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Abstract. We present a new framework for vision-based estimation of calorific

expenditure from RGB-D data - the first that is validated on physical gas exchange

measurements and applied to daily living scenarios. Deriving a person’s energy

expenditure from sensors is an important tool in tracking physical activity levels

for health and lifestyle monitoring. Most existing methods use metabolic lookup

tables (METs) for a manual estimate or systems with inertial sensors which ul-

timately require users to wear devices. In contrast, the proposed pose-invariant

and individual-independent vision framework allows for a remote estimation of

calorific expenditure. We introduce, and evaluate our approach on, a new dataset

called SPHERE-calorie, for which visual estimates can be compared against si-

multaneously obtained, indirect calorimetry measures based on gas exchange.

We conclude from our experiments that the proposed vision pipeline is suitable

for home monitoring in a controlled environment, with calorific expenditure es-

timates above accuracy levels of commonly used manual estimations via METs.

With the dataset released, our work establishes a baseline for future research for

this little-explored area of computer vision.

1 Introduction

The large majority of research into the physical activity levels of people with, or at

risk of, chronic disease have measured either total physical activity or physical activity

acquired in specific activities, such as walking, that generally occur outside the home.

Very little is known about how activities of normal daily living in the home environment

may contribute to prevention of or recovery from/management of chronic disease, such

as obesity and diabetes. An accurate assessment of physical activity within the home is

thus important to understand recovery progress and long term health monitoring [1].

Energy expenditure, also referred to as ‘calorific expenditure’, is one commonly

used single metric to quantify physical activity levels over time. It provides a key tool

for the assessment of physical activity; be that for the long term monitoring of health

and lifestyle aspects associated to chronic conditions or for recovery medicine. Calorific

expenditure is traditionally measured either using direct methods, such as a sealed res-

piratory chamber [2], or indirect calorimetry, which requires carrying gas sensors and

wearing a breathing mask [3]. The latter is often based on the respiratory differences

of oxygen and carbon dioxide in the inhaled and exhaled air. It forms the measurement

standard for non-stationary scenarios where the person can move freely. Recently, the

use of wearable devices – with a focus on coarse categorisations of activity levels by
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wrist-worn inertial sensors [4] – has become a popular monitoring choice due to its low

cost, low energy consumption, and data simplicity. Among these, tri-axial accelerome-

ters are the most broadly used inertial sensors [5].

Visual systems, on the other hand, are already a key part of home entertainment

systems today, and their RGB-D sensors [6] allow for a rich and fine-grained analysis

of human activity within the field of view. Recent advances in computer vision have now

opened up the possibility of integrating these devices seamlessly into home monitoring

systems [7,8].

With this in mind, we propose a framework for estimating energy expenditure from

RGB-D data in a living room environment. Figure 1 shows in bold a flowchart of the

proposed method – mapping visual flow and depth features to calorie estimates using

activity-specific models (AS in short). The method implements a cascaded and recur-

rent approach, which explicitly detects activities as an intermediate to select type spe-

cific mapping functions for final calorific estimation. We compare this proposed method

against a ground truth of gas-exchange measurements (GT in short) and two off-the-

shelf alternatives: (1) mapping features directly to calorie estimates via a monolithic

classifier (DM in short), and (2) manual mapping from activity classes to calorie es-

timates via metabolic equivalent task lookup tables [9] (MET in short) as most often

applied in practice today.

This is a new application in computer vision where no existing datasets are avail-

able. In order to quantify the performance, we introduce a new dataset, SPHERE-calorie
1, for calorific expenditure estimation collected within a home environment. The dataset

contains 11 common household activities performed over up to 20 sessions, lasting up

to 30 minutes for each session, in each of which the activities are performed continu-

ously. The setup consists of an RGB-D Asus Xtion camera mounted at the corner of a

living room and a COSMED K4b2 [3] indirect calorimeter for ground truth measure-

ment. The SPHERE-calorie dataset will be publicly released. In summary, the major

contributions of this paper are, (a) a first-ever framework for a vision-based estimation

of calorific expenditure from RGB-D data only, applicable to daily living scenarios,

and (b) a novel dataset linking more than 10 hours of RGB-D video data to ground truth

calorie readings from indirect calorimetry based on gas exchange.

2 Related Work

Applying computer vision techniques to help with the diagnosis and management of

health and wellbeing conditions has gained significant momentum over the last years.

However, studies on energy expenditure using visual sensors have been relatively lim-

ited. Our work explores this field further and builds on several relevant subject areas in

vision.

Feature Representation - The visual trace of human activity in video forms a

spatio-temporal pattern. To extract relevant properties from this for the task at hand, one

aims at compactly capturing this pattern and highlighting important aspects related to

the properties of interest. Assuming that both body configuration and body motion [10]

1 The dataset is released on SPHERE website http://www.ircsphere.ac.uk/

work-package-2/calorie

http://www.ircsphere.ac.uk/work-package-2/calorie
http://www.ircsphere.ac.uk/work-package-2/calorie
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Fig. 1: Framework Overview. RGB-D videos are represented by a combination of flow

and depth features. The proposed recurrent method AS (top) then selects activity-

specific models which map to energy expenditure estimates. We compare this method to

a direct mapping method DM and a manual estimate via lookup tables MET (bottom).

are relevant to infer calorific uptake, the pool of potential features is large - ranging

from local interest point configurations [11], over holistic approaches like histograms

of oriented gradients and histograms of motion information [12], to convolutional neu-

ral network features [13].

Motion information in the first place could also be recovered in various ways, e.g.

from RGB data using optical flow or from depth data using 4D surface normals [14].

Whilst a composition of these features via concatenation of per-frame descriptors is

straight forward, this approach suffers from the curse of dimensionality and unafford-

able computational cost. Sliding window methods [15], on the other hand, can limit

this by predicting current values only from nearby data within a temporal window.

Further compaction may be achieved by converting large feature arrays into a single,

smaller vector with a more tractable dimension count via, for instance, bags of visual

words [16], Fisher vectors[17] or time series pooling [18]. In summary, the challenge

of feature representation will require capturing visual aspects relevant to calorific ex-

penditure, whilst limiting the dimensionality of the descriptor.

Activity Recognition - There exists a significant body of literature describing the

inference of activities from 2D colour intensity imagery [19], RGB-D data [6], and

skeleton-based data [20]. Knowledge about the type of activity undertaken has been

shown to correlate with the calorific expenditure incurred [9]. In alignment with Fig-

ure 1, we will argue in this work that an explicit activity recognition step in the vision

pipeline can, as an intermediate component, aid the visual estimate of energy uptake.

Visual Energy Expenditure Estimation - 2D video has recently been used by

Edgcomb and Vahid [21] coarsely to estimate daily energy expenditure. In their work

a subject is segmented from the scene background. Changes in height and width of

the subject’s motion bounding box, together with vertical and horizontal velocities and

accelerations, are then used to estimate calorific uptake. Tsou and Wu [22] take this
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Fig. 2: Ground truth example sequence. Raw per breath data (red) and smoothed

COSMED-K4b2 calorimeter readings (blue) and sample colour images corresponding

to the activities performed by the subject.

idea further and estimate calorie consumption using full 3D joint movements tracked

as skeleton models by a Microsoft Kinect. Both of the above methods use wearable

accelerometry as the target ground truth, which in fact does not provide an accurate

benchmark; and skeleton data is commonly noisy and currently only operates reliably

when the subject is facing the camera. This limits applicability in more complex visual

settings as contained in the SPHERE-calorie dataset.

As outlined in the following section, our work attempts to remedy these short-

comings by using skeleton-independent, RGB-D based vision to estimate calorific ex-

penditure against a standardised calorimetry sensor COSMED-K4b2 based on gas ex-

change (see Figure 2).

3 Proposed Method

We propose an activity-specific pipeline to estimate energy expenditure utilising both

depth and motion features as input. Importantly, our setup as shown in Figure 1 is

designed to reason about activities first, before estimating calorie expenditure via a set

of models which are each separately trained for particular activities.

3.1 Features

We first simultaneously collect RGB and depth imagery using an Asus Xmotion. For

each frame t, appearance and motion features are extracted, with the latter being com-

puted with respect to the previous frame (level 0). A set of temporal filters is then

applied to form higher level motion features (level 1). We extract the features within the

bounding box returned by the OpenNI SDK [23] person detector and tracker. To nor-

malise the utilised image region due to varying heights of the subjects and their distance

to the camera, the bounding box is scaled by fixing its longer side to M = 60 pixels, a

size recognised as optimal for human action recognition [24], while maintaining aspect

ratio. The scaled bounding box is then centred in a M ×M square box and horizontally

padded.
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Fig. 3: Flow feature encoding via spatial pyramids. Top row: limited motion while

standing still. Bottom row: significant motion features when moving during vacuum-

ing. First column: colour images with detected person. Second column: optical flow

patterns. Third column: motion features at level 0. Last column: motion features from

the top-right quadrants of the image at level 1 (at which the image is subdivided into

four quadrants).

Motion feature encoding - Inspired by [24], optical flow measurements are taken over

the bounding box area and split into horizontal and vertical components. These are re-

sampled to fit the normalised box and a median filter with kernel size 5×5 is applied to

smooth the data. A spatial pyramid structure is used to form hierarchical features from

this. Such partitioning of the image into an iteratively growing number of sub-regions

increases discriminative power. The normalised bounding box is divided into a ng ×ng

non-overlapping grid, where ng depends on the pyramid level, and the orientations

of each grid cell are quantised into nb bins. The parameters for our experiments are

empirically determined as nb = 9 and ng = 1 and 2 for levels 0 and 1 respectively.

Figure 3 exemplifies optical flow patterns and their encoding for different activities.

Appearance feature encoding - We extract depth features by applying the histogram

of oriented gradients (HOG) feature on raw depth images [25] within the normalised

bounding box. We then apply Principal Component Analysis (PCA) and keep the first

150 dimensions of this high-dimensional descriptor which retains 95% of the total vari-

ance.

Pyramidal temporal pooling - Given the motion and appearance features extracted

from each frame in a sequence of images, it is important to capture both short and long

term temporal changes and summarise them to represent the motion in the video. Pooled

motion features were first presented in [18], designed for egocentric video analysis. We

modify the pooling operator to make it more suitable for our data as follows.

An illustration of the temporal pyramid structure and the process for pooling op-

erations are shown in Figure 4. The time series data S can be represented as a set of

time segments at level i as S = [S1
i , . . . ,S

2
i

i ]. The final feature representation is a con-

catenation of multiple pooling operators applied to each time segments at each level.

The time series data can also be explained as T number of per-frame feature vector,
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Fig. 4: Temporal pyramid pooling and its feature representation. This schematic

shows the temporal subdivision of data into various pyramidal levels (left) and the con-

catenation of resulting feature (e.g. max, sum and dict) into a descriptor vector (right).

such that S = {S1, . . . , SN}, S ∈ R
N×T for a video in matrix form, where N is the

length of the per-frame feature vector, and T is the number of frames. A time series

Sn = [sn(1), . . . , sn(T )] is the nth feature across 1, . . . , T frames, where sn(t) de-

notes nth feature at frame t. A set of temporal filters with multiple pooling operators is

applied to each time segment [tmin, tmax] and produces a single feature vector for each

segment via concatenation. We use two conventional pooling operators, max pooling

and sum pooling, as well as frequency domain pooling. They are defined respectively

as:
Omax(Sn) = max

t=tmin···tmax

sn(t) and Osum(Sn) =

tmax∑

t=tmin

sn(t) (1)

Frequency domain pooling is used to represent the time series Sn in the frequency

domain by the discrete cosine transform, where the pooling operator takes the absolute

value of the j lowest frequency components of the frequency coefficients D,

Odct(Sn) = |M1:jSn| (2)

where M is the discrete cosine transformation matrix.

3.2 Learning and Recurrency

Energy expenditure estimation can be formulated as a sequential and supervised regres-

sion problem. We train a support vector regressor to predict calorie values from given

features over a training set. The sliding window method is used to map each input win-

dow of width w to an individual output value yt. The window contains the current and

the previous w−1 observations. The window feature is represented by temporal pooling

from the time series S = {St−w+1, . . . , St}.

We note that energy values for a particular time are highly dependent on the en-

ergy expenditure history. In our system, these are most directly expressed by previous

calorific predictions during operation. Thus, employing recurrent sliding windows of-

fers an option to not only use the features within a window, but also take the most recent

d predictions {ŷt−d, . . . , ŷt−1} into consideration to help predict yt. During learning,

as suggested in [26], the ground truth labels in the training set are used in place of

recurrent values.
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4 Experimental Results

We introduce the RGB-D SPHERE-calorie dataset captured in a real living environ-

ment. The ground truth was captured by the COSMED K4b2 portable metabolic mea-

surement system. The dataset was generated over 20 sessions by 10 subjects with vary-

ing anthropometric measurements containing up to 11 activity categories per session,

and totalling around 10 hours recording time. The categories and their associated MET

values (in brackets) are: light intensity activities = {sit still (1.3), stand still (1.3), ly-

ing down (1.3), reading (1.5)}; light+ intensity activities = {walking (2.0), wiping table

(2.3), cleaning floor stain (3.0)}; moderate vigorous intensity activities = {vacuuming

(3.3), sweeping floor (3.3), squatting (5.0), upper body exercise (4.0)}.

Colour and depth images were acquired at a rate of 30Hz. The calorimeter gives

readings per breath, which occurs approximately every 3 seconds. To better model tran-

sitions between activity levels, we consider 9 different combinations of the above three

activity intensities in each session. Figure 2 shows a detailed example of calorime-

ter readings and associated sample RGB images from the dataset. The raw breath

data is noisy (in red), and so we apply an average filter with a span of approximately

20 breaths (in blue). The participants were asked to perform the activities based on their

own living habits without any extra instructions.

We compare the proposed method AS to the direct mapping method DM and the

metabolic equivalent table method MET. DM is formalised as Yt = f(Xt), where

Yt is the target calorie value regardless of activity at time t, and Xt contains the as-

sociated feature vector over a window. The goal is to find a function f(�) that best

predicts Yt from training data Xt. MET, widely used by clinicians and physiother-

apists, assumes N clusters of activity A = {A1, A2, . . . , AN} are known. A MET

value is assigned to each cluster, together with anthropometric characteristics of in-

dividuals. The amount of activity-specific energy expended can then be estimated as

energy = 0.0175(kcal/kg/min)× weight(kg)× MET values [9].

4.1 Evaluation and Parameter Settings

In our experiments, we use non-linear SVMs with Radial Basis Function (RBF) kernels

for activity classification and a linear support vector regressor for energy expenditure

prediction. The libsvm [27] implementation was used in the experiments. We perform

a grid search algorithm to estimate the hyper-parameters of the SVM. For testing, we

implement leave-one-subject-out cross validation on the dataset. This process iterates

through all subjects, and the average testing error and standard deviation of all iterations

are reported. We use the root-mean-squared error (RMSE) as a standard evaluation

metric for the deviation of estimated calorie values from the ground truth.

4.2 Quantitative Evaluation

Temporal Window Size - The accuracy of predicted calorie values is linked to the

number of previous frames utilised for making the prediction. The test described in

this section looks at the relation between window length on the one hand, and activity

recognition and calorie prediction errors on the other. All the sequences are tested with

various window frame lengths w = {450, 900, 1800}, corresponding to a 15, 30 and
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60 seconds time slot. Table 1 illustrates the activity recognition rates and the average

RMSEs for calorie prediction of different window length w.

In general, the best performance for recognising activities is achieved when a 15 sec-

onds window is applied. This is particularly prominent for individually highly variable

activity types. For example, the recognition rates for exercise and stretch are signifi-

cantly lower when w = 1800. In these cases, data are likely to be better explained at

a relatively small temporal interval, for which local temporal information are more de-

scriptive. On the contrary, calorie values are better predicted using larger window sizes.

Here, human body adaptation causes an exponential increase/decrease to a plateau in

oxygen consumption until a steady state corresponding to the current activity is at-

tained [28].

So far, we have applied the same window length for the prediction of calories and

the detection of activities. In order to test how the estimated calorie value is influenced

by the performance of action recognition, the proposed method is also tested with fixed

window length w = 1800 for predicting calorific expenditure, whilst different window

lengths are applied to achieve different activity recognition rates. We also compare this

to an idealised case by assuming all the activities are correctly recognised. For better

visualisation, the 11 actions are grouped into three clusters based on their intensity level

in Figure 5(a) which summarises the calorie prediction error for different intensities and

action recognition rates. We use normalised RMSE to facilitate the comparison between

data with different scales.

w stand sit walk wipe vacuum sweep lying exercise stretch clean read overall

activity

450 86.5 77.6 88.3 69.4 79.0 76.5 62.3 39.2 61.1 91.4 38.9 73.7

900 85.0 79.1 89.4 71.9 81.1 75.2 54.3 40.3 57.8 90.4 36.8 71.1

1800 81.1 79.7 85.1 66.0 77.2 72.9 33.0 29.3 52.7 90.0 35.9 68.2

calorie

450 1.41 1.12 0.76 1.23 1.19 1.63 1.95 3.37 2.91 1.57 1.68 1.55

900 1.25 0.87 0.76 1.09 1.26 1.47 1.75 2.82 2.91 1.46 1.42 1.41

1800 0.92 0.76 0.82 1.17 1.19 1.40 1.54 2.16 2.81 1.49 1.32 1.31

Table 1: Activity recognition rate (%) and calorific expenditure prediction error (RMSE)

with different window length. The best results in each activity are in bold.

Evaluation of Recurrent System Layout - To evaluate the use of recurrency,

we set the activity-specific model using the sliding window technique above as our

baseline method. We now introduce two methods, which are based on recurrent sliding

window approaches. The first method (Recurrent1) uses the most recent predictions

of the baseline method as input together with both visual features to predict current

calorie value. Thus, it implements indirect recurrency utilising the predicted values from

the baseline as recent predictions. The second method (Recurrent2) implements full

recurrency, i.e. it uses its own output as recurrent input together with visual features.

Table 2 shows the effect of using recurrent information, with the best results for

each activity highlighted. In general, indirect recurrency, Recurrent1, outperforms the

other approaches at an average RMSE of 1.24. We note that the full recurrency, Recur-

rent2, suffers from drift and produces the worst results for half of the activities and also

overall.
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Fig. 5: Prediction Accuracy of Calorific Expenditure. (a) Average calorie prediction

errors (Normalised RMSE) for different intensities and action recognition rates; (b)

Average calorie prediction errors (Normalised RMSE) of three models.

stand sit walk wipe vacuum sweep lying exercise stretch clean read overall

Baseline 0.70 0.72 0.76 1.09 1.11 1.40 1.51 2.27 2.92 1.43 1.17 1.30

Recurrent1 0.61 0.67 0.72 1.01 1.04 1.37 1.44 2.11 2.69 1.37 1.07 1.24

Recurrent2 0.60 0.82 0.80 1.38 2.05 1.91 1.48 1.95 2.48 1.63 1.20 1.50

Table 2: Average calorific expenditure prediction errors (RMSE) for each activity with

different learning approaches. The best results in each activity are in bold.

Model Comparison - We select the indirect recurrency model with the best win-

dow configurations as AS and analyse the performance: we compare AS with DM and

MET against the ground truth (GT). For MET, we use the ground truth labels to se-

lect activities to keep this procedure identical to the commonly used manual estimate.

Figure 5(b) shows the average normalised RMSE for each activity estimated by each

of the models. Lower values indicate a lower residual. AS gives an average of 0.42 for

normalised RMSE, which is 19% less than DM at 0.52 for normalised RMSE, and 36%

less than MET at 0.67. The overall improvements are similar across all activities except

for upper-body stretching, where DM is slightly better than AS.

Table 3 presents the detailed results for each sequence. The accuracy is calculated

over the total calorie expended in each recording session. We also measure the cor-

relation between the ground truth and the observed values. Note that the total calorie

value for sequence 5, 8, 11, 15 and 16 are relatively low due to shorter sequences2. The

proposed AS achieves higher accuracy and correlation in more sequences than DM and

MET model based methods, and obtains better rates on average. Figure 6 illustrates an

example (corresponding to sequence 6 in Table 3) of a visual trace of calorie values.

2 This was caused by camera errors where only the first half of a sequence was saved.
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Fig. 6: Example of Calorie Uptake Prediction. In comparison to DM and MET, AS

shows its ability to better predict calories and model the transition between activities.

The proposed AS matches most closely to the ground truth while DM and MET di-

verge widely for some time periods. MET, as one of the most commonly used models

in many fields, fails by its nature to capture the transition periods between activities,

while the proposed AS model has the ability to capture transitions fairly well.

5 Conclusion

This paper presented a system for estimating calorific expenditure from an RGB-D sen-

sor. We demonstrated the effectiveness of the method through a comparative study of

different models. The proposed activity-specific method used pooled spatial and tem-

poral pyramids of visual features for activity recognition. Subsequently, we utilised

a model for each activity built on a recurrent sliding window approach. To test the

methodology, we introduced the challenging SPHERE-calorie dataset which covers a

wide variety of home-based human activities comprising 20 sequences over 10 subjects.

The proposed method demonstrates its ability to outperform the widely used METs

based estimation approach. Possible future work includes taking into account anthro-

pometric features. We hope this work, and the new dataset, will establish a baseline for

future research in the area.
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