∆ is very different from
one type of algebra to another, so it is hardly universal. One universal feature is the
root difference pattern, i.e., which multiples of roots appear in the difference of two
roots:

Simply laced root system : root− root =




root,
2× root,
non-root.

(2.6)

To be more specific, there can be no terms like 3× root, etc. on the right-hand side.
This then determines the root type Lax pair for simply laced root systems (we choose
L to be hermitian and M anti-hermitian):

L(q, p, ξ) = p ·H +X +Xd,

M(q, ξ) = D + Y + Yd. (2.7)

Here ξ is a spectral parameter, which is relevant only for the elliptic potential. In
Eq. (2.7), L, H, X, Xd, D, Y and Yd are Dim × Dim matrices whose indices are
labelled by the roots themselves, denoted here by α, β, γ, η and κ. H and D are
diagonal:

Hβγ = βδβ,γ , Dβγ = δβ,γDβ, Dβ = −ig

z(β · q) +

∑
κ∈∆, κ·β=1

z(κ · q)

 .

(2.8)
X and Y correspond to the first line of (2.6):

X = ig
∑
α∈∆

x(α · q, ξ)E(α), Y = ig
∑
α∈∆

y(α · q, ξ)E(α), E(α)βγ = δβ−γ,α.

(2.9)
Xd and Yd are associated with the ‘double root’ in the second line of (2.6):

Xd = 2ig
∑
α∈∆

xd(α · q, ξ)Ed(α), Yd = ig
∑
α∈∆

yd(α · q, ξ)Ed(α), Ed(α)βγ = δβ−γ,2α.

(2.10)
The matrix E(α) (Ed(α)) might be called a (double) root discriminator. It takes
the value 1 only when the difference of the two indices is equal to (twice) the root α.
These matrices correspond to the first and the second line of (2.6), respectively. In
§4 we encounter a triple root discriminator corresponding to the ‘3× short root’ part
of (4.57). The functions x, y, z (xd, yd, zd) depend on the choice of the inter-particle
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Calogero-Moser Models. II —Symmetries and Foldings— 491

potential. For the rational potential, 1/L2, they are

x(t) = xd(t) =
1
t
, y(t) = yd(t) = − 1

t2
, z(t) = zd(t) = − 1

t2
, (2.11)

for the trigonometric potential, 1/ sin2 L, they are

x(t) = xd(t) = a cot at, y(t) = yd(t) = − a2

sin2 at
,

z(t) = zd(t) = − a2

sin2 at
, a : const, (2.12)

for the hyperbolic potential, 1/ sinh2 L, they are

x(t) = xd(t) = a coth at, y(t) = yd(t) = − a2

sinh2 at
,

z(t) = zd(t) = − a2

sinh2 at
, a : const. (2.13)

For the elliptic potential, ℘(L), the functions x and xd generally differ. There are
several choices of the functions. They are related to each other by a modular trans-
formation. A first choice is ∗)

x(t) =
c

2

[
1 + k sn2(ct/2, k)

sn(ct/2, k)
− i

(1 + k)(1− k sn2(ct/2, k))
cn(ct/2, k) dn(ct/2, k)

]
,

y(t) = x′(t), z(t) = −℘(t), c =
√
e1 − e3, (2.14)

and

xd(t) =
c

sn(ct, k)
, yd(t) = −c2 cn(ct, k) dn(ct, k)

sn2(ct, k)
, zd(t) = −℘(t), (2.15)

in which k is the modulus of the elliptic function. This set of functions ∗∗) is obtained
by setting ξ = ω3 in the spectral parameter dependent functions (2.22) for j = 3.

A second choice is

x(t) =
c

2

[
cn2(ct/2, k)− k′sn2(ct/2, k)

sn(ct/2, k) cn(ct/2, k)
+ (1 + k′)

cn2(ct/2, k) + k′sn2(ct/2, k)
dn(ct/2, k)

]
,

y(t) = x′(t), z(t) = −℘(t), (2.16)

and

xd(t) = c
cn(ct, k)
sn(ct, k)

, yd(t) = −c2 dn(ct, k)
sn2(ct, k)

, zd(t) = −℘(t), (2.17)

in which k′ =
√
1− k2.

∗) We denote the fundamental periods of the Weierstrass’ functions by {2ω1, 2ω3} and ej =

℘(ωj), j = 1, · · · , 3.
∗∗) The detailed properties of the functions in the elliptic potential cases will be discussed

elsewhere.
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A third choice is

x(t) =
c

2

[
dn2(ct/2, k) + ikk′sn2(ct/2, k)

sn(ct/2, k) dn(ct/2, k)
+
k cn2(ct/2, k)− ik′

cn(ct/2, k)

]
,

y(t) = x′(t), z(t) = −℘(t), (2.18)

and

xd(t) = c
dn(ct, k)
sn(ct, k)

, yd(t) = −c2 cn(ct, k)
sn2(ct, k)

, zd(t) = −℘(t). (2.19)

For the elliptic Lax pair with spectral parameter we find several sets of functions
which are closely related to each other. The first set is

x(t, ξ) =
σ(ξ/2− t)
σ(ξ/2)σ(t)

, y(t, ξ) = x(t, ξ) [ζ(t− ξ/2)− ζ(t)] ,

z(t, ξ) = − [℘(t)− ℘(ξ/2)] , (2.20)

xd(t, ξ) =
σ(ξ − t)
σ(ξ)σ(t)

, yd(t, ξ) = xd(t, ξ) [ζ(t− ξ)− ζ(t)] ,

zd(t, ξ) = − [℘(t)− ℘(ξ)] . (2.21)

Here σ and ζ are Weierstrass’ sigma and zeta functions. The other sets of functions
are related to the above one by simple shifts of the parameter ξ and the ‘gauge
transformation’ (2.27) explained below:

x(t, ξ) =
σ(ξ/2 + ωj − t)
σ(ξ/2 + ωj)σ(t)

exp[t(ηj + ζ(ξ)/2)], ηj = ζ(ωj),

y(t, ξ) = x′(t, ξ), z(t, ξ) = −[℘(t)− ℘(ξ/2 + ωj)], j = 1, 2, 3, (2.22)

xd(t, ξ) =
σ(ξ − t)
σ(ξ)σ(t)

exp[tζ(ξ)],

yd(t, ξ) = x′d(t, ξ), zd(t, ξ) = − [℘(t)− ℘(ξ)] . (2.23)

In the trigonometric and hyperbolic functions the constant a is a free parameter
setting the scale of the theory. One obtains the rational potential in the limit a → 0.
The trigonometric (k → 0) and hyperbolic (k → 1) limits of the elliptic cases give
other sets of functions for these cases. One important property is that they all satisfy
the sum rule

y(u)x(v)− y(v)x(u) = x(u+ v)[z(u)− z(v)], u, v ∈ C. (2.24)

The functions xd, yd and zd satisfy the same relations, including those containing
the spectral parameter. These functions also satisfy a second sum rule

x(−v) y(u)− x(u) y(−v) + 2 [xd(u) y(−u− v)− y(u+ v)xd(−v)]
+ x(u+ v) yd(−v)− yd(u)x(−u− v) = 0, (2.25)

which is essentially the same as the condition (3.29) in Ref. 1). In all of these cases
the inter-particle potential V is proportional to −z + const (see the Hamiltonian
(2.3)), and y (yd) is the derivative of x (xd), and z is always an even function:

y(t) = x′(t), z(t) = x(t)x(−t) + const, z(−t) = z(t). (2.26)
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Calogero-Moser Models. II —Symmetries and Foldings— 493

It should be remarked that the set of functions {x(t), xd(t)} has a kind of ‘gauge
freedom’. If {x(t), xd(t)} satisfies the first and the second sum rules, then

{x̃(t) = x(t)etb, x̃d(t) = xd(t)e2tb} (2.27)

also satisfies the same sum rules. Here b is an arbitrary t-independent constant,
which can depend on ξ. The function z(t) is gauge invariant.

For the rational (2.11), trigonometric (2.12) and hyperbolic (2.13) cases, x is an
odd function and y is an even function, but they do not have definite parity for the
elliptic potentials (2.14)–(2.22). The Hamiltonian (2.3) is proportional to the lowest
conserved quantity up to a constant:

Tr(L2) = 2IAdjH = 4hH, (2.28)

where IAdj is the second Dynkin index for the adjoint representation and h is the
Coxeter number.

2.2. Minimal type Lax pair

The minimal type Lax pair is represented in the set of weights of a minimal
representation

Λ = {µ, ν, ρ, · · ·}, (2.29)

of a semi-simple simply laced algebra g with root system ∆ of rank r. It is charac-
terised 1), 13) by the condition that any weight µ ∈ Λ has scalar products with the
roots restricted as follows:

2α · µ
α2

= 0,±1, ∀µ ∈ Λ and ∀α ∈ ∆. (2.30)

Corresponding to (2.6), we have the following universal pattern for the minimal
representations:

Minimal Representation : weight− weight =
{

root,
non-root. (2.31)

Due to the definition of the minimal weights (2.30), there can be no terms like 2×
root, etc., on the right-hand side of (2.31). This determines the structure of the
minimal type Lax pairs:

L(q, p, ξ) = p ·H +X,

M(q, ξ) = D + Y. (2.32)

The matrices H, X and Y have the same form as before,

X = ig
∑
α∈∆

x(α · q, ξ)E(α), Y = ig
∑
α∈∆

y(α · q, ξ)E(α), (2.33)

corresponding to the first line of (2.31). We need only the functions x, y and z
(no xd, etc.) and they need only satisfy (2.24) but not (2.25). Thus, along with
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those listed in §2 (2.11)–(2.19), there are additional choices of these functions, for
example: 2)

x(t) =
a

sin at
,

a

sinh at
, a : const,

c

sn(ct, k)
, c

cn(ct, k)
sn(ct, k)

, c
dn(ct, k)
sn(ct, k)

,

c =
√
e1 − e3 (2.34)

for the trigonometric, hyperbolic and elliptic potentials. As in the case of the root
type Lax pair, the three choices of functions for the elliptic potentials are related
to each other by modular transformations. For the elliptic Lax pair with spectral
parameter: 3), 5)

x(t, ξ) =
σ(ξ − t)
σ(ξ)σ(t)

, y(t, ξ) = x(t, ξ) [ζ(t− ξ)− ζ(t)] ,

z(t, ξ) = − (℘(t)− ℘(ξ)) . (2.35)

The difference with the root type Lax pair is that their matrix elements are labeled
by the weights instead of the roots:

Hµν = µδµ,ν , E(α)µν = δµ−ν,α.

In the diagonal matrix D, the terms related to the double roots are dropped:

Dµν = δµ,νDµ, Dµ = −ig
∑

∆�β=µ−ν

z(β · q). (2.36)

Here the summation is over roots β such that for ∃ν ∈ Λ

µ− ν = β ∈ ∆.

The Hamiltonian (2.3) is proportional to the lowest conserved quantity for the min-
imal type Lax pair, too:

Tr(L2) = 2IΛH. (2.37)

Here IΛ is the second Dynkin index (2.28) of the representation Λ. For the proof of
the equivalence of the Lax equation

L̇ =
d

dt
L = [L,M ]

and the canonical equation for the Hamiltonian (2.3) see Ref. 1).

§3. Symmetries and reductions of elliptic Calogero-Moser models

In this section we discuss the symmetries of the Calogero-Moser models with the
elliptic potential

H =
1
2
p2 +

g2

2

∑
α∈∆

℘(α · q), (3.1)
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based on the root system∆ of a semi-simple simply laced algebra g. As is well known,
the root system ∆ is characterised by its Dynkin diagram. The Dynkin diagrams
(and the extended ones with the affine root attached) of simply laced algebras have
various automorphisms A that map one root to another:

Aα ∈ ∆, ∀α ∈ ∆. (3.2)

Thus by combining transformation by an automorphism with the periodicity of the
elliptic potential, we find that the above Hamiltonian (3.1) is invariant under the
following discrete transformation of the dynamical variables:

q → q′ = Aq + 2ωλ,
p → p′ = Ap, (3.3)

where 2ω is any one of the periods (2ω1, 2ω2, 2ω3) of the Weierstrass elliptic function
℘ and λ is an arbitrary element of the weight lattice, that is, it satisfies

α · λ ∈ Z, ∀α ∈ ∆.

By restricting the dynamical variables to the invariant subspace of the transformation

q = Aq + 2ωλ,
p = Ap, (3.4)

we obtain a reduced model of the elliptic Calogero-Moser model. In terms of the roots,
this corresponds to folding the simply laced root system ∆ by the automorphism
A (see Ref. 14) for the corresponding examples in Toda theories). If we choose
the automorphism of the ordinary (un-extended) Dynkin diagram Au, an untwisted
non-simply laced root system is obtained. For the automorphism of the extended
Dynkin diagram Ae one obtains a twisted non-simply laced root system. According
to the nature of the automorphism A and the choice of λ we have the following two
different cases:
(i) Untwisted non-simply laced model. We choose the automorphism of the
unextended Dynkin diagram Au and λ ≡ 0. Since λ ≡ 0, the periodicity is irrelevant
and the model is defined for all four choices of the potential. This gives the well
known Calogero-Moser models based on untwisted non-simply laced root systems.
Various examples of this reduction for minimal type Lax pairs were presented in a
previous paper. 1) The Lax pair for these reduced models with as many indepen-
dent coupling constants as independent Weyl orbits in the root system will be fully
discussed in §4.
(ii) Twisted non-simply laced model. Let us choose the automorphism of the
extended Dynkin diagram Ae and some special weight λ (in most cases it is a minimal
weight λmin or a linear combination of them). In this case some of the roots vanish in
the invariant subspace. 14), 15) In order to avoid the singularity of the elliptic function,
a non-vanishing weight vector λ is necessary and it should have non-vanishing scalar
products with the roots that are mapped to zero. Some of these models have been
introduced in 5) in a different context. A twisted BCn model (3.61) is obtained by
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the folding D(1)
2n+2 → A

(2)
2n . (In this paper we use notation like D(1)

2n only to indicate
the extended Dynkin diagram but not the affine Lie algebra.) This will be derived
in §3.5. One might be tempted to combine the automorphism of the unextended
Dynkin diagram Au with a non-vanishing weight λ. So far as we have tried this does
not lead to a new integrable model.

It should be noted that all of the models derived in this section are a subsys-
tem of the Calogero-Moser models based on simply laced root systems. Thus the
integrability of these models is inherited from the original models.

In the remainder of this section we consider the reduction by automorphisms
Ae of the extended Dynkin diagrams. The corresponding reductions of the Dynkin
diagrams are

D
(1)
2n → A

(2)
2n−1, D

(1)
n+2 → D

(2)
n+1, E

(1)
7 → E

(2)
6 ,

E
(1)
6 → D

(3)
4 and D

(1)
2n+2 → A

(2)
2n . (3.5)

These automorphisms, which we denote by A for brevity, satisfy

A2 = 1 for D
(1)
2n → A

(2)
2n−1, D

(1)
n+2 → D

(2)
n+1, E

(1)
7 → E

(2)
6 , (3.6)

A3 = 1 for E
(1)
6 → D

(3)
4 , A4 = 1 for D

(1)
2n+2 → A

(2)
2n . (3.7)

For these automorphisms we consider Eq. (3.4) determining the invariant subspace
of the discrete transformation (3.3). The projector to the invariant subspace is given
by

Pr =
1
2
(1 +A), P r =

1
3
(1 +A+A2) and Pr =

1
4
(1 +A+A2 +A3), (3.8)

respectively. By multiplying the first equation determining the invariant subspace
(3.4) by A (and A2), we obtain

Aq = A2q + 2ωAλ, A2q = A3q + 2ωA2λ.

This puts a restriction on the possible choice of the weight vector λ:

Prλ = 0. (3.9)

Let us consider the reductions listed in (3.5) in turn.

3.1. Twisted Cn model

The Dynkin diagram of A(2)
2n−1 is obtained from that of D(1)

2n by the following
folding:

0 ◦∖
2 ◦/

1 ◦
◦
3

· ◦
n

· ◦
2n−3

◦ 2n/

◦ 2n−2∖
◦ 2n−1

⇒ ◦ 〉◦ · · ◦
◦/

◦∖
◦

✏✮ ��✏✮ ��

✲✛

✛ ✲
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The Cn Dynkin diagram is contained in the A(2)
2n−1 Dynkin diagram. The auto-

morphism is given by

Aαj = α2n−j , j = 0, 1, · · · , 2n, (3.10)

in which {αj}, j = 1, · · · , 2n are D2n simple roots in an orthonormal basis of R
2n:

α1 = e1 − e2, · · · , α2n−2 = e2n−2 − e2n−1,

α2n−1 = e2n−1 − e2n, α2n = e2n−1 + e2n (3.11)

and α0 = −(e1 + e2). In terms of the orthonormal basis, the automorphism A has a
simple expression:

Aej = −e2n+1−j , j = 1, · · · , 2n. (3.12)

Among the 2n(4n− 2) roots of D2n, 2n roots,

±(ej − e2n+1−j), j = 1, · · · , n, (3.13)

belong to the invariant subspace of A; that is, these 2n roots remain long roots after
folding. There are 2n roots which are eigenvectors of A with eigenvalue −1:

±(ej + e2n+1−j), j = 1, · · · , n, (3.14)

A(ej + e2n+1−j) = −(ej + e2n+1−j). (3.15)

These 2n roots are mapped to the null vector in the invariant subspace. The re-
maining 8n(n− 1) roots are mapped to the 2n(n− 1) short roots of Cn four to one.
In fact (j, k = 1, · · · , n)

(a) ej + ek, (b) −e2n+1−j + ek,
(c) −e2n+1−k + ej , (d) −e2n+1−j − e2n+1−k

(3.16)

are all mapped to the short root

Pr(ej + ek) =
1
2
(ej − e2n+1−j + ek − e2n+1−k), (3.17)

which has (length)2 = 1. There is a unique minimal weight (the spinor weight λ2n)
which is annihilated by Pr:

Prλ2n =
1
2
Pr(e1 + e2 + · · ·+ e2n) = 0. (3.18)

As expected, λ2n has a scalar product 1 (mod 2) with all the roots (3.14) which are
mapped to the origin of the invariant subspace. Thus the singularity of the elliptic
potential is avoided after folding. It is easy to see that λ2n has a scalar product 1
(mod 2) with two of the short roots in (3.16) and scalar product 0 (mod 2) with the
other two. It is easy to see that the solution of (3.4) is given by

q =
n∑

j=1

Qjvj + ωλ2n, vj =
1√
2
(ej − e2n+1−j), (3.19)

p =
n∑

j=1

Pjvj , λ2n =
n∑

j=1

1
2
(e1 + · · ·+ e2n−1 + e2n), (3.20)
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where {Qj, Pj} are the canonical variables for the reduced system. By substituting
the above solution into the original Hamiltonian we arrive at the twisted Cn Calogero-
Moser model

H =
1
2

n∑
j=1

P 2
j +

g2

2

∑
α∈∆l

℘(α ·Q) + g2
∑
µ∈∆s

[℘(µ ·Q) + ℘(µ ·Q+ ω)] , (3.21)

in which the sets of long and short roots are

∆l = {±
√
2vj : j = 1, · · · , n}, ∆s =

{
1√
2
(±vj ± vk) : j, k = 1, · · · , n

}
.

(3.22)
It is well known that the combination of elliptic functions appearing in the short
root potential can be expressed in terms of an elliptic function with a half period.
For example, the ℘(1/2) function,

℘(1/2)(x) ≡ ℘(x) + ℘(x+ ω1)− ℘(ω1),

has the set of fundamental periods {ω1, 2ω3}, instead of the original {2ω1, 2ω3}.
3.2. Twisted Bn model

The Dynkin diagram of D(2)
n+1 is obtained from that of D(1)

n+2 by the following
folding:

0 ◦∖
2 ◦/

1 ◦
◦
3

· ◦
n−1

◦ n+2/

◦ n∖
◦ n+1

⇒ ◦〈 ◦ ◦ · ◦ 〉◦❇❇�

✂✂✌

✂✂✍

❇❇�

The Bn Dynkin diagram is contained in the D(2)
n+1 Dynkin diagram. The auto-

morphism is given by

Aα0 = α1, Aαn+1 = αn+2, Aαj = αj , j = 2, · · · , n,
Aα1 = α0, Aαn+2 = αn+1,

(3.23)

where αj , j = 1, · · · , n + 2, are Dn+2 simple roots and α0 is the affine root. By
using the expression of the simple roots in terms of an orthonormal basis of R

n+2

(see (3.11)) the automorphism A can be expressed as

Ae1 = −e1, Aen+2 = −en+2, Aej = ej , j = 2, · · · , n+ 1. (3.24)

This means that the invariant subspace of the automorphism A is spanned by ej (j =
2, · · · , n+1), and the two dimensional subspace spanned by {e1, en+2} is annihilated
by the projector Pr:

Pr ej = ej, j = 2, · · · , n+ 1, (3.25)
Pr e1 = Pr en+2 = 0. (3.26)
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Among the 2n(n+ 2)(n+ 1) roots of Dn+2, the following 2n(n− 1) roots

±ej ± ek, j, k = 2, · · · , n+ 1, (3.27)

remain long and become the long roots of Bn. There are four roots that are mapped
to the origin of the invariant subspace:

±e1 ± en+2. (3.28)

The remaining 8n roots are mapped to short roots four to one:

±e1 ± ej
±en+2 ± ej

}
→ ±ej , j = 2, · · · , n+ 1. (3.29)

It is easy to see that

q = Q+ ωλ, Q =
n+1∑
j=2

qjej , (3.30)

p = P, P =
n+1∑
j=2

pjej,

λ = λ1 = e1, or λ = en+2 = λn+2 − λn+1, (3.31)

are solutions of (3.4). In other words, this means that

{q1 = 0, qn+2 = ω, or q1 = ω, qn+2 = 0} and p1 = 0, pn+2 = 0
(3.32)

are valid restrictions of the elliptic Dn+2 Calogero-Moser model. The above λ (3.31)
has non-vanishing scalar products with the roots that are mapped to zero:

λ · (±e1 ± en+2) = 1 mod 2,

it has a scalar product 1 (mod 2) with one half of the roots that are mapped to short
roots:

λ1 · (±e1 ± ej) = 1 mod 2,

and zero with the rest:
λ1 · (±en+2 ± ej) = 0.

By substituting the solution (3.30) into the Hamiltonian, we obtain

H =
1
2

n+1∑
j=2

p2
j +

g2

2

∑
α∈∆l

℘(α · q)+ g2
∑
µ∈∆s

[℘(µ · q) + ℘(µ · q + ω)]+ const, (3.33)

in which the sets of long and short roots are

∆l = {±ej ± ek : j, k = 2, · · · , n+ 1}, ∆s = {±ej : j = 2, · · · , n+ 1}. (3.34)
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3.3. Twisted F4 model

The Dynkin diagram of E(2)
6 is obtained from that of E(1)

7 by the following
folding:

0◦ 1◦ 3◦
◦ 2

◦
4

5◦ 6◦ 7◦ ⇒ ◦ ◦ 〉◦ ◦ ◦
✏✶�✐ ✏✶�✐ ✏✶�✐

The F4 Dynkin diagram is contained in the E(2)
6 Dynkin diagram. As indicated

in the diagram, the automorphism A is given by

Aα1 = α6, Aα2 = α2, Aα3 = α5,

Aα4 = α4, Aα5 = α3, Aα6 = α1,

Aα7 = α0, Aα0 = α7. (3.35)

Let us adopt the following representation of the simple roots of E7 in terms of an
orthonormal basis of R

7:

α1 =
1
2
(e1 − e2 − e3 − e4 − e5 − e6 +

√
2e7), α2 = e1 + e2,

α3 = −e1 + e2, α4 = −e2 + e3,

α5 = −e3 + e4, α6 = −e4 + e5,

α7 = −e5 + e6, α0 = −
√
2e7. (3.36)

By an analysis similar to that applied above, we find that among the 126 roots of
E7, the following 24 roots remain long:

±(e1 + e2), ±(e2 − e3), ±(e3 + e4),
1
2
(±(e1 + e2)± (e3 + e4)± (e5 − e6 +

√
2e7)),

±(e1 + e3), ±(e2 + e4), ±(e1 − e4),
1
2
(±(e1 − e4)∓ (e2 − e3)± (e5 − e6 +

√
2e7)). (3.37)

The following 6 roots are mapped to 0:

±(e5 + e6),
1
2
(±(e1 − e2 − e3 + e4)± (e5 − e6 +

√
2e7)). (3.38)

The remaining 96 roots are mapped to F4 short roots four to one. It is easy to see
that the solution of (3.4) is given by

q =
4∑

j=1

Qjvj + ωλ, λ = λ7 = e6 +
1√
2
e7, (3.39)
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p =
4∑

j=1

Pjvj , or λ = λ3 − λ5 =
1
2
(−e1 + e2 + e3 − e4 − e5 − e6), (3.40)

where {vj}, j = 1, · · · , 4 is a new orthonormal basis of the four-dimensional invariant
subspace:

v1 =
1√
2
(e1 + e2), v2 =

1√
6
(e1 − e2 + 2e3),

v3 =
1√
12

(−e1 + e2 + e3 + 3e4), v4 =
1
2
(e5 − e6 +

√
2e7).

Both choices of λ have a scalar product 1 (mod 2) with all the roots (3.38) which
are mapped to zero. It is straightforward to check that both choices of λ have a
scalar product 1 (mod 2) with one half of the short roots and 0 with the rest. By
substituting the above solution into the original Hamiltonian, we arrive at the twisted
F4 Calogero-Moser model,

H =
1
2

4∑
j=1

P 2
j +

g2

2

∑
α∈∆l

℘(α ·Q) + g2
∑
µ∈∆s

[℘(µ ·Q) + ℘(µ ·Q+ ω)] + const.

(3.41)

3.4. Twisted G2 model

The Dynkin diagram of D(3)
4 is obtained from that of E(1)

6 by the triple folding:

1◦ 2◦
◦ 6

◦ 0

◦
3

4◦ 5◦
⇒ ◦ 〉◦ ◦

✏✏✏✶ ✏✏✶

❅
❅❅��

��✠ ❅
❅

❅
❅

❅❅��
�

�
�

�
�✠

The G2 Dynkin diagram is contained in the D(3)
4 Dynkin diagram. As indicated in

the diagram, the automorphism A is given by

Aα1 = α5, Aα2 = α4, Aα3 = α3,

Aα4 = α6, Aα5 = α0, Aα6 = α2,

Aα0 = α1. (3.42)

Let us adopt the following representation of the simple roots of E6 in terms of an
orthonormal basis of R

6:
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α1 =
1
2
(e1 − e2 − e3 − e4 + e5 −

√
3e6), α2 = e4 − e5,

α3 = e3 − e4, α4 = e4 + e5,

α5 =
1
2
(e1 − e2 − e3 − e4 − e5 +

√
3e6), α6 = e2 − e3,

α0 = −(e1 + e2). (3.43)

By a similar analysis as before, we find that among the 72 roots of E6, the following
6 roots remain long:

±(e2 + e3), ±(e2 + e4), ±(e3 − e4). (3.44)

The following 12 roots are mapped to 0:

±e1 ± e5,
1
2
(±e1 ± (e2 − e3 − e4)± e5 ±

√
3e6). (3.45)

The remaining 54 roots are mapped to the 6 short roots of G2 nine to one. The short
roots have (length)2=2/3 because of the third order folding. The invariant subspace
of the automorphism A is spanned by two vectors,

v1 =
1√
2
(e3 − e4), v2 =

1√
6
(2e2 + e3 + e4). (3.46)

Let us consider Eq. (3.4) determining the invariant subspace, with λ being one of
the minimal weights λ1 (or λ5):

q = Aq + 2ωλ1, λ1 = e1 − 1√
3
e6, λ5 = e1 +

1√
3
e6,

p = Ap.

It is elementary to check that the following satisfies the above equation:

q =
2∑

j=1

Qjvj +
2ω
3
(λ1 + λ5), λ1 + λ5 = 2e1,

p =
2∑

j=1

Pjvj . (3.47)

Here {Qj , Pj} are the canonical variables of the reduced system and {v1, v2} are
given in (3.46). It should be noted that λ1 + λ5 = 2e1 has a scalar product 1 and 2
(mod 3) with all the roots (3.45) which are mapped to 0. Moreover, it has a scalar
product 0, 1 and 2 (mod 3) with each one third of the roots that are mapped to G2

short roots. By substituting the solution (3.47) into the elliptic E6 Calogero-Moser
Hamiltonian, we obtain the twisted G2 Hamiltonian:

H =
1
2

2∑
j=1

P 2
j +

g2

2

∑
α∈∆l

℘(α ·Q)

+
3g2

2

∑
µ∈∆s

[
℘(µ ·Q) + ℘

(
µ ·Q+

2ω
3

)
+ ℘

(
µ ·Q+

4ω
3

)]
+ const. (3.48)

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/101/3/487/1822463 by guest on 20 August 2022



Calogero-Moser Models. II —Symmetries and Foldings— 503

3.5. A
(2)
2n model or twisted BCn model

This model is associated with the twisted affine algebra A
(2)
2n . It is obtained by

folding the D(1)
2n+2 diagram using the fourth order automorphism. After rescaling the

A
(2)
2n algebra has 2n long and short roots of the form {±2ej}, {±ej}, j = 1, · · · , n

and 2n(n− 1) middle roots of the form {±ej ± ek}, j, k = 1, · · · , n. Thus it could be
understood as a twisted BCn model. This will provide a Lie algebraic interpretation
of the BCn model, as we now show.

The Dynkin diagram of A(2)
2n is obtained from that of D(1)

2n+2 by the fourth order
folding:

0 ◦∖
2 ◦/

1 ◦
◦
3

· ◦
n

· ◦
2n−1

◦ 2n+1/

◦ 2n∖
◦ 2n+2

◦ 〉◦ · ◦ ◦ 〉◦✏✮ ��✏✮ ��

✲

✲✮



⇒

As shown above, the D2n+2 root system is invariant under the following auto-
morphism:

Aα0 = α2n+1, Aα1 = α2n+2,

Aα2n+1 = α1, Aα2n+2 = α0,

Aαj = α2n+2−j , j = 2, · · · , 2n. (3.49)

In terms of the standard orthonormal basis of R
2n+2 it is simply expressed as

Ae1 = e2n+2, Ae2n+2 = −e1,
Aej = −e2n+3−j , j = 2, · · · , 2n+ 1. (3.50)

That is, the automorphism A satisfies

A4 = 1, (3.51)

in the two-dimensional subspace spanned by {e1, e2n+2} and in the rest of the space
it satisfies

A2 = 1. (3.52)

Among the 4(n+ 1)(2n+ 1) roots of D2n+2, the following 2n roots remain long:

±(ej − e2n+3−j), j = 2, · · · , n+ 1. (3.53)

The following 8n(n− 1) roots are mapped to middle roots with (length)2=1:

±ej ± ek, j + k �= 2n+ 3, j, k = 2, · · · , 2n+ 1. (3.54)
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In this case four different roots are mapped to one middle root. There are 16n roots
that are mapped to short roots with (length)2=1/2:

±e1 ± ej, ±e2n+2 ± ej j, k = 2, · · · , 2n+ 1. (3.55)

In this case eight different roots are mapped to one short root. Finally, there are
2n+ 4 roots which are mapped to zero:

±(ej + e2n+3−j), ±e1 ± e2n+2 j, k = 2, · · · , n+ 1. (3.56)

We look for a solution of Eq. (3.4) with λ = λ2n+1, the anti-spinor weight which is
a minimal weight:

q = Aq + 2ωλ2n+1, λ2n+1 =
1
2
(e1 + · · ·+ e2n+1 − e2n+2),

p = Ap.

It is elementary to verify that

q =
n+1∑
j=2

Qjvj + ωλ̃, λ̃ = e1 +
1
2
(e2 + · · ·+ e2n+1), (3.57)

p =
n+1∑
j=2

Pjvj (3.58)

is a solution. In the above expression, {Qj, Pj}, j = 2, · · · , n + 1 are the canonical
variables of the reduced system and

vj =
1√
2
(ej − e2n+3−j), j = 2, · · · , n+ 1 (3.59)

is an orthonormal basis of the invariant subspace of A. It is easy to see that λ̃ has
a vanishing scalar product with all the long roots (3.53). As with the middle roots,
λ̃ has a scalar product 1 (mod 2) with one half of them and 0 with the rest. An
interesting situation arises when we consider the scalar products of λ̃ with the short
roots (3.55):

α · λ̃ =




1
2 mod 2 for α = ±e1 − ej and ±e2n+2 + ej,

3
2 mod 2 for α = ±e1 + ej and ±e2n+2 − ej.

(3.60)

It should be noted that α · λ̃ = 1, 0 (mod 2) do not occur for short roots α. Finally
λ̃ has a scalar product 1 (mod 2) with all the roots (3.56) that are mapped to zero.

By substituting the above solution (3.57) into the Hamiltonian of elliptic D2n+2

Calogero-Moser model, we obtain

H =
1
2

n+1∑
j=2

P 2
j +

g2

2

∑
Ξ∈∆l

℘(Ξ ·Q)

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/101/3/487/1822463 by guest on 20 August 2022



Calogero-Moser Models. II —Symmetries and Foldings— 505

+ g2
∑

α∈∆m

[℘(α ·Q) + ℘(α ·Q+ ω)]

+ 2g2
∑
µ∈∆s

[
℘

(
µ ·Q+

ω

2

)
+ ℘

(
µ ·Q+

3ω
2

)]
+ const. (3.61)

Here ∆l, ∆m and ∆s are the sets of long, middle and short roots of the BCn system,
respectively. This model was previously described in 4).

Before closing this subsection, some remarks are in order. First, the twisted
models derived in this subsection inherit the integrability of the original simply laced
models. The conserved quantities of the twisted models are obtained from those of
the simply laced theory by substitution of variables. Second, the Hamiltonian of the
ordinary BCn system could be obtained from the Hamiltonian of D2n+2 theory by
the same folding as above with λ = 0, if we ignore the singularities of the potential
caused by the vanishing roots. Third, as we have remarked at the beginning of this
section, we have utilised only the automorphism of the extended Dynkin diagram
as relevant to the ordinary root vectors. The actual connection with the underlying
affine algebras is rather subtle, established only in the limit of the affine Toda theo-
ries. 4), 5) However, the very fact that the affine root system (without the null roots)
plays a fundamental role here seems to suggest the existence of an infinite dimen-
sional algebra (perhaps a kind of toroidal algebra. 12)) in the elliptic Calogero-Moser
systems. This algebra is thought to play the same or similar role as that played by
affine algebras in the affine Toda theories.

§4. Independent coupling constants

In the previous section we showed that all of the Calogero-Moser models based
on non-simply laced root systems, the untwisted as well as the twisted models, are
obtained by folding (reduction) of the models based on simply laced root systems.
These non-simply laced models inherit integrability as well as restrictions from the
original simply laced theories. In these cases the ratio of the coupling constants for
the long and short root potentials is fixed by the order of the automorphism used for
the folding. In fact, these models are integrable even when these coupling constants
are independent.

In this section we give the root type Lax pairs of the untwisted non-simply laced
models with as many independent coupling constants as independent Weyl orbits
in the set of roots. The independence of the coupling constants stems from the
independence of the Weyl orbits of the roots with different lengths. Thus the root
type Lax pair based on the set of roots itself is conceptually most suitable for the
purpose of verifying the independence of the coupling constants. For most theories
this implies two independent coupling constants, one for the long and the other for
the short root potentials. However, for the model based on the BCn root system,
there are three independent coupling constants.

We give two different root type Lax pairs for most of the untwisted non-simply
laced models, one based on the set of long roots and the other on the set of short
roots. Both give the identical Hamiltonian and equation of motion. The list of Lax
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pairs is complete in the sense that it contains all the models with all four choices
of potential and with and without the spectral parameter, except for the G2 model
based on the long roots. In this case, new functions satisfying constraints related to
the third order folding are necessary. For the rational, trigonometric and hyperbolic
potentials the functions given in §2 also satisfy the new constraints. A new set of
functions with and without spectral parameter is obtained for the elliptic potential
case. The actual verification that these Lax pairs are equivalent to the canonical
equation of motion is almost parallel to that of the root type Lax pairs based on
simply laced root systems. 1) The functions appearing in the root type Lax pairs are
the same for the simply laced and the untwisted non-simply laced cases, except for
the G2 case mentioned above. Thus we only give the explicit forms of the Lax pairs
for each of the Calogero-Moser models based on untwisted non-simply laced root
systems.

To this time the Lax pairs for untwisted non-simply laced models have been
given in some of the minimal representations only. 2), 5), 1) The situation was a bit
confusing: the allowed number of independent coupling constants can be different
for two different representations of the minimal type Lax pair for one and the same
theory. Now we have the universal root type Lax pairs for the untwisted non-simply
laced models with independent coupling constants.

In most cases we normalise the (length)2 = 2 for the long roots, except for the
Cn and BCn system, in which (length)2 = 4 is used. They are denoted by the
subscript L. For the G2 case we choose to normalise (length)2 = 3 for the long roots
and (length)2 = 1 for the short roots only for convenience. The coupling constant g
without a suffix is reserved for the long roots, except for the Cn and BCn systems, in
which it is used for the short- and middle-root coupling and the long-root coupling
constant is denoted by gL. The short-root coupling is denoted by gs.

4.1. Bn model

The set of Bn roots consists of two parts, long roots and short roots:

∆Bn = ∆ ∪∆s. (4.1)

Here the roots are conveniently expressed in terms of an orthonormal basis of R
n:

∆ = {α, β, γ, · · ·} = {±ej ± ek : j, k = 1, · · · , n}, 2n(n− 1) roots,
∆s = {λ, µ, ν, · · ·} = {±ej : j = 1, · · · , n}, 2n roots. (4.2)

From this we know the root difference pattern:

Bn : short root− short root =




long root,
2× short root,
non-root,

(4.3)

and

Bn : long root− long root =




long root,
2× long root,
2× short root,
non-root.

(4.4)
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From this knowledge only we can construct the root type Lax pair for the Bn model
by following the recipe of the root type Lax pair for simply laced models.

4.1.1. Root type Lax pair for untwisted Bn model based on short roots ∆s

The Lax pair is given in terms of the short roots. The matrix elements of Ls

and Ms are labeled by indices µ, ν, etc.:

Ls(q, p, ξ) = p ·H +X +Xd,

Ms(q, ξ) = D + Y + Yd. (4.5)

Here X and Y correspond to the part of the “short root − short root = long root”
of (4.3),

X = ig
∑
α∈∆

x(α·q, ξ)E(α), Y = ig
∑
α∈∆

y(α·q, ξ)E(α), E(α)µν = δµ−ν,α, (4.6)

and Xd and Yd correspond to the “short root − short root = 2× short root” of (4.3),

Xd = 2igs
∑
λ∈∆s

xd(λ·q, ξ)Ed(λ), Yd = igs
∑
λ∈∆s

yd(λ·q, ξ)Ed(λ), Ed(λ)µν = δµ−ν,2λ.

(4.7)
The diagonal parts of Ls and Ms are given by

Hµν = µδµ,ν , Dµν = δµ,νDµ, Dµ = −i

gs z(µ · q) + g

∑
γ∈∆, γ·µ=1

z(γ · q)

 .

(4.8)
The functions x, y, z and xd, yd, zd are the same as those given in §2. It is easy to
verify

Tr(L2
s) = 4HBn , (4.9)

in which the Bn Hamiltonian is given by

HBn =
1
2
p2 − g2

2

∑
α∈∆

x(α · q)x(−α · q)− g2
s

∑
λ∈∆s

x(λ · q)x(−λ · q). (4.10)

4.1.2. Root type Lax pair for untwisted Bn model based on long roots ∆
The Lax pair is given in terms of the long roots. The matrix elements of Ll and

Ml are labeled by indices α, β, etc.:

Ll(q, p, ξ) = p ·H +X +Xd +Xs,

Ml(q, ξ) = D +Ds+ Y + Yd + Ys. (4.11)

Here X and Y correspond to the part of the “long root − long root = long root” of
(4.4),

X = ig
∑
α∈∆

x(α · q, ξ)E(α), Y = ig
∑
α∈∆

y(α · q, ξ)E(α), E(α)βγ = δβ−γ,α,

(4.12)
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and Xd and Yd correspond to the “long root − long root = 2× long root” of (4.4),

Xd = 2ig
∑
α∈∆

xd(α · q, ξ)Ed(α), Yd = ig
∑
α∈∆

yd(α · q, ξ)Ed(α), Ed(α)βγ = δβ−γ,2α.

(4.13)
The additional term in Ll (Ml), Xs (Ys), corresponds to “long root − long root =
2× short root” of (4.4),

Xs = 2igs
∑
λ∈∆s

xd(λ·q, ξ)Ed(λ), Ys = igs
∑
λ∈∆s

yd(λ·q, ξ)Ed(λ), Ed(λ)βγ = δβ−γ,2λ.

(4.14)
The diagonal parts of Ll and Ml are given by

Hβγ = βδβ,γ , Dβγ = δβ,γDβ, Dβ = −ig

z(β · q) +

∑
κ∈∆, κ·β=1

z(κ · q)

 ,

(4.15)
and

(Ds)βγ = δβ,γ(Ds)β, (Ds)β = −igs
∑

λ∈∆s, β·λ=1

z(λ · q). (4.16)

The functions x, y, z and xd, yd, zd are also the same as those given in §2. It is easy
to verify that

Tr(L2
l ) = 8(n− 1)HBn , (4.17)

in which the Bn Hamiltonian is the same as that given above (4.10). In both cases
the reduction from Dn+1 fixes gs = g. Clearly, the consistency of the root type Lax
pairs (4.5) and (4.11) does not depend on the explicit representation of the roots in
terms of the orthonormal basis (4.2). This remark applies to the other models as
well.

4.2. Cn model

The set of Cn roots consists of two parts, long roots and short roots:

∆Cn = ∆L ∪∆. (4.18)

Here the roots are conveniently expressed in terms of an orthonormal basis of R
n:

∆L = {Ξ, Υ,Ω, · · ·} = {±2ej : j = 1, · · · , n}, 2n roots, (4.19)
∆ = {α, β, γ, · · ·} = {±ej ± ek : j, k = 1, · · · , n}, 2n(n− 1) roots. (4.20)

The root difference pattern is

Cn : short root− short root =




short root,
2× short root,
long root,
non-root.

(4.21)
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and

Cn : long root− long root =




2× long root,
2× short root,
non-root.

(4.22)

From this knowledge only we can construct the root type Lax pair for the Cn model
by following the recipe of the root type Lax pair for simply laced models.

4.2.1. Root type Lax pair for untwisted Cn model based on short roots ∆
The Lax pair is given in terms of short roots. The matrix elements of Ls and

Ms are labeled by indices β, γ, etc.:

Ls(q, p, ξ) = p ·H +X +Xd +XL,

Ms(q, ξ) = D +DL + Y + Yd +XL. (4.23)

Here X and Y correspond to the part of the “short root − short root = short root”
of (4.21),

X = ig
∑
α∈∆

x(α · q, ξ)E(α), Y = ig
∑
α∈∆

y(α · q, ξ)E(α), E(α)βγ = δβ−γ,α,

(4.24)
and Xd and Yd correspond to the “short root − short root = 2× short root” of (4.21),

Xd = 2ig
∑
α∈∆

xd(α · q, ξ)Ed(α), Yd = ig
∑
α∈∆

yd(α · q, ξ)Ed(α), Ed(α)βγ = δβ−γ,2α.

(4.25)
The additional term in Ls (Ms), XL (YL), corresponds to the “short root − short
root = long root” of (4.22),

XL = igL
∑

Ξ∈∆L

x(Ξ ·q, ξ)E(Ξ), YL = igL
∑

Ξ∈∆L

y(Ξ ·q, ξ)E(Ξ), E(Ξ)βγ = δβ−γ,Ξ .

(4.26)
The diagonal parts of Ls and Ms are given by

Hβγ = βδβ,γ , Dβγ = δβ,γDβ, Dβ = −ig

z(β · q) +

∑
κ∈∆, κ·β=1

z(κ · q)

 ,

(4.27)
and

(DL)βγ = δβ,γ(DL)β, (DL)β = −igL
∑

Υ∈∆L, β·Υ=2

z(Υ · q). (4.28)

The functions x, y, z and xd, yd, zd are the same as those given in §2. It is easy to
verify

Tr(L2
s) = 8(n− 1)HCn , (4.29)

in which Cn Hamiltonian is given by

HCn =
1
2
p2 − g2

2

∑
α∈∆

x(α · q)x(−α · q)− g2
L

4

∑
Ξ∈∆L

x(Ξ · q)x(−Ξ · q). (4.30)
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4.2.2. Root type Lax pair for untwisted Cn model based on long roots ∆L

The Lax pair is given in terms of long roots. The matrix elements of LL and
ML are labeled by indices Υ,Ω, etc.:

LL(q, p, ξ) = p ·H +Xd +Xs,

ML(q, ξ) = D + Yd + Ys. (4.31)

Here Xd and Yd correspond to the part of the “long root − long root = 2× long
root” of (4.22),

Xd = 2igL
∑

Ξ∈∆L

xd(Ξ · q, ξ)Ed(Ξ), Yd = igL
∑

Ξ∈∆L

yd(Ξ · q, ξ)Ed(Ξ),

Ed(Ξ)ΥΩ = δΥ−Ω,2Ξ , (4.32)

and Xs and Ys correspond to the “long root − long root = 2× short root” of (4.22),

Xs = 2ig
∑
α∈∆

xd(α·q, ξ)Ed(α), Ys = ig
∑
α∈∆

yd(α·q, ξ)Ed(α), Ed(α)ΥΩ = δΥ−Ω,2α.

(4.33)
The diagonal parts of LL and ML are given by

HΥΩ = ΥδΥ,Ω, DΥΩ = δΥ,ΩDΥ , DΥ = −i

gL z(Υ · q) + g

∑
κ∈∆, κ·Υ=2

z(κ · q)

 .

(4.34)
Since only the functions xd and yd appear and neither function x nor y appears in
the Lax pair, we can safely use x, y and z, which are used in the minimal-type Lax
pairs, in place of xd, yd and zd. It should be noted that the set of long roots (4.19)
is 2 times the set of vector weights of Cn:

Λ = {±ej : j = 1, · · · , n}.
In fact, the above LL matrix is twice L for the vector representation, with two
independent coupling constants 2), 1) (with proper identification):

LL = 2Lvec, ML = Mvec.

In other words the root type Lax pair based on Cn long roots is equivalent to the vec-
tor representation Lax pair. This explains why two independent coupling constants
are allowed in the vector representation Lax pair of the Cn model. 2)

4.3. F4 model

The set of F4 roots consists of two parts, long and short roots:

∆F4 = ∆ ∪∆s. (4.35)

Here the roots are conveniently expressed in terms of an orthonormal basis of R
4:

∆ = {α, β, γ, · · ·} = {±ej ± ek : j, k = 1, · · · , 4}, 24 roots,

∆s = {λ, µ, ν, · · ·} = {±ej , 12(±e1 ± e2 ± e3 ± e4) : j = 1, · · · , 4}, 24 roots.

(4.36)
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The set of long roots has the same structure as the D4 roots and the set of short roots
has the same structure as the union of D4 vector, spinor and anti-spinor weights.
From this we know the root difference pattern:

F4 : short root− short root =




long root,
short root,
2× short root,
non-root,

(4.37)

and

F4 : long root− long root =




long root,
2× long root,
2× short root,
non-root.

(4.38)

From this knowledge only we can construct the root type Lax pair for the F4 model
by following the same recipe as above.

4.3.1. Root type Lax pair for untwisted F4 model based on short roots ∆s

The Lax pair is given in terms of short roots. The matrix elements of Ls and
Ms are labeled by indices µ, ν etc.:

Ls(q, p, ξ) = p ·H +X +Xd +Xl,

Ms(q, ξ) = D +Dl + Y + Yd + Yl. (4.39)

Here X and Y correspond to the part of the “short root − short root = short root”
of (4.37),

X = igs
∑
λ∈∆s

x(λ · q, ξ)E(λ), Y = igs
∑
λ∈∆s

y(λ · q, ξ)E(λ), E(λ)µν = δµ−ν,λ,

(4.40)
and Xd and Yd correspond to the “short root − short root = 2× short root” of (4.37),

Xd = 2igs
∑
λ∈∆s

xd(λ·q, ξ)Ed(λ), Yd = igs
∑
λ∈∆s

yd(λ·q, ξ)Ed(λ), Ed(λ)µν = δµ−ν,2λ.

(4.41)
The additional terms Xl and Yl correspond to the “short root − short root = long
root” of (4.37),

Xl = ig
∑
α∈∆

x(α · q, ξ)E(α), Yl = ig
∑
α∈∆

y(α · q, ξ)E(α), E(α)µν = δµ−ν,α.

(4.42)
The diagonal parts of Ls and Ms are given by

Hµν = µδµ,ν , Dµν = δµ,νDµ, Dµ = −igs

 z(µ · q) +

∑
λ∈∆s, λ·µ=1/2

z(λ · q)

 ,

(4.43)
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and
(Dl)µν = δµ,ν(Dl)µ, (Dl)µ = −ig

∑
α∈∆, α·µ=1

z(α · q). (4.44)

The functions x, y, z and xd, yd, zd are the same as those given in §2. It is easy to
verify that

Tr(L2
s) = 12HF4 , (4.45)

in which the F4 Hamiltonian is given by

HF4 =
1
2
p2 − g2

2

∑
α∈∆

x(α · q)x(−α · q)− g2
s

∑
λ∈∆s

x(λ · q)x(−λ · q). (4.46)

It should be noted that this has the same general structure as the Hamiltonian of
the Bn theory (4.10).

4.3.2. Root type Lax pair for untwisted F4 model based on long roots ∆
The Lax pair is given in terms of long roots. The general structure of this Lax

pair is essentially the same as that of the Bn theory, since the pattern of the long
root− long root (4.38) is the same as that of Bn (4.4). This reflects the universal
nature of the root type Lax pairs. For this reason we list the general form only
without further explanation. This consists of the matrices with indices β, γ, etc.:

Ll(q, p, ξ) = p ·H +X +Xd +Xs,

Ml(q, ξ) = D +Ds+ Y + Yd + Ys. (4.47)

X = ig
∑
α∈∆

x(α · q, ξ)E(α), Y = ig
∑
α∈∆

y(α · q, ξ)E(α), E(α)βγ = δβ−γ,α.

(4.48)
Xd = 2ig

∑
α∈∆

xd(α · q, ξ)Ed(α), Yd = ig
∑
α∈∆

yd(α · q, ξ)Ed(α), Ed(α)βγ = δβ−γ,2α.

(4.49)
Xs = 2igs

∑
λ∈∆s

xd(λ·q, ξ)Ed(λ), Ys = igs
∑
λ∈∆s

yd(λ·q, ξ)Ed(λ), Ed(λ)βγ = δβ−γ,2λ.

(4.50)
The diagonal parts of Ll and Ml are given by

Hβγ = βδβ,γ , Dβγ = δβ,γDβ, Dβ = −ig

z(β · q) +

∑
κ∈∆, κ·β=1

z(κ · q)

 ,

(4.51)
and

(Ds)βγ = δβ,γ(Ds)β, (Ds)β = −igs
∑

λ∈∆s, β·λ=1

z(λ · q). (4.52)

The functions x, y, z and xd, yd, zd are also the same as those given in §2. It is easy
to verify that

Tr(L2
l ) = 24HF4 , (4.53)

in which the F4 Hamiltonian is the same as given above (4.10). In both cases the
reduction from E6 fixes gs = g.
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4.4. G2 model

The set of G2 roots consists of two parts, long and short roots:

∆G2 = ∆ ∪∆s. (4.54)

Here the roots are conveniently expressed in terms of an orthonormal basis of R
2:

∆ = {α, β, γ, · · ·} = {±(−3e1 +
√
3e2)/2,±(3e1 +

√
3e2)/2,±

√
3e2}, 6 roots,

∆s = {λ, µ, ν, · · ·} = {±e1,±(−e1 +
√
3e2)/2,±(e1 +

√
3e2)/2}, 6 roots.

(4.55)

The sets of long and short roots have the same structure as the A2 roots, scaled
[(long root)2 : (short root)2 = 3 : 1] and rotated by π/6. The root difference pattern
is

G2 : short root− short root =




long root,
short root,
2× short root,
non-root,

(4.56)

G2 : long root− long root =




long root,
2× long root,
3× short root,
non-root.

(4.57)

The appearance of the 3× short root in (4.57) is a new feature.

4.4.1. Root type Lax pair for untwisted G2 model based on short roots ∆s

The Lax pair is given in terms of short roots. The general structure of this
Lax pair is essentially the same as that of the F4 theory, since the pattern of the
short root− short root (4.56) is the same as that of the F4 (4.37). Hence we list the
general form only without further explanation. The matrix elements of Ls and Ms

are labeled by indices µ, ν, etc.:

Ls(q, p, ξ) = p ·H +X +Xd +Xl,

Ms(q, ξ) = D +Dl + Y + Yd + Yl, (4.58)

X = igs
∑
λ∈∆s

x(λ · q, ξ)E(λ), Y = igs
∑
λ∈∆s

y(λ · q, ξ)E(λ), E(λ)µν = δµ−ν,λ.

(4.59)

Xd = 2igs
∑
λ∈∆s

xd(λ · q, ξ)Ed(λ), Yd = igs
∑
λ∈∆s

yd(λ · q, ξ)Ed(λ),

Ed(λ)µν = δµ−ν,2λ. (4.60)

Xl = ig
∑
α∈∆

x(α · q, ξ)E(α), Yl = ig
∑
α∈∆

y(α · q, ξ)E(α), E(α)µν = δµ−ν,α.

(4.61)
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The diagonal parts of Ls and Ms are given by

Hµν = µδµ,ν , Dµν = δµ,νDµ, Dµ = −igs

 z(µ · q) +

∑
λ∈∆s, λ·µ=1/2

z(λ · q)

 ,

(4.62)
and

(Dl)µν = δµ,ν(Dl)µ, (Dl)µ = −ig
∑

α∈∆, α·µ=3/2

z(α · q). (4.63)

The functions x, y, z and xd, yd, zd are the same as those given in §2. It is easy to
verify that

Tr(L2
s) = 6HG2 , (4.64)

in which the G2 Hamiltonian is given by

HG2 =
1
2
p2 − g2

3

∑
α∈∆

x(α · q)x(−α · q)− g2
s

∑
λ∈∆s

x(λ · q)x(−λ · q). (4.65)

4.4.2. Root type Lax pair for untwisted G2 model based on long roots ∆
This Lax pair is different from the others because of the ‘triple root’ term in

(4.57). The matrix elements of Ll and Ml are labeled by indices β, γ, etc.:

Ll(q, p, ξ) = p ·H +X +Xd +Xt,

Ml(q, ξ) = D +Dt+ Y + Yd + Yt. (4.66)

The terms X,Y and Xd, Yd are the same as before:

X = ig
∑
α∈∆

x(α · q, ξ)E(α), Y = ig
∑
α∈∆

y(α · q, ξ)E(α), E(α)βγ = δβ−γ,α.

(4.67)
Xd = 2ig

∑
α∈∆

xd(α · q, ξ)Ed(α), Yd = ig
∑
α∈∆

yd(α · q, ξ)Ed(α), Ed(α)βγ = δβ−γ,2α.

(4.68)
The terms Xt and Yt are associated with the ‘triple root’ with new functions xt and
yt:

Xt = 3igs
∑
λ∈∆s

xt(λ · q, ξ)Et(λ), Yt = igs
∑
λ∈∆s

yt(λ · q, ξ)Et(λ), Et(λ)βγ = δβ−γ,3λ.

(4.69)
The diagonal parts of Ll and Ml are given by

Hβγ = βδβ,γ, Dβγ = δβ,γDβ, Dβ = −ig

z(β · q) +

∑
κ∈∆, κ·β=3/2

z(κ · q)

 ,

(4.70)
and

(Dt)βγ = δβ,γ(Dt)β, (Dt)β = −igs
∑

λ∈∆s, β·λ=3/2

z(λ · q). (4.71)
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The pairs of functions {x, y}, {xd, yd} and {xt, yt} should each satisfy the sum rule
(2.24). As in the other cases, {x, y} and {xd, yd} should satisfy the second sum rule
(2.25). There is also a third sum rule to be satisfied by all of these functions:

0 = x(2u− v)y(u− 2v)− x(u− 2v)y(2u− v)− x(3v) yt(u− 2v)
+yt(2u− v)x(−3u)− 2xd(3u) yt(−u− v) + 2yt(u+ v)xd(−3v)
−3xt(2u− v) y(−3u) + 3y(3v)xt(u− 2v)
−3xt(u+ v) yd(−3v) + 3yd(3u)xt(−u− v). (4.72)

For the rational, trigonometric and hyperbolic potentials, all three sum rules are
satisfied by the same set of functions as before. We have

x(t) = xd(t) = xt(t) =
1
t
, y(t) = yd(t) = yt(t) = − 1

t2
, z(t) = − 1

t2
,

x(t) = xd(t) = xt(t) = a cot at, y(t) = yd(t) = yt(t) = − a2

sin2 at
,

z(t) = zd(t) = zt(t) = − a2

sin2 at
, a : const,

x(t) = xd(t) = xt(t) = a coth at, y(t) = yd(t) = yt(t) = − a2

sinh2 at
,

z(t) = zd(t) = zt(t) = − a2

sinh2 at
, a : const, (4.73)

and the Lax pair (4.66) is equivalent to the canonical equation of motion. For the
elliptic potential with spectral parameter, a simple set of solutions is obtained in
analogy with the solutions (2.21):

x(t, ξ) =
σ(ξ/3− t)
σ(ξ/3)σ(t)

, y(t, ξ) = x(t, ξ) [ζ(t− ξ/3)− ζ(t)] ,

z(t, ξ) = − [℘(t)− ℘(ξ/3)] ,

xd(t, ξ) =
σ(2ξ/3− t)
σ(2ξ/3)σ(t)

, yd(t, ξ) = xd(t, ξ) [ζ(t− 2ξ/3)− ζ(t)] ,

zd(t, ξ) = − [℘(t)− ℘(2ξ/3)] ,

xt(t, ξ) =
σ(ξ − t)
σ(ξ)σ(t)

, yt(t, ξ) = xt(t, ξ) [ζ(t− ξ)− ζ(t)] ,

zt(t, ξ) = − [℘(t)− ℘(ξ)] . (4.74)

The spectral parameter independent functions are obtained by setting ξ = ωj , j =
1, 2, 3 with appropriate exponential factors:

x(t) =
σ(ωj/3− t)
σ(ωj/3)σ(t)

eηjt/3, y(t) = x(t) [ζ(t− ωj/3)− ζ(t) + ηj/3] ,

z(t) = − [℘(t)− ℘(ωj/3)] ,

xd(t) =
σ(2ωj/3− t)
σ(2ωj/3)σ(t)

e2ηjt/3, yd(t) = xd(t) [ζ(t− 2ωj/3)− ζ(t) + 2ηj/3] ,
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zd(t) = − [℘(t)− ℘(2ωj/3)] ,

xt(t) =
σ(ωj − t)
σ(ωj)σ(t)

eηjt, yt(t) = xt(t) [ζ(t− ωj)− ζ(t) + ηj ] ,

zt(t) = − [℘(t)− ℘(ωj)] . (4.75)

They are doubly periodic meromorphic functions and may be viewed as generalisa-
tions of co-℘ functions. For example, for j = 1, the functions x(t), xd(t) and xt(t)
have fundamental periods {2ω1, 12ω3}, {2ω1, 6ω3} and {2ω1, 4ω3}, respectively. The
properties of these functions will be discussed in a future publication.

4.5. BCn root system Lax pair with three independent couplings

The BCn root system consists of three parts, long, middle and short roots:

∆BCn = ∆L ∪∆ ∪∆s. (4.76)

Here the roots are conveniently expressed in terms of an orthonormal basis of R
n:

∆L = {Ξ, Υ,Ω, · · ·} = {±2ej : j = 1, · · · , n}, 2n roots, (4.77)
∆ = {α, β, γ, · · ·} = {±ej ± ek : j, k = 1, · · · , n}, 2n(n− 1) roots, (4.78)
∆s = {λ, µ, ν, · · ·} = {±ej : j = 1, · · · , n}, 2n roots. (4.79)

Here we consider the Lax pair based on the middle roots only. The pattern of middle
root − middle root is

BCn : middle root−middle root =




long root,
middle root,
2×middle root,
2× short root,
non-root.

(4.80)

From this knowledge only we can construct the root type Lax pair for the BCn root
system:

Lm(q, p, ξ) = p ·H +X +Xd +XL +Xs,

Mm(q, ξ) = D +DL + Y + Yd + YL +Ds+ Ys. (4.81)

The matrix elements of Lm and Mm are labeled by indices β, γ, etc. Here p · H +
X +Xd +XL (D+DL + Y + Yd + YL) is exactly the same as Ls (Ms) matrix of the
Cn models with two coupling constants based on short roots. So we give only the
terms related to short roots: An additional term in Lm (Mm), Xs (Ys) corresponds
to “middle root − middle root = 2× short root” of (4.80):

Xs = 2igs
∑
λ∈∆s

xd(λ·q, ξ)Ed(λ), Ys = igs
∑
λ∈∆s

yd(λ·q, ξ)Ed(λ), Ed(λ)βγ = δβ−γ,2λ.

(4.82)
Dsβγ = δβ,γDsβ , Dsβ = −igs

∑
λ∈∆s, β·λ=1

z(λ · q). (4.83)
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The functions x, y, z and xd, yd, zd are the same as those given in §2. It is easy to
verify that

Tr(L2
m) = 8(n− 1)HBCn , (4.84)

in which the BCn Hamiltonian is the Cn Hamiltonian (4.30) plus the contribution
from the short root potential with “renormalisation” of the short root coupling con-
stant:

HBCn =
1
2
p2 − g2

2

∑
α∈∆

x(α · q)x(−α · q)− g2
L

4

∑
Ξ∈∆L

x(Ξ · q)x(−Ξ · q)

−g̃2
s

∑
λ∈∆s

x(λ · q)x(−λ · q), g̃2
s = gs(gs + gL/2). (4.85)

§5. Summary and comments

Universal Lax pairs for Calogero-Moser models based on simply laced root sys-
tems were presented for all of the four choices of potentials: rational, trigonometric,
hyperbolic and elliptic, both with and without a spectral parameter (§2). These
are the root type Lax pairs and the minimal type Lax pairs. The Calogero-Moser
models based on simply laced root systems have discrete symmetries generated by
the automorphisms of the Dynkin diagrams and the extended Dynkin diagrams of
the root system. By combining the discrete symmetry arising from the automor-
phism of the extended Dynkin diagram with the periodicity of the elliptic potential,
Calogero-Moser models for various twisted non-simply laced root systems are de-
rived from those based on simply laced root systems (§3). The model associated
with the affine Dynkin diagram A

(2)
2n can be interpreted as a twisted version of the

BCn Calogero-Moser model.
The idea of the universal root type Lax pairs has been successfully generalised to

all of the untwisted non-simply laced Calogero-Moser models (§4). For non-simply
laced root systems, there are two kinds of root type Lax pairs: one based on the
set of long roots, and the other on the set of short roots. They both contain as
many independent coupling constants as independent Weyl orbits in the set of roots.
For the BCn root system, this implies that there are three independent coupling
constants. The consistency of the G2 root type Lax pair based on long roots requires
a new set of functions when the potential is elliptic. A simple set of these functions
is given.

We have not discussed the unified Lax pairs, root type as well as minimal type,
of the twisted non-simply laced Calogero-Moser models (with independent coupling
constants) derived in §3. This is an interesting subject because of its connection
with (affine) Toda (lattice or field) theories.
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