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Calogero-Moser models and Toda models are well-known integrable multi-particle dy-
namical systems based on root systems associated with Lie algebras. The relation between
these two types of integrable models is investigated at the levels of the Hamiltonians and the
Lax pairs. The Lax pairs of Calogero-Moser models are specified by the representations of
the reflection groups, which are not the same as those of the corresponding Lie algebras. The
latter specify the Lax pairs of Toda models. The Hamiltonians of the elliptic Calogero-Moser
models tend to those of Toda models as one of the periods of the elliptic function goes to
infinity, provided the dynamical variables are properly shifted and the coupling constants
are scaled. On the other hand most of Calogero-Moser Lax pairs, for example, the root type
Lax pairs, do not have a consistent Toda model limit. The minimal type Lax pairs, which
corresponds to the minimal representations of the Lie algebras, tend to the Lax pairs of the
corresponding Toda models.

§1. Introduction

This is the fifth paper in a series devoted to the integrable dynamical systems
of Calogero-Moser type. In the first three papers 1) (hereafter referred to as I, II
and III), various Lax pairs were constructed and the symmetries of the systems were
elucidated. In the fourth paper 2) a universal Lax pair operator applicable to the
models based on non-crystallographic as well as crystallographic root systems was
constructed. When suitable representation spaces are chosen, the universal Lax pair
reproduces all the Lax pairs obtained so far and many other representations give
new Lax pairs. In this paper we focus on the relations of Calogero-Moser models
and Toda models.

Calogero-Moser models 3) and Toda models 4), 5) are well-known integrable multi-
particle dynamical systems based on the crystallographic root systems, i.e., those
associated with Lie algebras. Though they are markedly different at first sight, it
has long been known that for some particular root systems Toda models can be
obtained as a special limit of the Calogero-Moser models. 6) The purpose of this
paper is to clarify this limit for all the Calogero-Moser models, now that we have a
universal framework for the integrable structure of these models. The limit problem
can be considered at two levels, or maybe even three. The first is the limits of the
dynamical variables and the Hamiltonian. The second is those of the Lax pairs.
Since there are many Lax pairs for one and the same Calogero-Moser model, the
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result is expected to be varied. The third level would be the limits of the solutions of
the equations of motion and of the associated linear problem of the Lax equations.
We will not address the problems at the third level in this paper.

While for the Calogero-Moser models the set of all roots is necessary, only the
simple roots enter the Toda models. The potentials of Toda models are exponen-
tial functions of the dynamical variables q (the coordinates), with the mass scale
parameters being the only physically meaningful parameters at the classical level.
The potentials of Calogero-Moser models are more varied. Besides the (independent)
coupling constant(s) (for the long and short roots in the non-simply laced theories),
the generic elliptic potentials, i.e., the Weierstrass ℘ functions have two primitive
periods {2ω1, 2ω3} as adjustable parameters. The other potentials, the trigonomet-
ric, hyperbolic and rational potentials are obtained as degenerate cases of the elliptic
ones. As we will show in §2, the Hamiltonian of an elliptic Calogero-Moser model
based on the root system of Lie algebra g tends to the Hamiltonian of a Toda model
based on g, its dual algebra g∨, its affine counterpart g(1) or its dual (g(1))∨. The
detailed conditions for the limits will be stated there. It should be remarked that the
significance of the independent coupling constants in the non-simply laced Calogero-
Moser models is somehow lost in the limit. The limits of the Lax pairs are more
intriguing.

As shown in a previous paper, 2) the essential ingredient of Calogero-Moser Lax
pairs is the representation of the reflection groups, which are not identical with those
of the corresponding Lie algebras. On the other hand the known Lax pairs of Toda
models are formulated in terms of the representation of the Lie algebras. This poses
an interesting question whether some Toda models Lax pairs which do not belong
to any representations of the corresponding Lie algebras could be obtained as limits
of Calogero-Moser Lax pairs, for example, the root type ones. The answer turns out
to be negative as we will show in detail in §3. In fact most of Calogero-Moser Lax
pairs do not have a consistent Toda model limit. The minimal type Lax pairs are
shown to have consistent Toda model limits.

The rest of this paper is organised as follows. In §4 we give an intuitive method
for constructing the Lax pairs of Toda models by explicit examples. This is in-
spired by the limit of the minimal type Lax pairs. Section 5 is devoted to summary
and discussion. In Appendix A some definitions and useful formulas of the elliptic
functions are given. Appendix B gives some explicit forms of the functions entering
in Calogero-Moser Lax pairs. These functions are also considered in the limits to
Toda models. Appendix C gives a new Lax pair for the BCr Calogero-Moser model,
which is necessary in §3. The asymptotic forms of various functions appearing in
Calogero-Moser Lax pairs are given in Appendix D.

§2. From the elliptic potentials to the exponential potentials

Let us start with the elliptic Calogero-Moser model, which is a Hamiltonian
system associated with a root system ∆ of rank r. We consider two types of root
systems. The first type is those root systems associated with finite Lie algebras. The
second is the so-called BCr system which is a union of the Br roots and Cr roots.
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The dynamical variables are the coordinates {qj} and their canonically conjugate
momenta {pj}, which will be denoted by vectors in R r

q = (q1, · · · , qr), p = (p1, · · · , pr). (2.1)

The Hamiltonian for the elliptic Calogero-Moser model is

H =
1
2
p2 +

∑
α∈∆

g2
|α|

|α|2 V|α|(α · q), (2.2)

in which the potential functions V|α| and the real coupling constants g|α| are defined
on orbits of the corresponding finite reflection group, i.e., they are identical for roots
in the same orbit. That is g|α| = g for all roots in simply laced models and g|α| = gL
for the long roots and g|α| = gS for the short roots in non-simply laced models. The
potential functions V|α| are:
1. Untwisted elliptic potential This applies to all of the root systems associated
with Lie algebras and the potential function is

VL(α · q) = VS(α · q) = ℘(α · q|{2ω1, 2ω3}), (2.3)

in which ℘ is the Weierstrass ℘ function with a pair of primitive periods
{2ω1, 2ω3} (A.1). Throughout this paper we adopt the convention that the
Weierstrass ℘, ζ and σ functions have the above standard periods, unless oth-
erwise stated.

2. Twisted elliptic potential This applies to all of the non-simply laced root
systems. Except for the G2 model, the potential functions are

VL(α · q) = ℘(α · q|{2ω1, 2ω3}), VS(α · q) = ℘(α · q|{ω1, 2ω3}). (2.4)

That is, the potential for the short roots has one half of the standard period in
one direction, which we choose to be ω1. For the G2 model,

VL(α ·q) = ℘(α ·q|{2ω1, 2ω3}), VS(α ·q) = ℘
(
α · q|

{
2ω1

3
, 2ω3

})
. (2.5)

Derivation of the twisted models from the untwisted ones by folding is given in
paper II. 1)

3. Untwisted and twisted potentials for the BCr system The BCr root system
consists of the long, middle and short roots, ∆ = ∆L∪∆M ∪∆S . The untwisted
model has the same potential for all the roots

VL(α · q) = VM (α · q) = VS(α · q) = ℘(α · q|{2ω1, 2ω3}). (2.6)

The twisted model has potentials with the full, a half and a fourth periods:

VL(α · q) = ℘(α · q|{2ω1, 2ω3}), VM (α · q) = ℘(α · q|{ω1, 2ω3}),
VS(α · q) = ℘(α · q|{ω1/2, 2ω3}). (2.7)

There are three independent coupling constants gL, gM and gS in both cases.
In the discussion below the root systems associated with the Lie algebras are
assumed. Modification for the BCr case is straightforward.
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On taking the limits to Toda models it is convenient to adopt the following
parametrisation of the periods:

ω1 = −iπ, ω3 ∈ R+, τ ≡ ω3

ω1
= iω3/π. (2.8)

Then the above Hamiltonian (2.2) is real for real dynamical variables p, q and cou-
pling constants g|α|. If we let ω3 → +∞ for fixed u the elliptic potentials tend to the
hyperbolic ones

VL(u) =
1
12
+
1
4

1
sinh2 u/2

, VS(u) =
1
3
+

1
sinh2 u

. (2.9)

In order to obtain the exponential potential from the elliptic potentials we follow
the general prescription as explained in Appendix (A.6)–(A.12). 6), 7) First we shift
the dynamical variable q

q = Q− 2ω3δ v, v ∈ Rr, (2.10)

in which δ is a positive parameter and v is an as yet unspecified vector in Rr. Let
us require that v has a non-vanishing scalar product with all the roots in ∆

α · v = 0, ∀α ∈ ∆. (2.11)

Suppose there are some roots which are orthogonal to v. They form a sub-root system
of ∆. The potential functions for such roots will tend to the hyperbolic potentials
(2.9) as ω3 → +∞, since their arguments α · q = α · Q are fixed. This justifies the
above requirement (2.11). It should be remarked that the above shift (2.10) breaks
the Weyl invariance of the Calogero-Moser models, by the introduction of the special
vector v. On the other hand the set of positive roots ∆+ and consequently the set
of simple roots Π can be defined in terms of v:

∆+ = {α ∈ ∆, α · v > 0}, Π : set of simple roots. (2.12)

Because of the 2ω3 periodicity and the even parity of the potentials, V|α|(u) =
V|α|(−u), we can assume, without loss of generality, that

max
α∈∆+

δα · v < 1. (2.13)

In fact we require that δ should satisfy a stronger condition

δ ((α · v)min + (α · v)max) ≤ 1, (2.14)

which implies that
δ (α · v)max ≤ 1− δ (α · v)min (2.15)

and
2δ (α · v)min ≤ 1. (2.16)

By comparing the shift formula

α · q = α ·Q− 2ω3δ α · v,
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with the limit formula of the potentials (A.6)–(A.12), we find that for the following
scalings of the coupling constants

gL = mL eω3δ|α·v| min , gS =

{
mS e

ω3δ|α·v| min/
√
2, untwisted potential,

mS e
2ω3δ|α·v| min/2

√
2, twisted potential,

(2.17)
the elliptic potentials vanish for all α · q except for those roots having the minimum
(and the maximum) value of the scalar product with the fixed vector v, for which
the exponential potentials are obtained. That is we have

g2
LVL(α · q) −→

ω3→+∞




m2
L e

α·Q for such α ∈ ∆+ that α · v is minimum,
m2
L e

−α·Q for such α ∈ ∆+ that α · v is maximum,
0 otherwise,

(2.18)
and the corresponding formula for g2

SVS(α·q). It should be noted that for the twisted
models the minimum (maximum) of (α ·v) can be different for VL and VS , since only
the long (short) roots contribute to VL (VS). However, for the second possibility
(α · v is maximum) to occur, the parameter δ must be so chosen as to saturate the
inequality in (2.14). As we will see shortly, (2.22) and (2.23), the saturation occurs
only for the long root potentials.

In the formula (2.18) we considered only the positive roots α. The number of
non-vanishing potential terms of the resulting theory is determined by those positive
roots which give the minimum (and the maximum) of α · v. Since all the positive
roots are linear combination of simple roots with non-negative integer coefficients,
the minimum can be attained by the simple roots only and the maximum by the
highest root. There are a maximal number of potential terms when the minimum
is attained by all the simple roots. All the other cases can be considered as arising
from Calogero-Moser models based on some sub-root system of ∆.

2.1. Models based on the root systems of Lie algebras

First let us discuss the models based on root systems associated with finite Lie
algebras. We consider the case that the minimum of α ·v is attained by all the simple
roots. We adopt the convention that the long roots have squared length 2, α2

L = 2.
It is well-known that the Weyl vector ρ and its dual ρ∨ defined by

ρ =
1
2

∑
α∈∆+

α, ρ∨ =
1
2

∑
α∈∆+

α∨, α∨ = 2α/α2 (2.19)

satisfy the above criterion. In fact we have

ρ · αi = α2
i

2
, ρ∨ · αi = 1, ∀αi ∈ Π, (2.20)

and

ρ · αh = h∨ − 1, ρ∨ · αh = h− 1, αh : highest root, (2.21)

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/102/4/749/1901230 by guest on 16 August 2022



754 S. P. Khastgir, R. Sasaki and K. Takasaki

in which h and h∨ are the Coxeter number and the dual Coxeter number, respectively.
For the choice v = ρ∨, the minimum is always 1 for the long and short simple roots.
For the non-simply laced root system, there are two different values of minimum
for v = ρ, the Weyl vector, 1 for the long roots and 1/2 for the short roots. This
corresponds to the existence of two different coupling constants gL and gS . For all
root systems∆ except A1, we have |ρ·α|min < |ρ·α|max, with the long roots satisfying

|ρ · α|min + |ρ · α|max = h∨, |ρ∨ · α|min + |ρ∨ · α|max = h (2.22)

and the short roots

|ρ · α|min + |ρ · α|max < h
∨, |ρ∨ · α|min + |ρ∨ · α|max < h. (2.23)

That is, the saturation of of the inequality (2.14) occurs only for the long roots for
the choices of δ = 1/h for v = ρ∨ or δ = 1/h∨ for v = ρ. For A1 we have

ρ = ρ∨, |ρ · α|min = |ρ · α|max = 1, h = 2. (2.24)

In the Hamiltonian of an elliptic Calogero-Moser model based on a root system
∆ which is associated with a Lie algebra g, we redefine the dynamical variables from
{p, q} to {P,Q}

q = Q− 2ω3δ v, p = P, v = ρ or ρ∨, (2.25)

and take the limit ω3 → +∞ with ω1 = −iπ. The coupling constants are also scaled:

gL = mL eω3δ,

gS =

{
mS e

ω3δ/
√
2, untwisted potential,

mS e
2ω3δ/2

√
2, twisted potential,

}
for v = ρ∨,

gS =

{
mS e

ω3δ/2/
√
2, untwisted potential,

mS e
ω3δ/2

√
2, twisted potential,

}
for v = ρ.

(2.26)
In this limit we arrive at the Hamiltonian of the Toda models associated with the
Lie algebra g, its dual algebra g∨, the untwisted affine Lie algebra g(1) or its dual
(g(1))∨ depending on the types of the potential, untwisted or twisted, and the values
of the parameter δ.

For the simply laced root system ∆, we have the Toda system associated with
the Lie algebra g for δ < 1/h:

H =
1
2
P 2 +m2

∑
αi∈Π

eαi·Q, (2.27)

and the Toda system associated with the untwisted affine Lie algebra g(1) for δ = 1/h:

H =
1
2
P 2 +m2


∑
αi∈Π

eαi·Q + eα0·Q


 , (2.28)
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in which α0 is the affine root α0 = −αh. For the A1 case with δ = 1/2 the extreme
situations (2.24) and (A.12) apply and give the above result (2.28).

For a non-simply laced root system ∆ and an untwisted potential, we have the
Toda system associated with the Lie algebra g:

H =
1
2
P 2 +m2

L

∑
αi∈Π∩∆L

eαi·Q +m2
S

∑
αi∈Π∩∆S

eαi·Q, (2.29)

for v = ρ∨ and δ < 1/h or for v = ρ and δ < 1/h∨, and the Toda system associated
with the untwisted affine Lie algebra g(1):

H =
1
2
P 2 +m2

L


 ∑
αi∈Π∩∆L

eαi·Q + eα0·Q


+m2

S

∑
αi∈Π∩∆S

eαi·Q, (2.30)

for v = ρ∨ and δ = 1/h or for v = ρ and δ = 1/h∨. In these formulas ∆L (∆S) is
the set of long (short) roots.

For a non-simply laced root system ∆ and a twisted potential, we have the Toda
system associated with the dual Lie algebra g∨:

H =
1
2
P 2 +m2

L

∑
αi∈Π∩∆L

eαi·Q +m2
S

∑
αi∈Π∩∆S

e2αi·Q, (2.31)

for δ < 1/h and v = ρ∨ or δ < 1/h∨ and v = ρ, and the Toda system associated
with the twisted affine Lie algebra (g(1))∨:

H =
1
2
P 2 +m2

L


 ∑
αi∈Π∩∆L

eαi·Q + eα0·Q


+m2

S

∑
αi∈Π∩∆S

e2αi·Q, (2.32)

for v = ρ∨ and δ = 1/h or for v = ρ and δ = 1/h∨. The formulas for the twisted
potential cases (2.31) and (2.32) are valid for all the non-simply laced models except
for the one based on G2. In this case the last term in (2.31) and (2.32) should be
changed to e3αi·Q with appropriate scaling of gS .

A few remarks are in order. In the Calogero-Moser models the meaning of the
coupling constant is clear. They specify the strength of the repulsive potentials
near the boundary of the Weyl chambers. Thus the independence of the coupling
constants is quite crucial in the Calogero-Moser model. These properties are lost in
the transition to the Toda models by the shift of the dynamical variables (2.25) and
the scalings of the coupling constants (2.26). The remaining parameters mL and
mS , (2.26), are generally considered as giving mass scales of the Toda theories. For
the Toda theories based on finite Lie algebras, this interpretation is not adequate,
since these theories are conformally invariant. In fact, in the Toda theories based on
finite Lie algebras g, the mass parameters m2

i can be changed arbitrarily. Suppose
we start from the Hamiltonian

H =
1
2
P 2 +

∑
αi∈Π

m2
i e
αi·Q
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and make a shift

Q = Q′ +
∑
αi∈Π

2
α2
i

λi log

(
m′
i
2

m2
i

)
, (2.33)

in which {λi}, i = 1, · · · , r are the fundamental weights, satisfying λi · α∨j = δij for
αj ∈ Π. We arrive at

H =
1
2
P 2 +

∑
αi∈Π

m′
i
2
eαi·Q′

. (2.34)

2.2. BCr model

The BCr root system consists of three parts, long, middle and short roots:

∆BCr = ∆L ∪∆M ∪∆S ,
in which the roots are conveniently expressed in terms of an orthonormal basis of
Rr:

∆L = {±2ej}, ∆M = {±ej ± ek}, ∆S = {±ej} : j = 1, · · · , r. (2.35)

The set of simple roots is the same as that of Br:

Π = {er} ∪ {ej − ej+1, j = 1, · · · , r − 1}. (2.36)

If we define

ρ∨ =
r∑
j=1

(r + 1− j)ej, h = 2r + 1, (2.37)

and the following scalings,

gL =
√
2mL eω3δ, gM = mM eω3δ, gS = mS eω3δ/

√
2, (2.38)

for the untwisted potential we obtain the non-affine Br Toda model for δ < 1/h and
A

(2)
2n Toda model for δ = 1/h:

H =
1
2
P 2 +m2

L e
−2Q1 +m2

M

r−1∑
j=1

eQj−Qj+1 +m2
S e

Qr . (2.39)

For the following scalings,

gL =
√
2mL eω3δ, gM = mM e2ω3δ/2, gS = mS e4ω3δ/4

√
2, (2.40)

and the twisted potentials, we obtain the non-affine Cr Toda model for δ < 1/h and
another form of the A(2)

2n Toda model for δ = 1/h:

H =
1
2
P 2 +m2

L e
−2Q1 +m2

M

r−1∑
j=1

e2(Qj−Qj+1) +m2
S e

4Qr . (2.41)

This is due to the fact that the A(2)
2n root system is self-dual.
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§3. Limits of the Lax pairs

In this section we discuss the corresponding limits of the Calogero-Moser Lax
pairs. Contrary to the Hamiltonian case which has well-defined limits to the Toda
model Hamiltonians, the limits of the Lax pairs are diverse, some having well-defined
limits to the Toda model Lax pairs and some not. We consider two different types
of Calogero-Moser Lax pairs, the root type and the minimal type, 1) both expressing
the canonical equations of motion in terms of a pair of matrices L and M

L̇ =
d

dt
L = [L,M ]. (3.1)

Roughly speaking the elements of the L matrix are square roots of the Hamiltonian,
since Tr(L2) ∝ H. These Lax pairs depend on an additional parameter ξ, the
spectral parameter, which requires a shift proportional to ω3 as we will see presently.
Therefore the existence of a limit of the Hamiltonian does not imply that of a Lax
pair, not to mention those of both types, since they correspond to different types of
square roots of the Hamiltonian. In the following we examine the limits of various
Lax pairs in turn.

3.1. Minimal type Lax pair for simply laced root systems

This type of Lax pairs has the simplest structure and has a well-defined limit
to the Lax pair of the corresponding Toda model, as expected. This applies to the
models based on the root systems of Ar, Dr, E6 and E7.

The minimal type Lax pairs have the following form,

L(q, p, ξ) = p ·H +X,
M(q, ξ) = D + Y. (3.2)

The matrix elements of L and M are labelled by the weights of a minimal represen-
tation, (I. 4·1) in Ref. 1). The matrices H and D are diagonal

Hµν = µδµν and Dµν = δµνDµ, Dµ = ig
∑

∆�β=µ−ν
℘(β · q). (3.3)

The matrices X and Y have the form

X = ig
∑
α∈∆

x(α · q, ξ)E(α), Y = ig
∑
α∈∆

y(α · q, ξ)E(α), (3.4)

in which ξ is the spectral parameter and E(α)µν = δµ−ν,α. It should be stressed
that the H and E(α) here are not the Lie algebra generators for the associated Lie
algebra g, though they satisfy relations

[H,E(α)] = αE(α), [H, [E(α), E(β)]] = (α+ β)[E(α), E(β)],
E(−α) = E(α)T , [E(α), E(−α)] = α ·H. (3.5)

The function x(u, ξ) ( y(u, ξ) = ∂ux(u, ξ)) is a solution of a certain functional equa-
tion involving the potential function, 8) (I. 2·14), 1) and it factorises the potential
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as
x(u, ξ)x(−u, ξ) = −℘(u) + ℘(ξ). (3.6)

It is not unique in the sense that if x(u, ξ) is a solution then

x̃(u, ξ) = x(u, ξ) eb(ξ)u, b(ξ) : an arbitrary function (3.7)

is also a solution providing another factorisation, (II. 2·27). 1) As shown in the pre-
vious section, for

q = Q− 2ω3δ ρ, g = meω3δ, (3.8)

we have the following limits of the potential,

g2℘(α · q) −→
ω3→+∞




m2 eα·Q, α ∈ Π, δ < 1/h,

m2 e−αh·Q, αh : highest root, δ = 1/h,

0, otherwise.

(3.9)

(In a simply laced root system ρ = ρ∨.) In order to have a finite limit for g2℘(ξ), ξ
needs to be shifted, too:

ξ = logZ − 2ω3ε, Z ∈ R+, δ < ε ≤ 1/2, (3.10)

in which the ω3-independent part of ξ is parametrised by a positive number Z for
later convenience. From (A.8) we then find that g2℘(ξ) ∝ e2ω3(δ−|ε|) has a finite
limit for ω3 → +∞ up to a diverging constant. This constant is canceled by the one
coming from g2℘(α · q) in the factorisation formula (3.6). For the consistency of the
limit of the Lax pair with that of the Hamiltonian, the following limit of gx(α · q, ξ),

gx(α · q, ξ)→
{
finite for ± αi ∈ Π (δ ≤ 1/h) and ± αh (δ = 1/h),

0 otherwise,
(3.11)

is necessary. It is obvious that this condition selects, if any, a unique solution among
the equivalent ones related by the symmetry transformation (3.7).

We will show that the following solution, 9)

x(u, ξ) =
σ(ξ − u)
σ(ξ)σ(u)

exp(ζ(ξ)u) (3.12)

satisfies the above condition (3.11) and gives a minimal type Lax pair which tends to
a Toda model Lax pair in the limit ω3 → +∞. The asymptotic form of this solution
can be evaluated using formulas (A.13) and (A.15).∗) For σ(ξ) only (A.13) is needed
and for σ(α · q) and σ(ξ − α · q) both (A.13) and (A.15) are necessary according to
the range of the arguments.

∗) The formulas (3.13), (3.14), (3.17) and (3.18) are valid for all the root systems except for

A1. The A1 case needs to be considered separately because of (2.24). The Toda Lax pair (3.19) and

(3.20) is valid for all the cases including the A1.
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For positive roots α:

gx(α · q, ξ)→ −m exp
(
α ·Q
2

)
exp[ω3δ(1− ρ · α)], 0 < ε− δρ · α < 1,

→ mZ exp
(
−α ·Q

2

)
exp[ω3(δ + δρ · α− 2ε)], −1 < ε− δρ · α ≤ 0,

(3.13)

whilst for negative roots α:

gx(α · q, ξ)→ m exp
(
−α ·Q

2

)
exp[ω3δ(1 + ρ · α)], 0 < ε− δρ · α < 1,

→ −m
Z
exp

(
α ·Q
2

)
exp[ω3(2ε+ δ − δρ · α− 2)], 1 ≤ ε− δρ · α < 2.

(3.14)

For example, for the parameter ranges

δ(h− 1) < ε ≤ 1/2, or δ < 1/h, ε = 1/2, (3.15)

the function gx(α · q, ξ) is non-vanishing only for the positive and negative simple
roots. This corresponds to the Toda models based on simply laced finite Lie algebras.
For

ε = 1/2, δ = 1/h (3.16)

the function gx(α · q, ξ) is non-vanishing only for the positive and negative simple
roots and the highest roots. This corresponds to the Toda models based on simply
laced affine Lie algebras.

In the other Lax matrix M , (3.2), there are terms D and Y . The limit of D
simply vanishes under the scaling because it contains the term g℘(α · q), which has
a power of g less than that appearing in the potential, which has a finite limit.
Calculating the limit for Y is also not very difficult as we have already calculated
the limit of gx(α · q) and gy(α · q) = gx′(α · q). The result is summarised as follows
(α is a positive root):

gx(α · q, ξ)→ −m exp
(
α ·Q
2

)
, simple roots,

→ mZ exp
(
−α ·Q

2

)
, highest root,

→ 0, otherwise,

gy(α · q, ξ)→ −m
2
exp

(
α ·Q
2

)
, simple roots,

→ −mZ
2
exp

(
−α ·Q

2

)
, highest root,

→ 0, otherwise, (3.17)
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and

gx(−α · q, ξ)→ m exp
(
α ·Q
2

)
, simple roots,

→ −m
Z
exp

(
−α ·Q

2

)
, highest root,

→ 0, otherwise,

gy(−α · q, ξ)→ −m
2
exp

(
α ·Q
2

)
, simple roots,

→ − m

2Z
exp

(
−α ·Q

2

)
, highest root,

→ 0, otherwise. (3.18)

The Lax pair now reads

L = P ·H − im
∑
α∈Π

exp
(
α ·Q
2

)
[E(α)−E(−α)]

+im exp
(
α0 ·Q
2

)
[ZE(−α0)− Z−1E(α0)], (3.19)

M = − i
2
m
∑
α∈Π

exp
(
α ·Q
2

)
[E(α) + E(−α)]

− i
2
m exp

(
α0 ·Q
2

)
[ZE(−α0) + Z−1E(α0)]. (3.20)

For the Toda models based on a finite Lie algebra g, one should drop the terms
containing the affine root α0. The parameter Z which is a scaled version of the
original spectral parameter ξ now plays the role of a spectral parameter for the
affine Toda model based on g(1). It should be stressed again that although the
matrices E(α) are not Lie algebra generators as a whole, they satisfy the necessary
relations for the Toda model Lax pairs

[E(α), E(−β)] = 0, α, β ∈ Π ∪ {α0}, (3.21)

on top of those listed in (3.5). The non-vanishing intermediate state κ in the above
commutation relations either does not exist (for the case α · β = −1), or if it exists
it forms a pair which cancels with each other (for the case α · β = 0). This is due to
the fact that the weights of a minimal representation form a single Weyl orbit. Thus
we find that

L̇ = [L,M ]⇐⇒ Q̇ = P,

Ṗ = −m2

(∑
α∈Π

exp(α ·Q)α+ exp(α0 ·Q)α0

)
. (3.22)
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3.2. Root type Lax pair for simply laced root systems

This type of Lax pairs applies universally to all the Calogero-Moser models based
on simply laced root systems. 1), 2) Its representation space is the set of roots ∆ itself.
Thus it is not related to any representation of the associated algebra g except for
the simplest case of A1. This type of Lax pairs does not have a well-defined limit to
the Lax pair of the corresponding Toda model. Thus the Lax pair of a Toda model
which is not Lie algebra valued cannot be constructed in this way.

The root type Lax pair for simply laced root systems reads

L(q, p, ξ) = p ·H +X +Xd,
M(q, ξ) = D + Y + Yd. (3.23)

All of the matrices are labelled by the roots, α, β, γ ∈ ∆. The matrices H, D and
X have a similar structure to those in the minimal type Lax pair, except that

E(α)βγ = δβ−γ,α.

The matrices Xd and Yd are special for the root type Lax pair:

Xd = 2ig
∑
α∈∆

xd(α · q, ξ)Ed(α), Yd = ig
∑
α∈∆

yd(α · q, ξ)Ed(α), Ed(α)βγ = δβ−γ,2α.

(3.24)
The functions x(u, ξ) and xd(u, ξ) are solutions of coupled functional equations
(II. 2·24) and (II. 2·25). 1) They share similar properties. For example, similar to
the factorisation of the potential in terms of x(u, ξ) as in (3.6), we have another
factorisation

xd(u, ξ)xd(−u, ξ) = −℘(u) + ℘(2ξ). (3.25)

Thus, for the consistent limit of the Lax pair, xd(u, ξ) should have the same type of
asymptotic behaviour as that of x(u, ξ) (3.11):

gxd(α · q, ξ)→
{
finite for ± αi ∈ Π and ± αh,
0 otherwise.

(3.26)

However, this is not the case, since it is not compatible with the following functional
identity (III. 3·21), 1)

x(2u, ξ)xd(−u, ξ) + x(−2u, ξ)xd(u, ξ) = −℘(u) + ℘(ξ), (3.27)

which is a simple consequence of the general functional equation (II. 2·25). 1) We
multiply g2 to (3.27) and choose α to be a simple root

u = α · q = α ·Q− 2ω3δρ · α, ρ · α = 1.
Then the right-hand side is finite as in (3.9). On the left-hand side

gx(±2α · q, ξ)→ 0

since both have twice the damping factor. This means that either gxd(α · q, ξ) or
gxd(−α ·q, ξ) or both must be divergent for simple roots α. Thus the desired asymp-
totic behaviour of gxd(u, ξ) (3.26) is not achieved and the Lax pair has no consistent
limit. In Appendix D we list the asymptotic forms of xd and other functions.
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3.3. Other root type Lax pairs without Toda limits

The above argument for the non-existence of Toda limits for Calogero-Moser
Lax pairs, based as it is on the non-existence of finite x and xd functions for the
simple roots, can be applied to other models whose Lax pairs contain the root type
Lax pair (x and xd functions). Thus the following Lax pairs do not have a consistent
Toda limit:
1. Root type Lax pair based on long roots for untwisted and twisted Br model.
2. Root type Lax pair based on short roots for untwisted and twisted Cr model.
3. Root type Lax pair based on long and short roots for untwisted and twisted F4

model.
4. Root type Lax pair based on long and short roots for untwisted and twisted G2

model.
The set of the long roots of Br is the same as the set of the roots of Dr. Thus

the Br Lax pairs based on the long roots for the untwisted and the twisted models
(see §4 of paper III 1)) contain the functions x and xd.

The set of short roots of Cr is the same as the set of roots of Dr. Thus the Cr
Lax pairs based on the short roots for the untwisted model (see §4 of paper III 1))
contain the functions x and xd. The Cr Lax pair based on the short roots for the
twisted model contains the twisted functions x(1/2) and x(1/2)

d . For these functions
the twisted analogue of the identity (3.27) reads

x(1/2)(2u, ξ)x(1/2)
d (−u, ξ) + x(1/2)(−2u, ξ)x(1/2)

d (u, ξ) = −℘(u|{ω1, 2ω3}) + f(ξ).
(3.28)

This can be obtained from (III. 5·10), 1) and f(ξ) is a ξ dependent constant of
integration. Thus we know that x(1/2)(α · q, ξ) and x(1/2)

d (α · q, ξ) for ± simple roots
cannot be finite at the same time by the argument given in the previous section.
It should be stressed that this conclusion does not depend on a particular choice
of solutions x(1/2) and x(1/2)

d , e.g. (III. 5·15), 1) since (3.28) is a consequence of the
functional equations. In fact, it also applies to a different set of solutions x(1/2) and
x

(1/2)
d given in Appendix B which are equivalent to those used in Ref. 7) for the Lax
pair of the F4 model based on short roots.

Since the algebra F4 is self-dual, F∨
4 = F4, the sets of long roots and of short

roots have the same structure as the set of roots for D4. Thus the F4 Lax pair
based on the long roots for the untwisted and twisted models (see §4 of paper III 1))
contains the functions x and xd. The F4 Lax pair based on the short roots for the
untwisted model contains the functions x and xd and the twisted models the twisted
functions x(1/2) and x(1/2)

d .
The algebra G2 is also self-dual, G∨

2 = G2. The sets of long roots and of short
roots have the same structure as the set of A2 roots. The same argument as that for
F4 applies to this case, although the twisting is threefold.

3.4. Minimal type Lax pair for non-simply laced root systems

This applies to the untwisted and twisted Br models based on the spinor repre-
sentation and the untwisted and twisted Cr models based on the vector representa-
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tion. These can be handled in a unified way. The Toda limits of the Lax pairs exist
only for the untwisted models and for both choices v = ρ, ρ∨.

First let us consider the untwisted potential case. The Lax pair contains one
function x only. The choice v = ρ is suitable for the Toda limit because in this
case the minimum of ρ ·α(= 1/2) is achieved by the short simple roots and the long
simple roots have ρ · α = 1. Therefore the different scalings, as explained in (2.26),
for gL and gS would produce a consistent Toda Lax pair. That is gL = mLeω3δ and
gS = mSeω3δ/2/

√
2 with δ < 1/h∨ (= 1/h∨) for non-affine (affine) theories.

For the choice v = ρ∨, δ < 1/h (= 1/h), gL = mL e
ω3δ, gS = mS e

ω3δ/
√
2, the

minimum of ρ∨ · α is achieved by all the simple roots. Thus the minimal type Lax
pair has a finite limit and gives non-affine Br ( Cr) or affine B

(1)
r (C(1)

r ) Toda models
for the same parameter range as in the minimal type Lax pairs for the simply laced
root systems.

The Lax pair for the twisted potentials contains two functions, x and x(1/2).
These functions satisfy the relations (III. 5·23), 1)

x(u, ξ)x(1/2)(−u, ξ) + x(−u, ξ)x(1/2)(u, ξ) = −2℘(u) + g(ξ), (3.29)

in which g(ξ) is a ξ-dependent constant of integration. Based on this formula one
can show that the Toda model limit does not exist for either choice of v = ρ or ρ∨

as in the root type Lax pair cases.

3.5. Root type Lax pair for non-simply laced root systems

In this subsection the root type Lax pair for non-simply laced root systems which
are not treated in §3.3 will be discussed. These are the untwisted and twisted Br
models based on the short roots and the untwisted and twisted Cr models based on
the long roots. As has been pointed out in paper II, 1) the root type Lax pair for
the Cr model based on the long roots is equivalent to the minimal type Lax pair.
We will therefore discuss Toda model limits of the Br model Lax pair based on the
short roots.

First let us consider the untwisted Br model. In this case the Lax pair contains
the function x for the long roots and xd for the short roots. For the choice v = ρ∨,
the long roots and short roots are treated equally. Thus the same argument based
on (3.27) applies and the Lax pair has no consistent Toda model limit. For the
choice v = ρ, the simple short roots have half the decreasing factor of the simple
long roots. This requires gL = mL eω3δ, gS = mS eω3δ/2/2

√
2 for the finite potentials.

By multiplying gLgS to (3.27), we obtain

gLx(2u, ξ)gSxd(−u, ξ) + gLx(−2u, ξ)gSxd(u, ξ) = −gLgS(℘(u)− ℘(ξ)).

Suppose that gLx(α · q) and gSxd(α · q) are both finite for the simple roots. Let us
choose u = α · q with α being a simple short root. The left-hand side is then finite,
but the right-hand side is divergent since g2

S℘(α · q) is finite by assumption and the
right-hand side has an extra divergent factor gL/gS ∝ eω3δ/2. Thus the Lax pair
for the Br untwisted model based on the short roots has no consistent Toda model
limit.
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Next we consider the twisted model. In this case the Lax pair contains the
function x for the long roots and x(1/2)

d for the short roots. For v = ρ, gLx(α·q, ξ) and
gSx

(1/2)
d (α·q, ξ) are non-vanishing for the simple roots with the scalings gL = mL eω3δ,

gS = mS eω3δ/2
√
2. We have a relation (III. 5·22), 1)

x(2u, ξ)x(1/2)
d (−u, ξ) + x(−2u, ξ)x(1/2)

d (u, ξ) = −℘(u|{ω1, 2ω3}) + ℘(ξ)− ℘(ω1),
(3.30)

which is consistent with the limit of the Hamiltonian. The result is summarised as
follows (α is a positive root):

gLx(α · q, ξ)→ −mL exp
(
α ·Q
2

)
, long simple roots,

→ mLZ exp
(
−α ·Q

2

)
, highest root,

→ 0, otherwise,

gSx
(1/2)
d (α · q, ξ)→ −mS exp(α ·Q), short simple roots,

→ 0, otherwise. (3.31)

The resulting Lax pair is that of the Cr = (Br)∨ Toda model for the parameter range

δ(h− 1) < ε ≤ 1/2, or δ < 1/h, ε = 1/2,

and the Lax pair of the Toda model based on the twisted affine algebra A(2)
2r−1 =

(B(1)
r )∨ for

ε = 1/2, δ = 1/h.

The finiteness of the potential for long and short simple roots when v = ρ∨
requires different scalings of gL and gS , namely gL = mL eω3δ, gS = mS e2ω3δ/2

√
2,

(2.26). For δ < 1/h (= 1/h) we obtain a finite non-affine (affine) Toda Lax pair.

3.6. Root type Lax pairs for the BCr model based on the long and/or short roots

The set of the middle roots of the BCr root system is the same as the set of roots
of Dr. Consequently the root type Lax pair for the BCr model based on its middle
roots does not have a consistent Toda model limit. This leads us to consider the
root type Lax pair based on the long or the short roots. Since the BCr root system
is self-dual, the Lax pair based on the long roots and that based on the short roots
are related by the duality transformation. Thus we consider only the root type Lax
pair based on the short roots. Our interest lies in the case in which the potentials
for the long, middle and short roots survive in the Toda limit. The other situations
are the same as in the Br or Cr cases.

First let us consider the untwisted potentials. In this case the Lax pair contains
two functions, x for the long and the middle roots and xd for the short roots. For
the choice of v = ρ∨ given in (2.37), ρ∨ · α = 1 for the simple middle and the simple
short roots. As shown in the root type Lax pair for the non-simply laced case,
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gMx(α · q, ξ) and gSxd(α · q, ξ) cannot be simultaneously finite for the simple roots.
Here the scalings of the couplings are determined by the Hamiltonian (2.38). Thus
the Lax pair does not have a Toda model limit for untwisted potentials.

Next we consider the most general twisted model, the extended BCr model
with five independent coupling constants, (III. 4·87). 1), 10) We give the Lax pair for
this model in Appendix C. It is easy to see that the extended function x(1/2)

d for the
short roots cannot be finite at the same time as x(1/2) for the middle roots. Similarly,
another extended function x(1/2) for the long roots cannot be finite at the same time
as x(1/2) for the middle roots. Thus for the consistent Toda model limit we have
to put gS1 = gL2 = 0 and we are led to the ordinary twisted model with gL1 ≡ gL,
gM and gS2 ≡ gS should be scaled as in (2.40), which is determined by the limit of
the Hamiltonian. Now we have three functions x for the long roots, x(1/2) for the
middle roots and x(1/4)

d for the short roots in the Lax pair. The coexistence of the
function x and x(1/2) cannot have a finite limit as discussed in §3.4 (see (3.29)). We
thus come to the conclusion that the A(2)

2r Toda Lax pair cannot be obtained as a
limit from the Lax pair of the BCr Calogero-Moser Lax pair.

Let us close this section with a remark on the Toda model limits of the Lax pairs
of Calogero-Moser model in the generic representations of the reflection groups (see
§5 of Ref. 2)). It is rather straightforward to see that the consistent Toda model
limit does not exist in general. The Lax pair contains the function x(α · q, α∨·µξ), in
which µ is a generic basis vector of the representation. This means that there are as
many different functions of α · q as there are different values of α∨ · µ corresponding
to one potential function ℘(α · q). It is in general not possible that all of them have
the same Toda model limit.

§4. Lax pairs of Toda models

In this section we give a general intuitive method of constructing Lax pairs
for Toda models. This method works for systems associated with A, B, C and D
series. The method works for those root systems for which the simple roots and
the affine root can be written in the form ±2ei, ±ei ± ej or ±ei, where {ei} forms
an orthonormal basis. A hint for this method actually comes from the limits of
the minimal type Calogero-Moser Lax pairs described in the preceding section. We
explain the method with simple examples.

4.1. C(1)
2

First we discuss the case where the roots are of the form ±2ei and ±ei± ej (the
case of the form ±ei will be discussed later in the section). Let us consider the affine
C

(1)
2 Toda model. The Hamiltonian is given by

H(1)
C2
=
1
2
(p21 + p

2
2) +m

2eq1−q2 +
m2

2
(
e2q2 + e−2q1

)
. (4.1)

The canonical equations of motion are
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ṗ1 = −∂H
∂q1

= −m2eq1−q2 +m2e−2q1 ,

ṗ2 = −∂H
∂q2

= m2eq1−q2 −m2e2q2 , (4.2)

with q̇1 = p1 and q̇2 = p2. In this case the two simple roots are 2e2 and e1 − e2. The
affine root is given by −2e1. The L matrix is constructed in the following way. The
dimension dim of the Lax pair would be twice the rank of the algebra (this is not
always the case, as we remark afterwards). The diagonal part of L is given by

Li,i = −L2r+1−i,2r+1−i = pi, i = 1, 2, · · · , r; r : rank. (4.3)

Now corresponding to every simple or affine root we have off-diagonal elements in L.
Suppose we have a simple root of the form ei − ej . Corresponding to this we have

Li,j = −Lj,i = L2r+1−j,2r+1−i = −L2r+1−i,2r+1−j = im exp
1
2
(qi − qj), i = j.

(4.4)
For the present example C2, 2r = 4 and there is a simple root e1 − e2 and corre-
spondingly we have

L1,2 = −L2,1 = L3,4 = −L4,3 = im exp
1
2
(q1 − q2). (4.5)

Another type of root is of the form ±2ei. Corresponding to these we have counter
diagonal elements in L as follows:

Li,2r+1−i = −L2r+1−i,i = ±im exp(±qi). (4.6)

In the C2 case corresponding to the affine root −2e1 and a simple root 2e2 then one
has

L1,4 = −L4,1 = −im exp(−q1) and L2,3 = −L3,2 = im exp(q2), (4.7)

respectively. The rest of the matrix elements of L vanishes. This completes the
construction of L for affine C(1)

2 Toda model. Once L is constructed M can be
written down very easily in the following way. In M the diagonal elements are
vanishing,

Mi,i =M2r+1−i,2r+1−i = 0, (4.8)

and the off-diagonal elements are determined by those of L:

Mi,j =
i

2
|Li,j|, i = j. (4.9)

The matrices L and M for the affine C(1)
2 model read

L =




p1 ime(q1−q2)/2 0 −ime−q1
−ime(q1−q2)/2 p2 imeq2 0

0 −imeq2 −p2 ime(q1−q2)/2
ime−q1 0 −ime(q1−q2)/2 −p1


 , (4.10)
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M =
1
2




0 ime(q1−q2)/2 0 ime−q1
ime(q1−q2)/2 0 imeq2 0

0 imeq2 0 ime(q1−q2)/2
ime−q1 0 ime(q1−q2)/2 0


 . (4.11)

It is easy to check

Tr(L2) = 2(p21 + p
2
2) + 4m

2eq1−q2 + 2m2
(
e2q2 + e−2q1

)
= 4H(1)

C2
, (4.12)

and the Lax equation L̇ = [L,M ] is identical to the canonical equation given in (4.2).

4.2. A(2)
3

The second example is the Toda model Lax pair for the twisted affine alge-
bra A(2)

3 . The simple roots of the affine A(2)
3 are identical to those of C2 already

considered. The affine root is −e1 − e2. We adopt the following Hamiltonian:

H(2)
A3
=
1
2
(p21 + p

2
2) +m

2
(
eq1−q2 + e−q1−q2

)
+
m2

2
e2q2. (4.13)

The canonical equations of motion are

ṗ1 = −∂H
∂q1

= −m2eq1−q2 +m2e−q1−q2 ,

ṗ2 = −∂H
∂q2

= m2eq1−q2 +m2e−q1−q2 −m2e2q2 . (4.14)

For simple roots of the form ±(qi + qj) one writes elements in L as

Li,2r+1−j = −L2r+1−j,i = Lj,2r+1−i = −L2r+1−i,j = ±im exp
[
±1
2
(qi + qj)

]
.

(4.15)
So in this case corresponding to the affine root we have (the other terms are the
same as those in the C2 case)

L1,3 = −L3,1 = L2,4 = −L4,2 = −im exp 1
2
(−q1 − q2), (4.16)

and the Lax pair is a set of 4× 4 matrices:

L =




p1 ime(q1−q2)/2 −ime(−q1−q2)/2 0
−ime(q1−q2)/2 p2 imeq2 −ime(−q1−q2)/2
ime(−q1−q2)/2 −imeq2 −p2 ime(q1−q2)/2

0 ime(−q1−q2)/2 −ime(q1−q2)/2 −p1


 ,
(4.17)

M =
1
2




0 ime(q1−q2)/2 ime(−q1−q2)/2 0
ime(q1−q2)/2 0 imeq2 ime(−q1−q2)/2
ime(−q1−q2)/2 imeq2 0 ime(q1−q2)/2

0 ime(−q1−q2)/2 ime(q1−q2)/2 0


 .
(4.18)
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It is easy to check

Tr(L2) = 2(p21 + p
2
2) + 4m

2eq1−q2 + 4m2e−q1−q2 + 2m2e2q2 = 4H(2)
A3
. (4.19)

In these two examples L is hermitian and M anti-hermitian. Of course both of the
Lax pairs constructed here are well-known.

4.3. D(2)
3 and B(1)

2

The third and fourth examples are the duals of those given in the previous
two subsections. The dimensions of the Lax pairs for B(1)

2 and D(2)
3 are 5 and 6,

respectively. These cases involve some of the simple roots of the form ei. First
we construct the Lax pair for the B(1)

2 Toda model. We could have written down
the simple roots and the affine root of affine B(1)

2 as e1 − e2, e2 and −e1 − e2,
respectively, by taking the co-roots of D(2)

3 . In this case normalisation for the long
roots is 2 whereas in the earlier parametrisation it is 4. For each simple root of the
form ei one has to add an additional row and column to the Lax pair given above
which is initially 2r dimensional i.e., twice the rank. Since in the B2 case there is
only one simple root e2 of this form the dimension of the Lax pair is 5. We mark
the new row and column by 0, and we put the corresponding row and column in the
middle of the Lax pair matrices. The diagonal element L0,0 = 0. Corresponding to
±ei we insert elements

Li,0 = −L0,i = L0,2r+1−i = −L2r+1−i,0 = ±im exp
(
±1
2
qi

)
. (4.20)

For the B2 Toda model we then have

L2,0 = −L0,2 = L0,3 = −L3,0 = im exp
(
1
2
q2

)
. (4.21)

The rest of the elements of L andM are constructed in the usual manner as explained
above and we have the following Lax pair:

L=




p1 im1e(q1−q2)/2 0 −im2e(−q1−q2)/2 0
−im1e(q1−q2)/2 p2 imeq2/2 0 −im2e(−q1−q2)/2

0 −imeq2/2 0 imeq2/2 0
im2e(−q1−q2)/2 0 −imeq2/2 −p2 im1e(q1−q2)/2

0 im2e(−q1−q2)/2 0 −im1e(q1−q2)/2 −p1


 ,

(4.22)

M=
1
2




0 im1e
(q1−q2)/2 0 im2e

(−q1−q2)/2 0
im1e

(q1−q2)/2 0 imeq2/2 0 im2e
(−q1−q2)/2

0 imeq2/2 0 imeq2/2 0
im2e

(−q1−q2)/2 0 imeq2/2 0 im1e
(q1−q2)/2

0 im2e
(−q1−q2)/2 0 im1e

(q1−q2)/2 0


 .

(4.23)

Once again 1
4Tr(L

2) gives us the Hamiltonian for the affine B(1)
2 (= C(1)

2 ) Toda model.
Notice that in the above we have introduced three coupling constants viz. m1, m2
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and m, but as shown in (2.33)–(2.34) these are irrelevant. In a similar fashion we
construct a 6 dimensional Lax pair for D(2)

3 (= A
(2)
3 ) model. We write the simple

and affine roots of D(2)
3 as e2, e1 − e2 and −e1, respectively. The Lax pair reads

L =




p1 ime(q1−q2)/2 −im1e−q1/2 0 0 0
−ime(q1−q2)/2 p2 0 im2eq2/2 0 0
im1e−q1/2 0 0 0 0 −im1e−q1/2

0 −im2eq2/2 0 0 im2eq2/2 0
0 0 0 −im2eq2/2 −p2 ime(q1−q2)/2

0 0 im1e−q1/2 0 −ime(q1−q2)/2 −p1


 ,

(4.24)

M =
1
2




0 ime(q1−q2)/2 im1e−q1/2 0 0 0
ime(q1−q2)/2 0 0 im2eq2/2 0 0
im1e−q1/2 0 0 0 0 im1e−q1/2

0 im2eq2/2 0 0 im2eq2/2 0
0 0 0 im2eq2/2 0 ime(q1−q2)/2

0 0 im1e−q1/2 0 ime(q1−q2)/2 0


 .

(4.25)

Two of the coupling constants could be redefined and the Hamiltonian could be
written in terms of a single coupling constant (mass parameter), for example m.

Before closing this section let us summarise that the intuitive method gives
2r dimensional Lax pairs for C(1)

r (vector representation) and A(2)
2r−1 and a 2r + 1

dimensional (vector representation) Lax pair for B(1)
r and a 2r + 2 dimensional Lax

pair for D(2)
r+1 Toda models. Of course one can also construct the A

(1)
r and the D(1)

r

Lax pairs in the vector representations in a similar fashion.

§5. Summary and discussion

As shown in §2, the Hamiltonians of the elliptic Calogero-Moser models tend to
those of Toda models as one of the periods of the elliptic function goes to infinity,
provided the dynamical variables are properly shifted and the coupling constants are
scaled. Although both Calogero-Moser and Toda models are integrable, the corre-
sponding limits of the Lax pairs are subtle. This is partly because of the abundance
of Lax pairs, i.e., there are many Lax pairs for a given Calogero-Moser model. Here
we list those Lax pairs of Calogero-Moser models which have Toda model limits.

algebras potential Lax pair Toda models

Ar, Dr, E6, E7 untwisted minimal g, g(1)

Br untwisted minimal Br, B
(1)
r

Cr untwisted minimal Cr, C
(1)
r

Br twisted short roots Cr, A
(2)
2r−1

Cr untwisted long roots Cr, C
(1)
r

Here we give an intuitive explanation why some Calogero-Moser Lax pairs, for
example, the root type Lax pairs for simply laced root systems, do not have Toda
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limits. In some Lax pairs, there are two different functions, e.g., x and xd, corre-
sponding to the same potential in the Hamiltonian. These functions are related to
the potentials by the factorisation formulas, for example (3.6) and (3.25), and the
limits of the potentials are unique. That is, these two different functions must have
the same limit for all the possible arguments α · q belonging to the potential. This is
not compatible with the functional equations they must satisfy, thus the postulated
limits to Toda models do not exist in such cases.

In Ref. 7) it is claimed that the Lax pair for the twisted F4 model based on the
short roots has a Toda model limit. In §3.3 we have shown that such a limit does not
exist. Let us follow their logic here. They use three functions x, x(1/2) and x(1/2)

d in
our notation, and their solution for x(1/2) and x(1/2)

d corresponds to (B.1) and (B.2)
given in Appendix B. They show that gSx

(1/2)
d (α · q, ξ) has a non-vanishing finite

limit for ± simple short roots and at the same time it is claimed that gSx(1/2)(α ·q, ξ)
vanishes for positive short roots. This would clearly violate the factorisation relation
(the half period analogue of (3.6)) unless gSx(1/2)(−α ·q, ξ) diverge for positive short
roots. As a result, the Lax pair does not have a Toda model limit.

Let us assume, according to their claim, that gSx(1/2)(±α · q, ξ) vanishes for
short roots. This would lead to another contradiction with the formula Tr(L2) ∝ H,
without invoking the factorisation formulas. On the right-hand side the limit of the
potential is well defined and unique, whereas on the left-hand side the short root
potential has two different sources, one from the function x(1/2)

d and the other from
x(1/2). The former has a finite limit while the latter contribution vanishes. This
means that the relation Tr(L2) ∝ H is broken in the limiting process.

In Ref. 7) a Toda model Lax pair for the twisted affine Lie algebra D(2)
r+1 is

obtained as a limit of a Lax pair for the twisted Cr Calogero-Moser model in a 2r+2
dimension representation, 11) which does not belong to the minimal type or root type
Lax pairs developed in our series of papers. 1)
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Appendix A
Elliptic Functions

Here we collect some mathematical formulas which will be used in the main
text. For the elliptic functions we follow the notation and conventions of Ref. 12)
throughout this paper. The Weierstrass function ℘ is a doubly periodic meromorphic
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function with a pair of primitive periods {2ω1, 2ω3}, �(ω3/ω1) > 0:

℘(u) ≡ ℘(u|{2ω1, 2ω3}) = 1
u2
+
∑
m,n

′
[

1
(u−Ωm,n)2 − 1

Ω2
m,n

]
, (A.1)

in which Ωm,n is a period
Ωm,n = 2mω1 + 2nω3

and
∑ ′ denotes the summation over all integers, positive, negative and zero, exclud-

ing m = n = 0. The Weierstrass sigma function σ(u) is defined from ℘(u) via the
Weierstrass zeta function ζ(u) as

℘(u) = −ζ ′(u), ζ(u) = d log σ(u)/du = σ′(u)/σ(u),

ζ(u) ≡ ζ(u|{2ω1, 2ω3}) = 1
u
+
∑
m,n

′
[

1
u−Ωm,n +

1
Ωm,n

+
u

Ω2
m,n

]
,

σ(u) ≡ σ(u|{2ω1, 2ω3}) = u
∏
m,n

′
(
1− u

Ωm,n

)
exp

[
u

Ωm,n
+

u2

2Ω2
m,n

]
, (A.2)

in which
∏ ′ denotes the product over all integers, positive, negative and zero, ex-

cluding m = n = 0. For the parametrisation of the periods

ω1 = −iπ, ω3 ∈ R+, τ ≡ ω3

ω1
= iω3/π, q = eiτπ = e−ω3

the following expansion formulas for the elliptic functions are useful:∗)

ζ(u) =
iη1u

π
+
1
2
coth

u

2
− 2

∞∑
n=1

q2n

1− q2n sinhnu, (A.3)

℘(u) =
(
1
2π

)2
[
−4iη1π + π2

sinh2(u/2)
+ 8π2

∞∑
n=1

nq2n

1− q2n coshnu
]
, (A.4)

in which

η1 = ζ(ω1) = iπ

(
1
12

− 2
∞∑
n=1

nq2n

1− q2n
)

−→
ω3→+∞

i
π

12
. (A.5)

The exponential potentials can be obtained from the elliptic potentials simply by
the following way. For a shifted argument

u = U − ω3>, |>| < 1, (A.6)

the summations in (A.3) and (A.4) can be neglected in the limit ω3 → +∞ to obtain

ζ(u) =
iη1u

π
+
1
2
coth

u

2
, (A.7)

VL(u) ≈ 1
12
+
1
4

1
sinh2 u/2

, VS(u) ≈ 1
3
+

1
sinh2 u

. (A.8)

∗) See, for example, Ref. 13), p. 221.

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/102/4/749/1901230 by guest on 16 August 2022



772 S. P. Khastgir, R. Sasaki and K. Takasaki

In other words we obtain the following asymptotic formulas:

VL(u) ≈ e±U∓ω3' + const, VS(u) ≈ 4e±2U∓2ω3' + const, > >< 0. (A.9)

Thus by appropriate scalings of the coupling constants

gL = mL eω3|'|/2, gS = mS eω3|'|/2, |>| ≤ 1, (A.10)

the exponential potentials can be obtained

g2
LVL(u) ≈ m2

L e
±U , g2

SVS(u) ≈ m2
S e

±2U , > >< 0, |>| < 1, (A.11)

in which we understand the constant parts are properly subtracted. The extreme
case |>| = 1 deserves special attention

g2
LVL(U ± ω3) ≈ m2

L

(
eU + e−U

)
,

g2
SVS(U ± ω3) ≈ 4m2

S

(
e2U + e−2U

)
. (A.12)

It should be remarked that any shift of the argument u of the potentials which is
proportional to ω3 can always be written in the form (A.6) with |>| ≤ 1, due to
the 2ω3 periodicity of the ℘ function. Thus the shifted potential functions always
decrease exponentially e−ω3|'|, up to an additive constant term. Only those potential
terms which have the minimal decrease can be made finite by appropriate scalings
of the coupling constants.

The corresponding approximation formula for the σ function reads

σ(u) ≈ 2 sinh
u

2
exp

(
−u

2

24

)
, (A.13)

in which u is shifted as in (A.6). Since σ(u) is quasi-periodic in u, we need two
additional asymptotic formulas corresponding to plus (minus) one period shift. For

u = u0 ± 2ω3, u0 = U − ω3>, |>| < 1, (A.14)

we have

σ(u) ≈ −2 sinh u0

2
e±u0+ω3 exp

(
−u

2

24

)
. (A.15)

Appendix B
Other Solutions of the Functional Equations

Here we present without proof some new sets of solutions to the functional
equations for the twisted functions {x(1/2), x

(1/2)
d } and similar functions for the G2

model, {x(1/3), x
(1/3)
d , x

(1/3)
t }. These solutions are closely related to the ones given in

the Appendix of Ref. 2) and the derivation is similar. For {x(1/2), x
(1/2)
d } we have

x(1/2)(u, ξ) =
[
σ(ξ − u)
σ(ξ)σ(u)

− σ(ξ − u− ω1)
σ(ξ)σ(u+ ω1)

exp[η1 ξ]
]

(B.1)
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and

x
(1/2)
d (u, ξ) =

[
σ(2ξ − u)
σ(2ξ)σ(u)

+
σ(2ξ − u− ω1)
σ(2ξ)σ(u+ ω1)

exp[2η1 ξ]
]
. (B.2)

Only the sign of the second term of (B.1) is different from (A·27) of Ref. 2). For the
G2 functions we have

x(1/3)(u, ξ) =
[
σ(ξ − u)
σ(ξ)σ(u)

+ λ
σ(ξ − u− 2ω1

3 )
σ(ξ)σ(u+ 2ω1

3 )
exp[(2/3)η1 ξ]

+ λ2 σ(ξ − u− 4ω1
3 )

σ(ξ)σ(u+ 4ω1
3 )

exp[(4/3)η1 ξ]
]
, (B.3)

in which λ is a cubic root of unity, λ = e±2iπ/3 and

x
(1/3)
d (u, ξ) =

[
σ(2ξ − u)
σ(2ξ)σ(u)

+ λ2 σ(2ξ − u− 2ω1
3 )

σ(2ξ)σ(u+ 2ω1
3 )

exp[(4/3)η1 ξ]

+ λ
σ(2ξ − u− 4ω1

3 )
σ(2ξ)σ(u+ 4ω1

3 )
exp[(8/3)η1 ξ]

]
, (B.4)

x
(1/3)
t (u, ξ) =

[
σ(3ξ − u)
σ(3ξ)σ(u)

+
σ(3ξ − u− 2ω1

3 )
σ(3ξ)σ(u+ 2ω1

3 )
exp[2η1 ξ]

+
σ(3ξ − u− 4ω1

3 )
σ(3ξ)σ(u+ 4ω1

3 )
exp[4η1 ξ]

]
. (B.5)

They satisfy (III. 5·10) for n = 3 and (III. 5·12), (III. 5·13). 1)

Appendix C
Extended Twisted BCr Root System Lax Pair with Five Independent

Couplings Based on Short Roots

Here we write the root type Lax pair for the twisted BCr system based on the
short roots.

The pattern of short root − short root is

BCr : short root− short root =



long root,
middle root,
2× short root,
non-root.

(C.1)

Based on this one can construct the Lax pair as

L(q, p, ξ) = p ·H +Xm +Xd +Xl,
M(q, ξ) = Dm +DL +Ds+ Ym + Yd + Yl, (C.2)

in which Xm (Ym) corresponds to short root − short root = middle root, XL (YL)
corresponds to short root − short root = long root and Xd (Yd) corresponds to short
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root − short root = 2 × short root:

Xd = 2i
∑
λ∈∆S

[
gS1x

(1/2)
d (λ · q, ξ) + gS2x

(1/4)
d (λ · q, ξ)

]
Ed(λ),

Xm = igM
∑
α∈∆M

x(1/2)(α · q, ξ)E(α),

Xl = i
∑
Ξ∈∆L

[
gL1x(Ξ · q, ξ) + gL2x

(1/2)(Ξ · q, ξ)
]
E(Ξ),

Yd = i
∑
λ∈∆S

[
gS1y

(1/2)
d (λ · q, ξ) + gS2y

(1/4)
d (λ · q, ξ)

]
Ed(λ),

Ym = igM
∑
α∈∆M

y(1/2)(α · q, ξ)E(α),

Yl = i
∑
Ξ∈∆L

[
gL1y(Ξ · q, ξ) + gL2y

(1/2)(Ξ · q, ξ)
]
E(Ξ),

Ed(λ)µν = δµ−ν,2λ, E(α)µν = δµ−ν,α, E(Ξ)µν = δµ−ν,Ξ , (C.3)

(Ds)µν = δµ,ν(Ds)µ,

(Ds)µ = i [gS1℘(µ · q|{ω1, 2ω3}) + gS2℘(µ · q|{ω1/2, 2ω3})] , (C.4)

(Dm)µν = δµ,ν(Dm)µ,

(Dm)µ = igM
∑

α∈∆M , α·µ=1

℘(α · q|{ω1, 2ω3}), (C.5)

(Dl)µν = δµ,ν(Dl)µ,

(Dl)µ = i [gL1℘(2µ · q) + gL2℘(2µ · q|{ω1, 2ω3})] . (C.6)

Appendix D
Asymptotic Forms of Various Functions Appearing in the Lax Pair

In this section we give asymptotic forms of various functions, xd, x(1/2), x
(1/2)
d ,

etc. The dynamical variables and the spectral parameter are scaled as in (3.8) and
(3.10) with ω1 = −iπ and ω3 → +∞.
i) xd for positive roots α:

xd(α · q, ξ)→ −1, 0 < 2ε− δρ · α < 1,
→ Z2 exp(−α ·Q) exp[ω3(2δρ · α− 4ε)], −1 < 2ε− δρ · α ≤ 0,

(D.1)
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and for negative roots α:

xd(α · q, ξ)→ exp(−α ·Q) exp[2ω3δρ · α], 0 < 2ε− δρ · α < 1,
→ − 1

Z2
exp[ω3(4ε− 2)], 1 ≤ 2ε− δρ · α < 2, (D.2)

in which
xd(u, ξ) =

σ(2ξ − u)
σ(2ξ)σ(u)

exp(2ζ(ξ)u).

ii) x(1/2) for positive roots α:

x(1/2)(α · q, ξ)→ −2 exp
(
3α ·Q
2

)
exp[−3ω3δρ · α], 0 < ε/2− δρ · α < 1,

→ 2Z exp
(
−α ·Q

2

)
exp[ω3(δρ · α− 2ε)], −1 < ε/2− δρ · α ≤ 0

(D.3)

and for negative roots α:

x(1/2)(α · q, ξ)→ 2 exp
(
−α ·Q

2

)
exp[ω3δρ · α], 0 < ε/2− δρ · α < 1,

→ − 2
Z
exp

(
3α ·Q
2

)
exp[ω3(2ε− 3δρ · α− 4)], 1 ≤ ε/2− δρ · α < 2,

(D.4)

in which

x(1/2)(u, ξ) =
x(u, ξ/2)x(u+ ω1, ξ/2)

x(ω1, ξ/2)
exp [u(ζ(ξ)− 2ζ(ξ/2))],

and x(u, ξ) is defined in (3.12).
iii) x(1/2)

d for positive roots α:

x
(1/2)
d (α · q, ξ)→ −2 exp(α ·Q) exp[−2ω3δρ · α], 0 < ε− δρ · α < 1,

→ 2Z2 exp(−α ·Q) exp[ω3(2δρ · α− 4ε)], −1 < ε− δρ · α ≤ 0
(D.5)

and for negative roots α:

x
(1/2)
d (α · q, ξ)→ 2 exp(−α ·Q) exp[2ω3δρ · α], 0 < ε− δρ · α < 1,

→ − 2
Z2

exp(α ·Q) exp[ω3(4ε− 2δρ · α− 4)], 1 ≤ ε− δρ · α < 2,
(D.6)

in which
x

(1/2)
d (u, ξ) =

x(u, ξ)x(u+ ω1, ξ)
x(ω1, ξ)

.
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