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Abstract

Accurately estimating a person’s energy expenditure is

an important tool in tracking physical activity levels for

healthcare and sports monitoring tasks, amongst other ap-

plications. In this paper, we propose a method for deriv-

ing calorific expenditure based on deep convolutional neu-

ral network features (within a healthcare scenario). Our

evaluation shows that the proposed approach gives high ac-

curacy in activity recognition (82.3%) and low normalised

root mean square error in calorific expenditure predic-

tion (0.41). It is compared against the current state-of-

the-art calorific expenditure estimation method, based on

a classical approach, and exhibits an improvement of 7.8%

in the calorific expenditure prediction task. The proposed

method is suitable for home monitoring in a controlled en-

vironment.

1. Introduction

One aspect of treatment for common conditions and

chronic diseases alike, for example diabetes, obesity, de-

mentia, cardiac and respiratory diseases, is regular physical

activity. Clinicians require this to be recorded and mea-

sured to facilitate a more accurate understanding of its ef-

fectiveness and planning for further patient care. Currently,

the direct measuring of physical activity intensity levels on

a day-to-day basis is subjective and variable when it is re-

ported by patients [25], but the results can be inaccurate and

cantankerous to obtain.

Calorific expenditure is one commonly used single met-

ric to quantify physical activity levels over time. A calo-

rimeter may be the most accurate measuring device in ex-

istence, which operates based on the respiratory differences

of oxygen and CO2 in the inhaled and exhaled air. Such

devices can either be a sealed respiratory chamber [24] or

an indirect portable device which requires carrying gas sen-

sors and wearing a breathing mask [1]. However, due to

their inherently cumbersome nature and high cost, they are

impractical to use in daily life. Recently, wearable devices

have become popular for assessing physical activity of indi-

viduals [6, 32, 8]. Among these, tri-axial accelerometers are

the most broadly used inertial sensors [8]. Whilst appropri-

ate to inferring coarse categorisations of activity intensity

levels, based on this data alone it is difficult to produce pre-

cise calorific expenditure values [29].

Intelligent visual monitoring has received a great deal of

attention in the recent years, and is being increasingly de-

ployed in the development of smart homes, e.g. [33, 12], to

assist with the diagnosis and management of health condi-

tions. Deep learning has been successfully applied to var-

ious application domains, such as image recognition [16],

action classification [14] and pose estimation [30]. There

are a few recent studies on healthcare related applications

using deep learning framework [9, 21], however to the best

of our knowledge, our work is the first one targeted at im-

proving the estimation of energy expenditure using visual

data only utilising deep neural networks.

In this work, we use a convolutional neural network

(CNN) to extract features for estimating calorific expendi-

ture from video data in an indoor environment as illustrated

in Figure 1. The proposed method maps extracted visual

features to calorie estimates via activity-specific models.

The method explicitly detects activities as an intermediate

component to aid the visual estimate of energy expenditure

by selecting activity-specific mappings for the calorific es-

timation.

This is a relatively new application in computer vi-

sion for which very few datasets are available. The ‘In-

home activity recordings’ dataset [10] includes three 16-

hour days of in-door activities, however, the ground truth

is collected by a wearable sensor, which cannot ensure an

accurate benchmark. We therefore will evaluate our re-

sults on the only other comprehensive dataset available,



Figure 1. Overview of the Framework. The proposed pipeline uses video footage as input and extracts relevant features using a CNN,

before exploiting these features for activity recognition, and finally applying an activity-specific regressor towards calorie expenditure.

i.e. the SPHERE-calorie dataset [29, 2], which contains ac-

curate ground truth collected with gas-exchange measure-

ments obtained from a calorimeter and more than ten hours

of visual data. We evaluate the performance of our proposed

method on this dataset and compare it against the state-of-

the-art that uses hand-crafted visual features [27].

The structure of the paper is organized as follows: Sec-

tion 2 reviews the state-of-the-art techniques on related ar-

eas. Section 3 introduces the proposed method for estimat-

ing calorific expenditure values from the image data. Sec-

tion 4 presents the system setup and the experimental re-

sults. Conclusion and future work are given in Section 5.

2. Related Work

Applying computer vision based monitoring techniques

to help with the management of health-related conditions

has gained considerable attention in the last decade [22,

7]. However, studies on energy expenditure using visual

sensors are still strictly limited, possibly due to the absence

of labeled data, which is difficult to obtain - not least given

the ethical requirements necessary to obtain it. Our work

stems from the SPHERE project [33], which has created

the circumstances to generate and release a suitable dataset

for us and the vision community to explore [27, 29, 2]. The

proposed method is built on several relevant subject areas in

computer vision.

2.1. Visual Feature Extraction

Visual feature extraction and representation is a core

component of human activity analysis framework. Hand-

crafted features are typically used to capture low-level in-

formation, such as shape, color and appearance. Body con-

figuration and body motion are then also imperative to infer

calorific expenditure [27]. The potential features include

local interest point configurations [17], holistic approaches

like histograms of oriented gradients, and histograms of

motion information [26]. In contrast, deep learning models

can learn a hierarchy of features by building high-level de-

scriptions from low-level ones. CNNs have been shown to

learn powerful and interpretable image features [16]. En-

couraged by such positive results in images, we applied

CNNs to learning visual features in this work.

Body motion information is an important indicator when

estimating calorific expenditure. In fact, calorific expendi-

ture is highly dependent on the motions and actions per-

formed before an estimation point, and thus, the formula-

tion of features for summative interpretations requires the

concatenation of per-frame descriptors over time[26]. How-

ever, this can result in a high dimensional feature space that

comes at a high computational demand.

2.2. Action Recognition

Human actions can be inferred from colour [3], colour

and depth [4] and skeleton-based data [23]. Deep neural

networks have also significantly improved action recogni-

tion compared to traditional techniques [13].The knowledge

about the type of action is strongly correlated with calorie

expenditure [5]. While great progress has been made on hu-

man action recognition [4] there are still many challenges

left to address the range and complexity of human motions

and actions in practical, real-world applications, such as in

a healthcare scenario within the home environment.

In this work, we follow the action recognition stage

in [27] as an intermediate component in our work. It should

be noted that action recognition is not the focus of this pa-

per, and it can be replaced by any other appropriate action

recognition methodology for the calorie estimation strategy

proposed here.

2.3. Calorific Expenditure Estimation

Edgecomb and Vahid [10] estimated daily energy ex-

penditure using RGB video, albeit rather coarsely. Their

method firstly segmented the foreground subject from the

scene background, and then estimated the calorific uptake

based on vertical and horizontal velocities and accelera-

tions, and the changes in height and width of the subject’s

bounding box. A full set of 3D joint movements from the

skeleton data (for example from a Microsoft Kinect) can

also be used for estimating calorie consumption [31]. How-

ever, skeleton data is usually noisy and is only potentially

reliably available when the subject is facing the camera,

which would make it difficult to provide accurate calorie

values in more unconstrained scenarios. A common issue

of the above methods is that the ground truth used for train-

ing the models is based on wearable accelerometers. The



Figure 2. Image Preprocessing. Bounding box regions containing

humans are extracted using OpenNI, re-scaled to 227×227 pixels

and normalised before encoding them via an LMDB database.

general layout has been taken further here using a portable

calorimeter, to provide more accurate ground truth read-

ings. The recent work in [27] introduced a vision-based

framework for estimating calorific expenditure in a home

environment. This method has become a baseline method

in the area [28, 29]. An extension enables the estimation of

physical activity intensity levels in real-time [28]. However,

the light-weight features extracted from bounding boxes can

only estimate calorific expenditure coarsely. To improve on

this setup, a further step was taken to fuse visual sensor data

with accelerometer data in order to reduce the estimation

error [29]. In this paper, we consider the use of a single

visual sensor only and compare a deep architecture against

the baseline method.

3. Method

We present a calorific expenditure estimation pipeline

using an activity-specific model with CNN-based visual

features. {Inspired by [27], the activities are reasoned about

first, and then calorie values are estimated based on the ex-

tracted CNN features via a set of models, which are each

separately trained for certain activities. The block diagram

of the proposed method is shown in Figure 1 and consists

of four components: (i) human detection and tracking, (ii)

CNN-based feature extraction, (iii) activity recognition, and

(iv) calorie prediction. The RGB stream is preprocessed by

detecting and tracking the subjects and representing the re-

gions of interest by bounding boxes. Per-frame features are

then extracted by training a convolutional neural network

based on the AlexNet architecture [16] provided with the

Caffe Library [15]. Principal Components Analysis is ap-

plied to reduce the dimensionality of the resulting features

before temporal pooling is applied to represent and encode

motion information. These features are then used by a clas-

sifier to determine activity types and by a bank of regressors

to achieve calorie prediction, one regressor per activity type.

3.1. Deep CNN Features

Data pre-processing - We extract the features for bound-

ing boxes returned by the OpenNI SDK [20] person detec-

tor and tracker. To normalise the utilised image region due

to varying heights of the subjects and their distance to the

camera, the bounding box is re-scaled to a square size of

227 × 227 pixels. The image is also normalised by sub-

tracting the mean, which centres the input to 0, and divided

by the standard deviation. Considering that the dataset

is relatively large, in order to improve the speed of data

reading/writing and to reduce the training time, we use the

lightning memory-mapped database (LMDB) [18] over the

HDF5 file format. LMDB is the database of choice when

using Caffe with large datasets. This pre-processing stage

is illustrated in Figure 2.

Architecture - A flowchart of the detailed feature extrac-

tion procedure is depicted in Figure 3. A deep convolutional

neural network, consisting of multiple trainable stages, is

employed to extract features hierarchically, as in Figure 3

(top), where we implement the AlexNet network provided

with the Caffe Library. We follow the architecture pro-

posed in AlexNet such that the net consists of five convolu-

tional layers. In the first two convolutional layers (fc1 and

fc2) convolution operations are followed by Rectified Lin-

ear Units (ReLU) as activation functions, followed by max-

pooling and normalization operations. The third and fourth

convolutional layers (fc3 and fc4) only contain the convolu-

tion operations. The fifth convolutional layer (fc5) contains

the convolution and max-pooling process, which provides a

4096-dimensional data output to the fully-connected layers.

The sixth and seventh layer are fully-connected (fc6 and

fc7) using standard ‘ReLU’ activation functions and drop-

out. Since there are 11 activities in the dataset, the fully-

connected layers lead into a final 11-way softmax layer,

which produces a score distribution over class labels.

3.2. Dimensionality Reduction

Instead of deploying the fc7 layer to form feature vec-

tors, as often done, an earlier layer is utilised here in order

to capture more general purpose semantics. The proposed

method takes the features at the fc6 layer, which is a 4096

dimensional data vector, as a per-frame image descriptor.

Although it is possible to encode the motion information

as a sequence of per-frame descriptors, its overall dimen-

sionality would be very high (e.g. >40k dimensions in our

experiments) exceeding our computational capability. To

reduce high dimensionality, we applied a Principal Com-

poents Analysis (PCA) to vectors for dimension reduction.

As it is shown in [19], applying PCA in CNN-based fea-

tures is helpful not only for dimension reduction, but also

for boosting performance. Figure 3 (bottom) shows an ex-

ample of applying PCA for dimensionality reduction. By

keeping the first 1000 dimensions of the PCA-processed

data we retain 93.7% of the variance. We use these feature

vectors as our final CNN-based per-frame descriptor.



Figure 3. Overview of Feature Representation. Fully-connected layer 7 (fc7) of AlexNet pre-trained on ImageNet is commonly used

for image classification tasks. However, the proposed approach uses an earlier layer (i.e. fc6) to capture more general purpose semantics

(Top); and we show that PCA-compressed and temporally pooled versions of this information are suitable to be used for classification

applications related to calorie estimation (Bottom).

3.3. Temporal Pooling

Given the CNN-based descriptor extracted from each

frame in a sequence of images, it is important to capture

the temporal changes and summarise them to represent the

motion in the video. Notice, that the human calorific ex-

penditure depends on both short and long term changes of

data. We present a temporal pyramid structure to model in-

formation from various temporal window sizes in a single

descriptor, as shown in Figure 4.

The figure illustrates the input data and the structure

of the image descriptor (left). Implementing a pyramid

scheme, time series data is represented over various lev-

els, where per level i there is a set of 2i time segments as

[S1
i , . . . ,S

(2i)
i ]. The time series data can also be explained

in matrix form S ∈ R
T×Nas T per-frame feature vectors,

such that S = {S1, . . . , SN} for a video. N represents

the length of the per-frame feature vector (e.g. in our case,

N = 1000), and T is the number of frames. A time series of

a single feature is denoted Sn = [sn(1), . . . , sn(T )] tracing

the nth feature across 1, . . . , T frames, where sn(t) denotes

the nth feature at frame t. For each segment [tmin, tmax], a

set of temporal filters with multiple pooling operators is ap-

plied, which produces a single feature vector for each seg-

ment via concatenation. Frequency domain pooling is used

along with two conventional pooling operators, max pool-

ing and sum pooling, respectively defined as:

Omax(Sn) = max
t=tmin···tmax

sn(t), (1)

Osum(Sn) =

tmax∑

t=tmin

sn(t). (2)

Frequency domain pooling is employed to represent the

time series Sn in the frequency domain by the discrete co-

sine transform, where the pooling operator takes the abso-

lute value of the j lowest frequency components of the fre-

quency coefficients,

Odct(Sn) = |M1:jSn| , (3)

where M is the discrete cosine transformation matrix. The

final feature representation is a concatenation of multiple

pooling operators applied to each time segment at each

level.

3.4. Activity Recognition and Calorie Prediction

The activity is reasoned about first via an SVM using the

pooled motion features introduced above. For each activity

category, a SVM-based regression model is trained for esti-

mating the calorie expenditure. It is shown in [27] that such

an activity specific method has the potential for improved

performance compared to predicting the calorific expendi-

ture without knowing the activity.



Figure 4. Temporal Pyramid Pooling. PCA-compressed feature vectors over time are processed via three different pooling operators and

evaluated over a pyramid of varying windows in order to generate the concatenated components of the feature vector used by classifiers for

activity type determination and by regressors for calorific uptake estimation.

4. Experimental and Results

4.1. Experimental Settings

Dataset - To evaluate the method, we test the proposed

method on the SPHERE-calorie dataset [27]. The dataset

contains colour images and the corresponding calorie ex-

penditure values. The ground truth was captured by the

COSMED K4b2 portable calorimeter, which provides ref-

erence calorie readings. The videos were recorded over

20 sessions by 10 subjects in a daily living environment

using the Kinect. The total recording time is more than

10 hours. The videos and the calorie values were synchro-

nised for the experiments. The dataset contains up to 11

activity categories per session. All the activities considered

are home-based daily activities, i.e.: 1) standing still, 2)

sitting still, 3) walking, 4) wiping table, 5) vacuuming, 6)

sweeping floor, 7) lying down, 8) exercising, 9) stretching,

10) cleaning floor stain, and 11) reading. The numbers are

corresponding to the indices in the experimental results pre-

sented below. These actions were recorded under varying

angles, distances and lighting conditions. Figure 5 details

the dataset corpus further.

CNN implementation - In our work, we discriminatively

trained a deep convolutional neural network to classify ac-

tion type. We initialize the parameters from Conv1 to fc7

using a standard pre-trained model, namely “bvlc reference

caffenet [15]”. During the training procedure, the parame-

ters are learned using stochastic gradient descent with mo-

mentum. We set momentum to be 0.9 and weight decay to

be 5 × 10−4. The training uses a batch size of 256 for all

training sets.

Evaluation settings - In our experiments, we use linear

SVMs for activity classification and a linear support vec-

tor regressor for energy expenditure prediction. The SVM

is implemented using a Liblinear library [11]. Liblinear can

cope well with large-scale datasets, and also significantly

improves the performance and efficiency of program exe-

cution. A grid search algorithm is performed to estimate

the hyper-parameters of the SVM. For testing, we cross-

validate the method using “one left out subject”. The pro-

cess iterates through all subjects, and the average testing

error of all iterations are reported.

We use the normalised root mean squared error (Nor-

malised RMSE) as a standard evaluation metric for the devi-

ation of predicted calorie values from the ground truth calo-

rie expenditure.

Figure 5. Dataset Overview. The graphic illustrates the number

of frames per sequence of each activity in the dataset.



Figure 6. Activity Recognition Performance. The confusion

matrix shows results using the proposed method with window

size w = 15s.

4.2. Action Recognition

As the proposed method is built upon the baseline

method in [27], where hand-crafted features are extracted

from images instead of using CNN-based features, we ap-

proach our experiments with a view to compare against it.

In the first experiment, we look at the performance of the

two approaches w.r.t. correct activity type classification rate

considering two different temporal window lengths for en-

coding the temporal information - 15 seconds and 60 sec-

onds, i.e. w = {15, 60}.

As illustrated in Table 1, in general, the better perfor-

mance is achieved when a shorter window is applied, e.g.

w = 15. This is particularly evident for the high physi-

cal intensity level activities, such as exercising and stretch-

ing. In such cases, activities are likely to be better explained

within a relatively small temporal segment, for which local

temporal information are more meaningful.

The table also shows that the our method significantly

outperforms the baseline method by 9% irrespective of the

window sizes. The proposed method performs especially

well for individually highly variable activity types, such as

exercising, where the accuracy has increased by 41.7%.

Figure 6 shows the recognition confusion matrices from

the activity recognition results of our method with w = 15s.

4.3. Calorie Expenditure Prediction

Similarly to the results on action recognition, the accu-

racy of calorie expenditure prediction is also related to the

choice of the temporal window length. Figure 7 shows the

results for the second experiment where we compare our

method for calorie expenditure prediction with the baseline

method with window sizes w = {15, 60}. The proposed

method produces fewer errors for the majority of activities.

In contrast to activity recognition, calorie expenditure es-

timation tends to perform better when larger window sizes

are applied. This can be explained as human body adap-

tation causes an exponential change to a plateau in oxygen

consumption until it reaches a steady state, thus retaining

a relatively long history will help with calorie expenditure

prediction.

One may argue that the calorie value is influenced by the

performance of action recognition. To test this, we consider

the effect of varying action recognition quality. We first test

a system in which the ground truth labels are given to select

the activity specific model for calorie prediction (see top

row in Table 2), and then compare the action recognition at

window sizes w = {15, 60} seconds. The window length

for calorific expenditure estimation is fixed at w = 60 sec-

onds. The results show that for most activities the calorie

prediction error is the smallest when there is a small activ-

ity recognition error only. This indicates that higher action

recognition accuracy may indeed help calorie prediction.

To analyse the performance further, we select the model

with the best window configurations, that is using window

size 15 seconds for activity recognition and 60 seconds for

calorie expenditure prediction. Note that this is the best con-

figuration for both our method and the baseline method in

[27]. Figure 8 shows the average calorie prediction errors

for both methods when ground truth labels are used to se-

lect the activity-specific model. In general, the proposed

method clearly produces smaller errors than [27]. This is

particularly prominent in certain activities, such as sweep-

ing, lying down, wiping table, vacuuming, standing still and

sitting still. The proposed method reduces the overall error

from 0.44 to 0.41 when 15s window size is employed and

from 0.43 to 0.39 when ground truth labels are used.

5. Conclusion and Future work

In this work, we studied the problem of calorie expendi-

ture estimation and introduced a new feature representation

designed for the problem. The proposed feature representa-

tion captures the data dynamics over a time interval by cap-

turing both global and local changes in high dimensional

feature descriptors. The per-frame descriptor is formed

based on deep CNN features. The method is evaluated on

a public calorie expenditure estimation video dataset, and

results show that the proposed method outperforms the pre-

vious baseline. Potential future directions include an exten-

sion of the presented approach towards full end-to-end calo-

rie value estimation within a single deep learning approach

with novel network architectures.
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w method stand sit walk wipe vacuum sweep lying exercise stretch clean read overall

15
Baseline 86.5 77.6 88.3 69.4 79.0 76.5 62.3 39.2 61.1 91.4 38.9 73.7

Ours 89.0 71.9 98.2 88.8 95.0 91.5 61.6 80.9 68.6 89.6 59.6 82.3

60
Baseline 81.1 79.7 85.1 66.0 77.2 72.9 33.0 29.3 52.7 90.0 35.9 68.2

Ours 81.9 70.1 96.1 80.9 82.1 85.0 57.6 86.0 56.8 89.3 46.2 77.8

Table 1. Activity recognition rate (%) with different method and with different window length. The best results in each activity are in bold.

calorie w action w stand sit walk wipe vacuum sweep lying exercise stretch clean read overall

60

n/a 0.33 0.28 0.28 0.22 0.13 0.31 0.45 0.37 0.84 0.21 0.40 0.39

15 0.27 0.38 0.22 0.29 0.20 0.33 0.25 0.46 0.55 0.42 0.49 0.41

60 0.39 0.35 0.36 0.39 0.33 0.30 0.38 0.46 0.77 0.34 0.46 0.42

Table 2. Calorific expenditure prediction error (normalised RMSE) when ground truth labels are used to select the activity-specific model

(top row), and when action recognition is employed at different window lengths.

search Council (EPSRC), Grant EP/K031910/1.
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