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ABSTRACT 

The  results   of  measurements   of   the   specific   heat   of   nickel 

chloride   hexahydrate   in  zero and  various  applied  fields  are pre- 

sented.     The   specific  heats   of   two  single-crystal   samples   were 

determined  in  zero  field  between  4.3 and  5-8 K with   temperature 

resolution   of  10     K.     The  functional  form  of  the  specific  heat 

near   the  Neel   temperature   is   determined and  compared with  theo- 

retical  predictions.     The  specific  heat  maximum  of  both  crystals 

is   found   to  be  rounded  over   several  millidegrees.     This   non-ideal 

behavior   is   analyzed   in   terms   of  a   complex   transition   temperature, 

the   imaginary  part   of  which   is   related   to   crystalline   imperfect- 

ions.     Using   data   outside  the  rounded region,   it   is   concluded 

that   the  Neel   temperature   of a  perfect  crystal  would  be  5-3475 

+   .001  K.      The  effect   of magnetic   fields   applied along   the  easy 

axis   on   the   specific  heat  peak was   investigated.     The peak  was 

found  to be  slightly  broadened by   the  field,   and  occurred at 

lower   temperatures.     The  boundary  between  antiferromagnetic  and 

paramagnetic  phases   was   determined   for   fields   to  20  kilo-oersteds. 
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I.  INTRODUCTION 

This dissertation describes the results of an experimental 

study of the spec if ic • heat of nickel chloride hexahydrate 

(NiCl *6H 0), a material which undergoes a phase transition 

from the paramagnetic to antiferromagnetic state near 5.34 K. 

The specific heat rises sharply near the transition temperature, 

but there is no latent heat involved.  Such a transition is called 

a "higher order" transition since there is no discontinuity in the 

free energy (a necessary condition for any phase transition) or 

in any of its first derivatives; the higher order derivatives, 

however, may have a discontinuity.  For example, a second order 

transition may have a discontinuity in the specific heat.  Many 

materials undergo higher-order transitions; just a few examples 

are ferroelectrics, liquid helium, binary alloys, and a gas near 

its critical point.  The shape of the heat capacity peak appears 

strikingly similar for these transitions; however, differences 

among them become apparent when investigated with high tempera- 

ture resolution.  The fact that a wide variety of transitions 

behave somewhat alike is all the more interesting when one re- 

alizes the vast differences in the nature of the interactions that 

cause the transitions.  Although this experiment investigated a 

particular type of transition, the results may have application to 

other critical point phenomena. 

Theoretical progress in understanding magnetic phase transit- 

ions has been made on two fronts.  One type of theory emphasizes 

the details of the interaction, and a calculation of thermodynamic 
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quantities  follows   from statistical  mechanical methods.     In another 

class   are  general  phenomenological   theories   applicable  to a  variety 

of  types   of phase  transitions.     In the next  section,   certain ele- 

ments   of  these theories which are pertinent   to  this   experiment  are 

described.     Following   this,   the properties   of NiCl   '6H0  are  dis- 

cussed,   and  the experimental  apparatus  and procedure are explained. 

Data   is  presented showing  the nature of the  transition   in applied 

fields   up   to 20  kilo-oersteds. 

-10- 



II.      THEORY  OF  ANTIFERROMAGNETIC   PHASE  TRANSITIONS 

A.      BACKGROUND 

All   theories   of  ant iferromagnetism   in   insulators   start  with 

the Heisenberg-Dirac   Hamiltonian   for   the  crystal: 

5C   =   -   2 Z      J. .   S .    '   S .   -   g UJi-X   S      , (1) 
i<i   !J       i J 

rB      i       i 

where   i   anci   j   designate   the  magnetic   ions,    the   S  are   the   spin 

operators,   and  H   is   the   applied   field.      In   many   crystals   the 

orbital   momentum   is   quenched,   so   g   is   about   two.      The   J. .   are 

called  direct   exchange   integrals;    if  J. .   is   negative,   anti- 

parallel   alignment   between   the   i   and   j   electron   spins   produces 

the   lowest   energy   state.      This   interaction   between   spins   arises 

because   of   the   requirement   that   the  wave   functions   for   any   two 

electrons    in   the   crystal   be   antisymmetric.      It   is   not   obvious 

for   real   antif er r omagnets   that   this   Hamiltonian   is   a   proper   ap- 

proximation   because   the  exchange   integral   depends   on   the  amount 

of   overlap   of   the   wave   functions,   and,    in   hydrated   salts   of   iron- 

group   atoms   (and  most   other   ant iferromagnetic   salts),    the   magnetic 

ions   are  much   too   far   apart   for   there   to   be  an   appreciable   over- 

lap)   of   the  atomic   d-shell   wave   functions.       In   these   salts   the 

magnetic   ions   are   separated   by   non-magnetic   atoms,    for   example, 

chlorine   or   oxygen.      The  proper   wave   functions   for    the   d-shell 

electrons   of   the   magnetic   ions   can   be   shown   to   be   an   admixture 

of   isolated,    single-atom,   wave   functions   of   the   magnetic   and 

non-magnetic   electrons   (Anderson   63     a,b).      Each   of   these 
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electrons   can   still   be   thought   of  as   having   its   own   perturbed 

wave   function,   which   can   be  calculated  from  Hartree-Fock   equations, 

These  new  wave   functions   overlap   considerably   and  can   create  an 

antiparallel   state  with   lowest   energy.      Such  an   interaction   via 

an   intermediate  non-magnetic  atom   is   called  super exchange.      It 

can   be  shown   that   the   superexchange   interaction   can   be   described 

with  a   Hamiltonian   retaining   the   familiar   Heisenberg-Dirac   form 

(Anderson   63  b). 

In  addition   to   the  exchange   term   in   the Hamiltonian   there 

are   other   interactions   between   the   spins,   for   example,   pure 

dipole-dipole  magnetic   interactions.     These   terms   are  anisotropic 

and  are  usually   accounted   for   by   introducing  an   effective  magnetic 

field acting   in   the  preferred   direction. 

The   ideal  procedure   to   follow  would  be   to  use   the  Hamiltonian 

to  calculate   the partition   function   from 

Z  =  Trace   (exp   -K/kT). 

Using   the partition   function,   such   thermodynamic   quantities   as 

specific   heat   or   susceptibility   can   be   calculated.      For   example, 

the   specific   heat   is   given   by 

C  = 
3T 

kT
2
  £f  (&n   Z) 

This exact approach has been usefully applied in the high- 

temperature and low temperature limits. At high temperatures, 

Z can be expanded in a series of powers of 1/T. Evaluation of 

the series involves calculations of mean values of the energy, 

for which exact wave functions are not necessary. In the low- 

temperature limit, the deviations of the system from its ground 
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State   can   be   represented  by   low-energy   excitations   called 

spin  waves.      Neither   of   these   limits   can   be   successfully 

extrapolated  to  give  precise   information   about   the  phase 

transition;   however,   the   series   expansions   have  been   ex- 

tensively   exploited   in  an   effort   to  obtain   estimates   of   the 

critical   point   behavior    ( Domb   65)• 

In   order    to  allow   an   investigation   of   the   phase   transition 

itself,   the   basic  Hamiltonian   must   be   simplified.     Two   types 

of  approximations   are  made   in   the  Hamiltonian   to  make   it   tract- 

able  at   the   transition   temperature.     One   is   the  mean-field  ap- 

proximation,   the   other    is   the   Ising   model   approximation.     The 

following   sections   describe  predictions   which   these  models   make 

about   the   specific   heat   and about   the   effect   of  applied   fields 

on   the   transition. 

B.      MEAN   FIELD  THEORY 

This   theory   makes   several   approximations   to  equation   1.   The 

simplest  picture  assumes   that   there  are   two   interpenetrating 

sub-lattices,   A  and   B;    that  an   A  atom  has   only   B  atoms   as   nearest 

neighbors   and vice   versa;   and   that  an   atom   only   interacts   with 

its   nearest   neighbors.     Then   the  Hamilitonian   can   be   written   as: 

N z _   N 
K!   =   -   2J £        S.    •   S        S.   +   gli    H'E        S. 

i = l      1        j=l     3 ^        i=l     L 

where z represents the number of nearest neighbors, and N the 

total number of atoms.  It is now assumed that each spin can 

be replaced by an average value:  All spins on A sites having 
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the average value <S ) and those on B sites, (s„) , so that 
^ A B 

K; = - 2j 
N/2 _     _    N/2_ 
£   S. -z <S )+ H  S. -z <S_> 
i = l i = l B 

N 
+gU H-E  S 

B   1=1  X 

Next two effective fields are defined which act on atoms in each 

sublattice.  The field acting on an A atom is 

HA   =   H   +   111 <s   ), 
A g/iß       B   ' 

and  on   a   B  atom 

=» -
5
 ♦ ^ <v 

(s  )   and   (s   )   can  also  be  expressed   in   terms   of H     and H     using 
AB c AB 

the   Brillouin   function.     This   yields   two  coupled  equations   for 

both   sublattices.      The   external   field   is   set   to zero  and   the 

temperature   that   gives   non-zero  H     and H     is   found  and   identified K AB 

as   the  transition   temperature   or   Neel  temperature.     The  result   is 

kTN   =   -J  z   S(S+1) 

The  resulting   specific  heat   rises   from  zero  at  0  K   to  a   maximum 

at   TN   of 

C =   5/2   NR  i^inlll 
raa x /„„-,« ^   , 

(2S+1)   +1 

and  drops   to  zero  discontinuously   at  T   .      Thus   the  transition 
N 

is   second   order. 
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This simplest mean field model has been investigated with 

an external field applied parallel to the axis of sublattice 

magnetization (Nagamiya 55)-      The transition temperature in 

field H is lowered from the Neel temperature in zero field and 

is given by the equation 

v
H)

-y
o)
. _ 27/720 (s^y x^ H2 

(H) 27/720 -TsTfp—    2   H , (2) 
s 

where  M     =   -^Ngli   S  and   X.      is   the   susceptibility   perpendicular 

to   the axis   of  magnetization.     The   transition   remains   second 

order   for   all   fields   up   to  a   critical   field 

H
C   

=
   

k
V

g
>V 

Above this field there is no antiparallel order.  This value 

of the critical field is to be expected based on the simple 

argument that the effective field must be related to the 

transition temperature by 

vr
B  A     N' 

since  at  T     an   atom  has   enough   thermal   energy   to   break   the   order 

produced by   H   .      Hence,   at   T  =  0,    in   order   to   break   up   the  anti- 
Pi 

parallel ordering the external field must cancel the internal 

field. 

The main feature of this model is the assumption that a given 

atom interacts with its neighbors as if their spin took on the 

average value.  This approximation neglects correlations between 

spins.  If an atom has a given direction for its spin, the 
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probability that its neighbors have a correlated direction is 

increased from that given by the average.  Although the sub- 

lattice magnetization, or long range order, disappears at T , 

some short range order is expected to persist above T .  This 

defect in the model can be improved by treating the exchange 

interaction of a given atom within a cluster of its neighbors 

exactly and replacing all other interactions by an effective 

field.  This is called the Bethe method.  The resulting parti- 

tion function for such a model is an external field has been 

evaluated (Ziman 51).  There is a second order transition for 

all fields below the critical field.  The specific heat is 

discontinuous at T  as in the previous model; but it remains 

non-zero above T ; a result true for any approximation that 

allows for short range order above T . 
N 

C.  ISING MODEL 

The Ising model approximates the Hamiltonian by 

K  =   -   2J E       S., S _ - gU H S S. 
i<j  1} D!,        

y^B  i  ij 

This   amounts   to  assuming   that   the   interaction   between   spins   is 

highly   anisotropic;   or   alternatively,   that   the  spins   are  re- 

placed  by   their   time  averaged  values,   since  S     =   S     =0.     This f X y 

assumption is not compatible with spin waves, thus the Ising 

model is not accurate at low temperatures.  But near the phase 

transition, the statistical enumeration of states is more im- 

portant than the precise form of the interaction; so the Ising 

model predictions are in reasonable agreement with many experi- 

ments . 

-16- 



The   solution   for   two   dimensional   lattices   can   be   carried  out 

exactly   (Onsanger   44).      For   S  -  h   "the   heat   capacity   goes   to   in- 

finity   at   T     and   is   given   by 
N 

C   =  A   In   JT-TN| . 

However    the predicted  value   of  T      is   lower    than   that   given   by 

simple   mean   field.      When   S   =   1   the  specific   heat   rises   more 

rapidly   for   T >  T     than   for   T <  T   ,   but   the  variation   is still r                                         N                                          N 

logarithmic.      (A   is   larger   on   the  high   temperature   side   of   the 

transition.)      In   three   dimensions   the   exact   solution   has   not 

been   found,   but   approximations   can   be  made.     One   result  which 

has   been   definitely   established   is   that   the   "tail"   of   the 

specific   heat   curve   is   much   smaller   in   three  than   in   two  di- 

mensions.     The  details   of   the  nature  of   the singularity   for 

three-dimensional   arrays   are   indefinite,   but   there   is   evidence 

that   C  goes   to   infinity   logar ithmicaltyfor   T <  T   ,   and   for   T  >  T 
^                        N                                        N 

it   diverges   as   [(T-T   )/T   ]"    ,   where a   is   about   .2   (Baker   63). 

Fisher   has   solved   the   two-dimensional   Ising  model   in   a   mag- 

netic   field   for   a   lattice  with   a   square  array   of magnetic   atoms 

coupled  to   neighboring   non-magnetic  atoms   (Fisher   60).      This 

arrangement   introduces   superexchange   into   the  model.     While 

this   model   appears   to  be  more  complicated   than   a   simple   square 

lattice,    its   partition   function   is   an   applied   field   can   be   re- 

lated  to   the   standard   one  for   a   square   lattice   in   zero   field. 

It   thus   provides   the   only   Ising   model   structure  which   has   yielded 

to  an   exact   solution   in   a   field.      For    this   model   the   heat   capa- 

city   goes   to   infinity   1 ogar ithmically at T   ,   and  T     goes   down   as 
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H  goes   up.     For   S   =  h,   and   for   small   H,   the  result   for   the  phase 

boundary   is 

V") - y°) 
T   (0) 347| ^-W (3! 

Numerical calculations on cubic Ising model lattices in 

applied fields have been carried out (Bienenstock 66); the 

variation of the transition temperature with field for a cubic 

lattice is given by 

rr^r = Cl - (H/Hc>2 ] 35 

N' 

/here  H     =   z\ j\ /gjl 
B 

Real transitions have characteristics which are reminiscent 

of predictions of the Ising model results.  In order to make 

comparisons between experiment and theory, critical point ex- 

ponents are introduced.  These exponents characterize singu- 

larities in measured quantities near the critical point.  The 

specific heat is written as 

and 

wher e 

C  = A/a [e~ -l] + B  for T > T 
+ N 

C     =A/a[e-lj+B     for   T <   T 

(4a) 

(4b) 

T-T. 
£    = 

-18- 



These   expressions   reduce   to 

C     =-A   In  £   +   B 

and 
t t 

C     ='A     In  e   +   B 

t 

when OL  and (X     are  zero. 

D.      LANDAU  THEORY 

The  mean   field and   Ising   theories   use  approximations   to   the 

Hamiltonian   in   order   to  arrive  at  predictions   for   the   free  energy 

and  thermodynamic   observables.     Landau   theory,   on   the   other   hand, 

begins   with  an  expression   for   the  free  energy.     This   approach  may 

be applied   to many   types   of  transitions,   with  changes   only   in   the 

pertinent   variables.     The  theory  assumes   that   the  free  energy   is 

a   function   of  the  normal   variables:   T,   H,   etc.,   and also   depends 

on  an   extensive   quantity  which   is   zero   in   the  high   temperature 

phase and  non-zero  just   below   the   transition   temperature.      In 

the  general   treatment   of   transitions,   this   quantity   is   called 

the   order   parameter;   specifically,   for   antiferromagnets   it   is 

proportional   to   the   sublattice  magnetization,   for   ferroelectrics 

it   becomes   the   spontaneous   polarization.     The  theory   can   then 

be   developed   in   terms   of   the  order   parameter   without   reference 

to  a  particular   type  of   transition. 

Designating   the   order   parameter   as  ry ,   the   free   energy   in 

zero   field   is   written  as 

$   = $     + A rj     + B rj     +   • ' • 
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For   symmetry   reasons   there   can   be   no  odd   order   terms   in T),   and 

the  fourth   order   term must   be  positive   for   a   second   order   tran- 

sition.     The procedure   is   to  find   the   value  of 7]   which  minimizes 

this   free  energy   expression.     There   are   two  solutions   corre- 

sponding   to   the  two phases:   rj   -  0   if A   is  positive,   and r\   -   -A/2B 

if  A   is   negative.      Since  A must   change   sign   at   the   transition 

temperature,    its   simplest   form   is   A  - a(T-T   ).     Using   this   form, 

the  specific   heat   is   found   to  be   discontinuous   at  T   .      In   fact, 

all   predictions   of   this   simplest   version   of  Landau   theory  are   in 

agreement  with   the  simplest  mean   field   theory.      It   is   easy   to 

see  why   the  two are   equivalent.      In   both  models   the   free   energy 

is   assumed  to  depend   on   the  average   order   parameter.      Since   the 

assumptions   are  basically   the   same,   currently   little   distinction 

is   made  between   the   two models. 

Simple Landau   theory  predicts   no   long-range  order   above  T   , 

that   is,   the   sublattice  magnetization   is   zero.      But   it   is   possible 

that   just  above  T     there  may   be  microscopically   large   regions 

over   which   the  sublattice  magnetization   is   non-zero.      This   is 

the   short-range   order   that   is   accounted   for   in  mean   field   theory 

by   inclusion   of   interactions   with  clusters   of  neighbors.      In 

Landau   theory   the presence   of  short-range   order   is   described   in 

terms   of  spatial   fluctuations   in   the  order   parameter   from   its 

average  value.     To modify   the  simple Landau  theory,   a   term   is 

introduced  into   the  free-energy   density   which  causes   it   to  be 

raised   if   there  are  spatial   variations   in   the   order   parameter. 

This   term   is   usually   assumed   to   take   the   form   DJVnj    .    Minimi- 

zation   of   the   total   free   energy   yields   a   differential   equation 
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which can be solved for 17. in one dimension, above T , the 

solution predicts that if, at position x = 0, rj has a value 

of TJ    ;    then  at   some   other   position,   x, 

V   = V0   exp(-   x/i) 

where 

I   =   I D/A 
2     _ D 

a(T-TN) 

(£   is called the correlation length).  This indicates that as 

T "* T , &   ~*  °°; that is, the range over which a deviation of 77 

from its average value produces a correlated change grows as T 

approaches the transition temperature.  Similarily, far below 

the transition, it is energetically unfavorable for the order 

parameter to deviate from the average; but as T  is approached 

from below the energy cost of a fluctuation decreases and & 

diverges. 

From the viewpoint of the previous paragraph, the infinity 

in the heat capacity is caused by the infinity in the correlation 

length.  This can be put on a firmer base by defining the cor- 

relation functions for the order parameter and energy: 

lyr,/) = <[TJ(r)- Cfj(r)>] CT? (r ' ) - <77(r')>]> 

KE(r,r') - (LE(r) -<E(r)>] [E(r') - <E(r'))]>. 

These functions measure how much the deviation in a quantity at 

one point from its average is correlated to the deviation at 

another point.  One can envoke a theorem in statistical mechanics 
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to relate the energy correlation function to the heat capacity: 

C = l/kT2J"Jd3r d3r  K (r,r ). 

The problem of calculating measured thermodynamic quantities 

reduces to that of finding the correlation functions for sub- 

lattice magnetization and energy.  Differential equations can 

be developed and solved for the correlation functions.  The 

results depend on the dimensionality of the system, but generally 

the functions decrease exponentially with characteristic length I, 

Calculations which take correlations into account yield an in- 

finity in the specific heat, and the high temperature side of 

the singularity has a tail, similar to that produced in the 

mean field theory when short range interactions are treated 

exactly. 

E.  CRYSTAL INHOMOGENEITIES 
? 

From the previous equation relating C to K (r,r ) it is 
E 

seen that one integrates K  over the volume of the crystal 
E 

to get the heat capacity.  If the crystal is homogeneous and 

infinite, the integral cuts off because of the exponential 

decay of the integrand.  However, very near T , K  is large 

over an appreciable distance.  If this distance is larger than 

a length characteristic of the imperfections in the lattice, 

it might be expected that the integration should be cut off at 

this point.  That is, it can be argued that the correlations 

should not be allowed to extend beyond microcrystalline imper- 

fections.  Since the theoretical infinity in C is related to 
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the infinite correlation length, the experimentally observed 

rounding in C for many transitions might be caused by such 

imper feet ions. 

The effect of boundaries and finite size on the transition 

has been studied by several authors (Maki 69) (Ginzburg 58) 

(Fisher 67).  Maki and Ginzburg expand TJ (r ) in a Fourier series 

with each normal mode having amplitude 7]    .  Only the long wave- 

length modes are responsible for the transition, so the free 

energy is expressed in terms of the amplitudes of these modes. 

For an infinite crystal the sum is carried out for all wave 

numbers, q, between 0 and q    where q    is the order of the 
Tnax        max 

inverse cell dimension.  For small systems the sum over the 

wavelengths of the modes is cut off at some maximum length cor- 

responding to q = q . .  An application of this procedure has 

been made to a film of helium contained between two plates 

separated a distance d.  The superfluid transition temperature 

is calculated to be lowered by an amount given by 

-I  / r-\ 

AT  = - 2 x 10"  /(d  )  (Ginzburg 58).  Using a slightly dif- 

ferent form for the free energy expansion the transition is pre- 

-12      3/2 
dieted to be lowered by AT, = - 1.3 x 10   /(d )°        (Maki 69). 

A. cm 

Although these predictions make some assumptions which are 

specialized to helium, it is clear from the calculations that 

the phenomenon of the lowering of the transition temperature is 

not dependent on these assumptions, but on the finite extent of 

the correlations. 
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The effect of inter facial boundaries and finite sample size 

on the two-dimensional Ising model has been investigated (Fisher 67). 

The transition rounding is found to be due to truncation of cor- 

relation modes having low wave numbers, as in the above Landau 

calculation.  The calculations suggest that the maximum in the 

specific heat for an inhomogeneous crystal will occur at tem- 

perature, T   , lower than T , the order of magnitude of the shift r max N 

given by 

T  - T 
N    max   1 , ^. 
 T  * n ' <5) 

N 

where n is the number of atoms between adjacent boundaries.  It 

is suggested that instead of using e = (T-T )/T  in the expression 

for C (equation 4)> one should use 

f(r - T 

K^r-r '•=   -r^—4t    • <«> 

Such a temperature dependence produces a specific heat maximum 

at T   with size determined by T.  The transition is also smeared 
max 

out over a width determined by T.  T is estimated for two-dimens- 

ional lattices to be the same order of magnitude as the shift, 

while for three dimensions the width may be smaller than the 

shift. 

More generally, it has been pointed out that a phase tran- 

sition can be thought of in terms of zeros of the partition 

function (Fisher 65).  These zeros occur at certain values of 

T, but T can be viewed as a complex variable.  For a finite sample 

the zeros lie off the real temperature axis and close on the real 

axis as the number of particles goes to infinity.  Thus, the 
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transition in a finite sample is pictured as occuring at a complex 

2   2 ^ temperature, T = T    + iT, and the quantity (T    + T   )
2

  becomes 
max v max     ' 

the proper variable to use in analyzing the rounding of the tran- 

sition.  A similar procedure has been used successfully in ana- 

lyzing the rounded specific heat maximum of a ferromagnet in an 

applied field (Teaney 68). 
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III.     THE  NATURE  OF  NiCl    -6H  0 

A. CRYSTAL   STRUCTURE 

Nickel   chloride  hexahydrate   (NiCl   *6H  0)    is   a   green   monoclinic 

crystal   with  two   molecules   per   unit   cell.      Its   molecular   weight 

is   237.71   grams/mole,   and   the   density   at  room   temperature   is 

3 
1.92   gm/cm   .     The   space  group   is  C  /m  and   the  lattice parameters 

are  a   =   10.23A\   b   =   7.05A\   C   =  6.57X,   and ß   =   122°,   10'    (the 

angle   between   a_  and _c  axes)    (Mizuno  6l).     This   crystal   structure 

has   been   confirmed at   4.2  K,   and   the   lattice parameters   are   only 

slightly   smaller   (Kleinberg   69).     Each   nickel   atom   is   surrounded 

by   a   square  of   4   oxygens,   and   two  chlorines   are   on   a   line per- 

pendicular   to   the  plane  of   the  square.      Thus   each   nickel   ion   is 

at   the  Center   of   a   tetragonal   bipyramid.     Nickel   atoms   are   lo- 

cated at   each   cell   corner   and at   the  center   of   the   faces   in   the 

a-b plane.     The  NiCl   *4H  0   bipyramids   are  joined   together   by 

hydrogen   bonds   to   form   two-dimensional   layers   in   the a-b  plane. 

These   layers   are  loosely   joined by weaker   hydrogen  bonds   along 

the  c   direction.     A simplified drawing   of   this   structure   is 

shown   in   Fig.   1. 

B. MAGNETIC PROPERTIES 

.++   . . , 
The  Ni        ions   have  eight   3d-electrons.     The ground  state  of 

the   isolated  ion   is     F,   and  the  crystal-field  splitting  results 

4       -1 in  a   singlet  ground   state about   10     cm       below  other   levels.     The 

crystal   field  quenches   the  orbital   angular   momentum,   so   the   ions 

have  a   Lande g-factor   of about   2. 
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The susceptibility of powder (Haseda 57) and single crystal 

samples (Haseda 59) (Flippen 60) have been measured. X  . and X    , 

(the susceptibilities measured with the field along the b and c 

axes) are nearly equal, and temperature independent below 6.2  K. 

X.      t) measured along the axis perpendicular to c, decreases 
a 

below 6 K in the manner associated with the parallel suscepti- 

bility of an antiferromagnet.  Above 6 K all three components are 

equal indicating an isotropic g-factor.  The g-factor was found 

to be 2.2, and the Weiss temperature was determined to be 10 K 

(Haseda 59)• 

The behavior of X    ,   gave rise to the initial interpretation 
a ' 

that the a* axis was the axis of sub-lattice magnetization.  Re- 

cently both neuti on diffraction and antiferromagnetic resonance 

measurements have shown this to be in error.  The neutron dif- 

fraction results (Kleinberg 67) show that the easy axis is in 

the a-c plane inc :lined 10  from the a axis toward the c axis. 

This data, combined with NMR experiments (Spence 64), give the 

magnetic   structure   outlined   in   Fig.   2. 

Antiferromagnetic   resonance   experiments   performed   in   fields 

up   to   100   kilo-oersteds   confirm   this   structure:      the   easy   axis 

is   found  to   be   7     from  the  a_ axis   (Date   67).      The   effective   ex- 

change   field was   calculated as   86   kilo-oersteds   and   the  anisotropy 

constants   were  found.      Anisotropy   in  an  antiferromagnet   can   lead 

to   the phenomena   of   spin   flopping.     This   occurs   if  a   large   field 

is   applied  along   the   easy   direction.     When   the   field   is   applied, 

the  free   energy   of   the  system   changes   by   -"XIIH  /2   if   the   spins 

2 
remain  antiparallel   along   the   easy  axis,   and   by   - X   H   /2   if   they 

1 
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were   to   flop)   at   right  angles   to  the  easy  axis   and  there  were  no 

anisotropy.      Since K.     
> Xn ,   this   would make   the  perpendicular 

orientation   the  ground state.     However,   there   is   anisotropy   in 

all   antiferroraagnets   (which   is   why   there   is   an   easy  axis).     The 

anisotropy   can   be  described by  a   constant K,   so   that   the  actual 

change   in   free   energy   for   the perpendicular   alignment   becomes 

K- 1(   H /2.      Therefore   it   is   seen   that   anisotropy   is   basic   for 
1 

the   retention   of  the  antiferromagnetic   state   in   applied  fields. 

However   if H   is   large  enough,   so  that  K- X  H  /2   =   - A,,H  /2,   the 

perpendicular   orientation   is  preferred.     At  a   critical   field 

given  by  Hf     =  2K/(# ~^0»   the  spins   flop  perpendicular   to  the 

field.     H     can  be  determined from  antiferromagnetic  resonance 

data.     For   NiCl   "6H 0,   H     is   estimated to be  40  kilo-oersteds 

at   1.5 K   (Date  67) • 

The  details   of  the super exchange  linkages   in   this salt are 

not   clear,   but   it   is  probable  that   the  chlorine   ions   couple  the 

nickel   spins   (Robinson  60).     Its   crystallographic   two-dimensional 

layer   structure may  not   be  reflected  in  the magnetic   coupling. 

Inspection   of  Fig.   2  shows   that   nearest  neighbors   in   the  a-b 

plane are  antiparallel,   and  there  is   also antiparallel  alignment 

between  corresponding  spins   in  adjacent planes.     This   arrangement 

indicates  a   three-dimensional  magnetic  structure.     The  exchange 

field   is   large   compared  to  the anisotropy   fields   so  that   the 

Ising  model  predictions   may  not   be   valid. 
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C.  THERMAL PROPERTIES 

The specific heat of NiCl "6H 0 has previously been measured 

in zero field from \.k  to 20 K (Robinson 60).  This experiment 

showed the existence of a lambda anomaly at about 5-34 K.  The 

temperature resolution was about .05 K, so that no detailed 

critical point behavior was obtained.  The total entropy gained 

in the transition was shown to be 9.13 joules/mole-K.  This value 

is in good agreement with the expected value, R In (2S+1), where 

S = 1.  From the total area under the specific heat curve, an 

estimate can be made of z|j|/k, where J is the exchange integral 

and z is the number of nearest neighbors.  The value was found 

to be 7.4 K, and if z is taken as 6, J &  1.2k. 

A search for the spin - flop transition in NiCl "6H 0 has 

been made in fields up to 10 kilogauss and for temperatures 

between 1 and 4 K. (McElearney 68); no such transition was found. 

The phase boundary between antiferromagnetic and paramagnetic 

states was investigated.  The Neel temperature was found to change 

very little with field, however there is considerable scatter in 

the data. 
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Figure 1: Lattice structure of NiCl2'6H20 

Figure 2: Antiferromagnetic structure 
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IV.  EXPERIMENTAL PROCEDURE 

A.  CRYOSTAT 

The cryostat used for this experiment was designed for appli- 

cations over the temperature range 1 - 30 K.  It allows specific 

heat measurements to be made under adiabatic conditions in mag- 

netic fields from 0 to 25 kilo-oersteds.  The magnetic field is 

produced by a superconducting solenoid.  Because the supercon- 

ducting magnet performs best when its temperature is 4-2 K, it 

is necessary to provide a separate pumped helium bath in order 

to reach lower temperatures. 

Figure 3 is a diagram of the lower part of the calorimeter. 

The sample is suspended by nylon threads from a copper shield; 

the details of the suspension vary with the size and shape of 

the sample.  In this experiment it was necessary to rotate the 

sample about a horizontal axis during alignment.  The mounting 

shown allows this to be done.  The mounting of the sample is 

explained in part B. 

In order to cool the sample to the bath temperature in a 

reasonable time, it must be provided with a thermal connection 

to the bath.  This is accomplished using a heat switch.  Two 

jaws mounted on the shield can be opened and closed by a shaft 

which moves vertically.  The shaft is connected to a bellows at 

the top of the cryostat by a thin wire so that the jaws can be 

operated external to the cryostat.  A copper wire vane extends 

vertically from the sample to the center of the jaws.  When shut, 
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the   indium-coated  edges   of   the  jaws   grip   the wire and provide 

thermal   contact   to   the  shield.      An   electrical   lead   is   connected 

to   the  vane   to   indicate  when   the   contact   is   made  or   broken;   a 

check   of   the  resistance   from   the   vane   to   the  cryostat   indicates 

when   contact   is   made.      (Low   electrical  power   must   be   used  to  avoid 

heating   the   sample  and   shield  when   this   check   is   made.) 

Surrounding   the  sample   is   a   shield which   is   suspended   from 

the   low-temperature   bath   by   a   brass   tube.     The   shield  lid  has   a 

heater   and  a   resistance   thermometer      so  that   its   temperature  can 

be   raised and  maintained  at   a   constant   value  above   that   of   the 

bath.      A  controller,   described  in  Appendix  B,   regulates   the   tem- 

-4 perature  of   the   shield   to  within   better   than   +10       K   of   the 

desired  temperature.     Also  mounted   on   the  shield   lid   is   a   ter- 

minal   circle  which provides   connections   for   as   many   as   twenty- 

two   .005"   manganin  wires   which   lead   to   the   top   of   the  cryostat, 

and  thence   to   the electronic  equipment   in   the  room. 

The   calorimeter   is   evacuated with   a   diffusion  pump   connected 

to   the %   inch   inner   tube.      During  an   experiment,   the pressure   in 

the   sample  space   (as   read   on   an   ion  gauge   in   the   room)   is   usually 

less   than   3  x   10        Torr.     All  pumping   lines   leading   to   the   top 

of   the  cryostat   have   flexible  bellows   to prevent   vibrations   from 

heating   the  sample.      The  cryostat   and   its   dewars  are  mounted  on   a 

very   heavy   wooden   structure  which   is   isolated  from   the   floor   by 

sand. 

Concentric   with   the %   inch  pumping   line   is   a   1%   inch   tube. 

The  bottom  and   top   ends   of   these   tubes   are   terminated   in   such 

a   way   that   they   are   completely   isolated,   that   is   one  may   be 
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evacuated  while   the   other   is   at   atmospheric   pressure.      Helium  can 

be  admitted   into   the   \\   inch   tube   through   a   needle  valve,   con- 

trolled   from   the  room.      If  experimental   work   is   to  be   done  below 

4 K,   the   needle  valve   is   opened and  the   inner   bath   filled.     The 

needle  valve   is   then   shut  and  the   inner   bath  pumped   to   lower   its 

temperature.     Once   the  helium   level   falls   below   the  needle-valve 

opening,   the   temperature  decreases   rapidly,   since   the   inner   bath 

is coupled to the four-degree bath only by a length of stainless 

steel tubing.  Three resistors are mounted in the inner bath so 

that the level can be roughly determined.  When the helium reaches 

the lambda point, superfluid film creep up the walls of the tubing 

commences; this circulation causes a heat input to the bath which 

limits the lowest temperature that can be reached.  To prevent 

this circulation, two baffles were soldered into the tubing about 

one and two inches above the bottom.  Once the level gets below 

these baffles the temperature of the bath falls to its lowest 

value; and, because the heat into the bath is very small, the 

liquid helium remains for several hours at about 1.2 K.  If the 

magnet is being used the outer helium bath is kept at 4.2K; but, 

for experiments which do not use the magnet, the outer bath may 

also be pumped with a large mechanical pump.  If this is done, 

and if the inner bath is pumped with a diffusion pump, the lowest 

temperature reached is less than 1 K. 

The calorimeter and inner helium bath are surrounded by a 

brass can which is bolted to the ring containing the needle valve. 

An O-Ring, formed from indium wire, is wrapped around the lip of 
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a - bath thermometers 
b - film creep baffles 
c - electrical leads 
d - heat «witch jaws 
e - heat switch vane 
f - sample and thermometers 
g - shield can 

Figure 3:  Calorimeter cryostat (lower part) 
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the   top   of   the  can.      The   bolts   are   tightened   to  about   24   inch- 

pounds   of   torque   to  produce   a   leak-tight   joint. 

The   cryostat   top   contains   electrical   outlets   for   the   22 

leads   to   the   shield   terminal   circle,   for   the   inner   bath   ther- 

mometers,   and   for   the  magnet.      At   the   top   of   the  cryostat   is   a 

knob  which   is   used   to   control   the   heat   switch.      The  needle-valve 

shaft   can   be  pulled  out   of   the   outer   helium  bath  when   not   in   use. 

The   outer   helium  bath   is   contained   in   a   dewar   which   is   sur- 

rounded  by   a   jacket   filled with   liquid  nitrogen.      Helium   is 

transferred  from a   storage   vessel   into   the   dewar;   about   six 

liters   is   required  for   the   first   transfer.      This   will   last   for 

about   one   day,   and   successive   fillings   last   for   about   two  days. 

After   transferring,   the   needle  valve   is   closed,    the   inner   bath 

pumped  to   the   desired  starting   temperature,   and   the   heat   switch 

closed.      When   the   sample  reaches   equilibrium   the  heat   switch   is 

slowly   opened.      Some   heating   is   produced  as   the  jaws   are   separated, 

but   the   sample  returns   to   equilibrium   in   about   fifteen   minutes. 

At   this  point   the   data   accural   procedure   begins   as   described   in 

part   D. 

B.      TEMPERATURE MEASUREMENT 

The  temperature   of   the  sample  was   measured  with  a   carbon 

resistor   (470   ohm,   % watt,   Allen-Bradley   Type   EB-4).      In   the 

region   of   the   specific  heat  peak   (5-3  K)   its   resistance  was 

about   10,000   ohms   and   it   had a   sensitivity   of  2   x   10       K/ohm. 

The   resistance  was   measured  using  a   three-lead  Wheatstone   bridge, 

operating  at   37   Hertz.      A   lock-in   amplifier   was   used   to   detect 
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the null.  The power dissipated in the resistor was less than 
Q 

10        watts  and  no   heating   of   the   sample  by   the resistor   was 

detectable at   this   power.      When   the   largest possible   temperature 

resolution   was   desired,   near   the peak,    the  lock-in  amplifier   was 

operated at   maximum  sensitivity  with  a   time  constant   of   30   seconds 

7 
This   allowed  resistance  changes   of   5  parts   in   10     to  be   detected, 

corresponding   to  a   temperature  change   of   1   microdegree. 

The   carbon   resistor   was   calibrated by   successively   recording 

its   resistance  and   that   of   the  germanium  resistor   at   about   20 

equilibrium  points   over   the   temperature  range  4.2  K   -   6 K.     The 

germanium   resistor   had  been  previously   calibrated as   described 

in  Appendix  A.     The   carbon   resistor   values   and corresponding 

temperatures   were   fitted  to   the  equation 

6 
log   R „      .    ., _. 
—*   =     H      A.   log   R 

T i=i   iv      y      ; 
i-1 

The   deviations   between   the  values   of T   calculated from   this 

formula  and   the   corresponding   calibration   data   points   were   less 

-3 
than   10       degrees. 

In   a   magnetic   field  the  resistance   of  the  carbon   thermometer 

increases.     This   magnetoresistance must   be  subtracted before 

entering  R   in   the  above  equation.     This   correction  was   evaluated 

at   4-2  K  by  admitting   exchange  gas   into   the  calorimeter   and 

measuring   the  resistance  as   a   function   of  field  at   fixed   tem- 

perature.     The   increase   in   resistance   from   the  zero   field  value, 

AR,   was   found   to   be   related   to  H   by   the   equation 

* — =   1.59  x   10"5  H2   (H   in kilo-oersteds). 
R|H=0 
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There is also a temperature dependence of the magnetoresistance, 

which has been found to be proportional to T     for Allen-Bradley 

resistors (Clement 52) (Belanger 69).  This temperature dependence 

was assumed for the thermometers used in this experiment, so that 

\R   was calculated from 

AR     1.59 x IQ"5 (4.22)1'5 H2 

R|H=o" T1'5 

Since R,    and T are not known unless AR is known, iterations 
I H—C) 

were used: First assuming R,    = R. , an approximate AR was 
I H-(J j H 

found,   then   R,      was   corrected and  AR   recalculated.     When   H   =   20 
I 

H 

kilo-oersteds,   this   yields   about   a   .4%  correction   to   R,   so   that 

even   if   AR   were  to   be   in   error   by   10%,   the  corresponding   error 

in  T  would  be  about   .1   mK.     Therefore   the  error   in   the   tempera- 

ture  scale   for   all   fields   used   in   this   experiment   is   considered 

to  be   not  more  than   .5%,   as   discussed   in   Appendix  A. 

C.      SAMPLE  PREPARATION 

Single   crystals   of  NiCl   "6H  0  were  grown   by   slow   evaporation 

of  an   aqueous   solution   whose   temperature  was   regulated  at   30     C. 

The  solution   was   prepared  from  reagent   grade   salt   supplied  by 

Fisher   Scientific   Company.      Their   analysis   showed   the   salt   had 

a   cobalt   impurity   of   .03%. 

The  largest   crystal   which was   used   in   this   experiment   had a 

mass   of   .76   grams   when   taken   from   the  growing   solution.      Its 

habit   is   shown   in   Fig.   4-      The  angles   between   the   faces   were 

measured and  comparison   of   these  angles   with  published  values 
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(Groth 06) allowed identification of the faces.  After the faces 

were identified, a slice was cleaved parallel to the c face so 

that this face could be easily identified in the field alignment 

procedure.  The crystal cleaves perfectly along this face since 

it is the a-b plane in which the layers are formed.  This perfect 

cleavage provided a separate check on the identification of the 

faces. 

The crystal deteriorates badly when exposed to the atmosphere. 

It is very del iquiscent; that is, it absorbs water from the air, 

and a layer of solution forms over the crystal.  This difficulty 

was partially overcome by spraying the crystal with a coat of 

Krylon varnish and dipping it in G.E. 7031 varnish.  However, 

despite these precautions the crystal steadily lost mass; during 

the experiment its mass was .72 grams.  Also the crystal looses 

water  of hydration when placed in a vacuum at room temperature, 

so that before pumping on the sample, it was first cooled below 

-30  C.  After coating the crystal with varnish, a 100 ohm heater 

made of .002 inch manganin wire was wound tightly around the sample. 

The heater and sample were then coated again with varnish and 

allowed to dry for one day.  Then germanium and carbon resistance 

thermometers were mounted on the crystal with nylon thread.  A 

copper wire soldered to one end of the carbon resistor served 

as the vane to make contact with the heat switch jaws.  This 

assembly was then suspended in a C-shaped sample holder with 

nylon thread.  The sample holder was attached to the shield 

lid as shown in Fig. 3« 
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In order to align the easy axis along the vertical magnetic 

field the sample holder was rotated about the horizontal axis 

through the center of the sample (the b crystal axis).  The 

coirect orientation was determined by making use of the fact 

that when the c face is inclined 7  from vertical, the easy 

axis, a, is vertical.  This is shown in Fig. 4-  A small plastic 

right triangle with a 7  angle was made, and its hypotenuse was 

placed against the large cleaved face.  The crystal was then 

rotated until the adjacent side was vertical, as judged by 

alignment with a vertical rod.  It is estimated this procedure 

o 
was accurate to about _+ 2   , which is more precise than the know- 

ledge of the easy axis direction. 
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Fig.   4-    (a)   Habit   of  NiCl   -6H 0 

(b)   Direction   of   easy   axis,   a" 
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D.      DATA   ACCRUAL 

The  specific   heat   measurements   begin  with   the   sample   in 

equilibrium  with   its   surroundings,   that   is,   with   no   detectable 

drift   in   its   temperature   over   several   minutes.      Heat   is   applied 

for   about   100   seconds;   after   the  heat   is   turned  off   the  sample 

and  thermometer   quickly  achieve   equilibrium.      Unless   the   shield 

temperature   is   adjusted  to  be  equal   to  the  new  sample   tempera- 

ture,   a   slow   cooling   of   the   sample  will   be   observed at   the  end 

of   the   heating period.     To prevent   this   non-adiabatic   condition, 

a   guess   is   made   of   the   sample   temperature   change   during   the 

heating  period;   half-way   through   the  heating,   the  shield   tem- 

perature   is   set   to  match  the  estimated  final   sample  temperature. 

In   this   way   the   shield   is   colder   than   the  sample   for   the  first 

half   of   the period and warmer   for   the   last   half.      The  adjustment 

of   the   shield   is   made   easy   because  similar   resistors   are  used 

for   shield and  sample  thermometers,   so   that   the   resistance   change 

during  a   heating  period   is   about   the  same   for   both.      If   this 

procedure   is   followed carefully,   adiabatic   conditions   can  be 

maintained  during   the measurements,   and after   the  heat   is   turned 

off,   the  sample   temperature   remains   perfectly   constant.     After 

a   series   of several   heating  steps  are  made,   the  sample  temperature 

is   monitored  for   more  than   15  minutes;   any   slight   drift   in   tem- 

perature   is   compensated  by   small   adjustments   of  the   shield   tem- 

perature. 

The power   to   the  heater   is  provided  by  a   voltage  divider 

across  a   1.35   volt   mercury   cell.      Four   leads   go   to   the  heater, 

two  carry   the   current   and   two are  used   to  measure   the potential 
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across the heater.  In series with the current lead is a 100 ohm 

standard resistor, so that both V and I can be measured with a. 

potentiometer which is read to + 10   volts (Leeds and Northrup, 

Model K-3).  The heating period is timed with a digital clock 

(Anadex Model CF200) accurate to +_ .01 seconds.  The source of 

power for the sample heater was stable enough so that the power 

usually remained constant through out the heating period.  Heating 

steps were about 1 millidegree and the applied power was as small 

as .1 microwatt near the specific heat maximum. 

Errors in a measurement of the heat capacity can arise from 

uncertainties in the power, time, and temperature rise.  The 

measured valued of power and time are considered accurate to .01%. 

Stray heating or cooling occurs whenever the shield and sample 

temperatures are not equal.  As explained above, the shield was 

adjusted in only a few increments during the heating, but the 

cooling and heating effects should cancel.  When large temperature 

steps were taken the uncertainty in the adiabaticity of the mea- 

surement increased, but the errors were random.  Errors in the 

temperature rise can occur when there is drift after a heating 

period.  If there was drift, the resistance was extrapolated back 

to the expected equilibrium time (about five seconds after the 

power was turned off).  If the drift was excessive, a notation 

was made; and, if the corresponding specific heat point seemed 

in error from an examination of a graph of the data, that point 

was discarded (ten points were discarded for this reason).  An 

error in calculation of the temperature rise can be made when 

the fitting formula for T vs R is used to convert AR to AT.  This 
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uncertainty is difficult to evaluate, but from experience gained 

in measurements of the heat capacity of metals it is felt this 

error is negligible.  When calculating the specific heat from the 

measured heat capacity uncertainties in the mass of the sample 

add to the total uncertainty.  In this experiment the mass is 

quite imprecise.  For the large crystal the mass was evaluated 

as .72 + .01 grams.  Thus the absolute value of the specific 

heat data has an uncertainty of _+ 2%.  The major uncertainty 

in the heat capacity comes from determining the temperature 

change.  Due to uncertainties in this factor, the precision of 

the heat capacity is estimated as approximately .3% near the 

peak and .8%  away from the peak. 
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V.  RESULTS AND CONCLUSIONS 

A.  INTRODUCTION 

Three experiments were done using different samples of 

NiCl /ÖH Ü.  The first measurements were made on a small crystal 

furnished by R.L. Kleinberg.  Data in zero field and in several 

applied fields were taken.  At the end of this first experiment, 

several factors indicated the desirability of a second experi- 

ment.  A larger single crystal had been grown, which would allow 

more accurate alignment of the easy axis with the field and more 

precise heat capacity measurements.  Also significant improve- 

ments were made in the sensitivity of the sample thermometer 

bridge, and a stray source of heat input to the sample was 

eliminated. 

The second experiment was carried out on a .72 gram single 

crystal in zero field.  Preliminary analysis of the data showed 

that the heat capacity peak was broader and occured at a slightly 

lower temperature than that of the smaller crystal.  To verify 

that this effect was reproducible and was caused by differences 

in the crystals, it was decided to replace this large crystal 

with another of Dr. Kleinberg's small crystals. 

The third experiment used a sample with a mass of about .1 

grams.  Applied fields of approximately 1, 5, 10, and 20 kilo- 

oersteds were used.  This set of data essentially duplicated that 

of the first experiment, and it was of higher quality, therefore 

no further analysis was carried out on the first set of data. 
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In the following discussion the set of data from the second 

experiment is referred to as the "large crystal data", and that 

from experiment three is the "small crystal data". 

In this section the magnetic contribution to the specific 

heat of these two samples is analyzed and compared with pre- 

dictions made by theoretical models. 

B.  ADDENDA AND LATTICE CORRECTIONS 

To determine the magnetic specific heat, it is necessary to 

evaluate the contributions to the measured heat capacity from 

the lattice and from the attachments to the sample.  In this 

experiment the addenda consisted of: germanium and carbon re- 

sistors, manganin heater wire, nylon threads, a copper heat- 

switch vane, and varnish.  Since the heat capacity of this 

assembly was quite small, it was decided that a calculation of 

the addenda contribution would be as accurate as a measurement 

of it.  Each component of the addenda was weighed separately 

(except the varnish) and the entire sample and addenda were 

weighed before and after an experiment.  From published data, 

formulas were developed which approximated the heat capacity 

of each part of the addenda as a function of temperature.  The 

values calculated from each formula, evaluated at the temperature 

of each data point, were added, and the total subtracted from the 

measured heat capacity.  The addenda contribution comprised about 

1% of the total heat capacity at the lowest temperature reached, 

2% at the highest temperatures, and .3% at the heat capacity peak. 
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The   lattice   heat   capacity   is   expected   to 
3   . 

vary  as   T     in   the 

temperature   range  covered   in   this   experiment, since   the   Debye 

temperature   of   the   salt   is   about   200  K.     The lattice   background 

had  been   separated   from   the   total   specific   heat  previously 

(Robinson   60).      According   to   this   separation. 1 

C     =   (1.503  x   10"3)   T3   joules/mole- -degree. 

This   expression  was   used   to   evaluate   the   lattice   contribution. 

This   contribution   varied  from   1%  at   4-3 K   to 5% at   5.8  K,   and 

was   .6%   of   the  total   at   the   heat   capacity   pea ik. 

To  find   the molar   specific   heat,   C   ,   the measured  heat 

capacity   was   divided  by   the  number   of  moles. The  mass   of   the 

large   crystal   was   known   to  about   1.5%,   however   the mass   of   the 

smaller   crystal   was   more  uncertain.      Because the  mass   of   the 

varnish  was   not   as   well   established,   a   large uncertainty   existed 

in   the   heat   capacity   of  the  addenda   for   experiment   three.      For 

these   reasons,   the   small   crystal   results   were ■  normalized   to 

match   the   large   crystal's   specific   heat   at   th ie   lowest   and  highest 

temperatures.      This   is   justified  because  at   t emperatures   far   away 

from   the peak,   both   heat   capacity   curves   had the  same  shape. 

C.      RESULTS   IN   ZERO  APPLIED   FIELD 

Application   of   the  corrections   described in   Part   B  yielded 

the magnetic   specific   heat,   C   ,   for   the   large 
m 

:  and  small   crystals. 

The  results   for   zero  field are  given   in  Tables   II   and   III   and 

plotted   in   Figs.   5  and  6.      Each point   is   shown   on   these   graphs, 

except   the   ten  points   which  were   rejected  because   of   excessive 

drift. 
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The   data   show   the  familiar   lambda-shaped peak  which   is   charac- 

teristic   of magnetic  and   other   cooperative  phase   transitions. 

However,   closer   inspection   of   the  temperature  region   near   the 

peak  shows   that   the   specific   heat   is   rounded   (Fig.   7)•     The 

small   sample  shows   a   sharper   peak,   and   its   specific   heat  at   the 

peak   is   12%  greater   than   that   of   the   large   sample.     The   tempera- 

tures   at   which  maxima   occur   differ   for   the   two  crystals:     T 
max 

is   5-335  K   for   the   large   crystal   and  5-338   K   for   the   small   one. 

This   shift   is   larger   than  possible   shifts   in   the  temperature 

scale   between   experiments. 

The   functional form  of   the   data   in   zero  field   is   of   interest 

for   comparison   with   theoretical  predictions.      The  rounded peak 

makes   such  a   determination   less   than   straight-forward.      The   first 

difficulty   is   the   location   of   the   "transition   temperature",   T   . 

As   a   first   approximation   this   might   be   taken   to  be   the  tempera- 

ture  at  which  the  heat   capacity   maximum   occurs,   T .     However 
max 

here,   and   in   most   experiments,   T     is   treated as   a  parameter   and 
N ^ 

allowed to wander somewhat from the maximum if a considerably 

better fit results.  Although T  is treated as a fitting para- 
N 

meter, it is considered as having physical significance: if the 

sample were an infinite perfect array, then T    should equal T . 
max ^ N 

It   is   useful   to  specify   three  temperature  regions   for   the 

data.      First,   some  points   are   too   far   from  the peak   to   be  con- 

sidered as   critical   data;   some points   near   the  maxima   are  not 

considered  critical   data   because   of   the  rounding;   and   finally 

there  are   data   on   each  side   of   the  peak  which  are  considered 

truly   representative   of   ideal   sample   behavior.      It   is   this   last 
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region on which attention is focused.  The boundaries between 

these regions are somewhat hazy, and the ultimate results may 

depend somewhat on the choice of data used in the analysis. 

This dependence can be checked by observing the effect of a 

movement of the boundaries used for data analysis on the re- 

sults.  For the analysis presented here, it was found that the 

determination of critical parameters was not very sensitive to 

the readjustment of boundaries, and a visual determination of 

the rounded region and the extreme regions from graphs was 

sufficient. 

The analysis of the functional form of C vs T began with 

inspection of serailogarithmic plots, C vs log (1 - T/T   ) 

(Fig. 8).  The points, T < T   , seem to lie roughly on a v      '       r
 max 

straight line, however, for T ^ T    the points definitely do 
max 

not fall on a straight line.  Next, log C was plotted against 

log (1 - T/T   ).  On this graph, the high temperature points 

fall more nearly on a straight line; however, a single straight 

line does not fit these points well. 

The next step of the data analysis was to fit C to the 

functional form suggested by theory, Equations II-4: 

C  = A/a[e" -i] + B  for T > T 
+ N 

t 

C  = A /a [e   -1J+B  for T < T . 
N 

t 

(For a or a  = 0, a logarithmic fit was used.)  The procedure 

adopted was" that suggested by van der Hoeven (68).  The analysis 

for temperatures above T  is explained below; the same procedure 

was followed for T < T .  Values of 0! and T  (in this case called 
N N v 
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T, ) are chosen.  A and B are then determined by a linear least 
N + 

squares fit of that portion of the data which are chosen to re- 

present the "ideal" region above T  .  Using the values of A 

and B, the difference between the measured and calculated values 

of C are found, and the correlation coefficient  for this fit 

is found.  Next T , is changed by .2 mK and the procedure is 
N+ r 

repeated.     This   process   is   repeated until   all   reasonable  values 

of   T     have  been   tested.      (T     was   allowed  to range   from   5.335 K 

to   5.350 K.)     This   entire procedure   is   then  repeated  for   dif- 

ferent  values   of OL.     After   the process   is   completed,   one  has  a 

family   of  curves   corresponding   to  different   values   of OL,     An 

example  of  such a   family   is   shown   in  Fig.   9-     Each  curve  shows 

the  correlation   coefficient  as  a   function  of  T       for   fixed OL. 
N+ 

Each   curve   has   a  maximum,   and  there   is   a   largest  maximum.      The 

values   of OL   and T.     which  produce   the   largest   correlation   co- 
N+ 

efficient are chosen as the best representation of the data; 

corresponding to this choice are constants A and B which give 

the fit of the equation to the data.  In applying this procedure 

t        t       1 
to data below T , another set of parameters, OL   , T  , A , and B 

are found.  Since T was allowed to vary over such a large range, 

the data set being fitted was modified for each assumed T  so 
N 

that  no points  fell within  3 mK  of T   .     The analysis  procedure 

was   tested many  times using   different  choices  for   the regions 

The  correlation  coefficient,  y,   is   defined by y  - \ 1-6/N72, 
where 5   is   the sum  of  the  square  deviations,   N  the number   of 
points  used,   and (x2  the  variance  of  the data,     y   is  a measure 
of  how well  a   set  of points   is   correlated  to a   functional   fit. 
Its  value  is   one  if the  fit   is  perfect. 
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over   which   the   data   were   fit   and   the   criterion   used   for   the 

rejection   of   data   as   being   too   near   T   .      The   fitting   para- 
N 

meters   were   relatively   insensitive   to   the   choices.      Thus,   it 

is   felt   that   a   meaningful   fit   to   the   data   was   achieved.      An 

estimate   of   the  uncertainty   in   the   fitting  parameters   can   be 

made   by   determining   the range   over   which  a   parameter   can   vary 

from   its   best   value   before   the points   systematically   deviate 

from   the   function.      The   results   of   this   procedure  are   sum- 

mar ized   below: 

Small   Crystal Large  Crystal 

T        5-348   +   .001   K 5-348   +   .001   K 

a .20 +  .03 .17 +  .03 

A .835 .866 

B       3.9 3-9 

y       -997 .998 

TN_ 5.3476 +   .001   K 5-3466   +   .001   K 

a*       .00 + .01 .00 +  .03 

A' 5.15 4.6 

B I.858 2.2 

y       .9999 .9995 

It   can   definitely   be   said   that   the   data   for   both   crystals 

below  T     can  be   fit   best  with  a   logarithm.     Above  T     a  power 
N a N   ^ 

law is best.  The best value of T  seems to be about .01 K 
N 

higher than T   .  It is not possible to say that this tem- 
max ^ * 

perature has physical significance; but, since both samples 
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have about the same T , it appears that it is more than an 

artifact of the fitting procedure.  This type of behavior has 

been found to hold in many magnetic transitions.  For example, 

In MnCl *4H 0, where rounding was less of a problem, d   = .35 

t i 

and a     -  0 (Dixon 69) ; in MnF , 0 <■  0! <   1 and (X     =   0 (Teaney 65) . 

As a measure of width of the peak, the interval A is defined 

to be the temperature between specific heat points which are 

90% of the maximum.  These values are given in Table I.  The 

width for the small crystal is .0l4 K and for the large crystal, 

.021 K.  Also the maximum heat capacity is less for the large 

crystal.  These observations are qualitatively in agreement 

with theoretical arguments given in Section II.  If the values 

of T  described above are valid, then the theoretical prediction 

that the shift in the maximum from T  is related to the size 
N 

of imperfections can be applied.  Using equations II-5 and 

T  - T    = .01 K, one obtains the estimate of 500 atoms between 
N    max 

boundar ies. 

The next step in the analysis of the data was to introduce 

another fitting parameter, T,   to fit the data using the tempera- 

* .      /- ture variable, e , of equation II-6.  All data in the rounded 

region were included and the points below T    were fitted to 
max 

t 

.  t *-
0i 

c_ = A /Qf (e   -1) + B', 

where 

* 
e 

• 50- 



t 

(T -   T        =   11   mK) 
max 

T 10   mK 

i 

0.0 

t 

A 4.14 
i 

B 3-6 

y .9993 

T and T     had already   been   determined  so   that 0C     and T   were 
max      N 

allowed to vary, and the pair that produced the best fit were 

determined as described above. The following values were ob- 

tained as the best values of the fitting parameters: 

Large Crystal Small Crystal 
(T    T   = 9 mK) v N   max      ' 

5 mK 

0.0 

3.91 

6.07 

.998 

Figure  11   shows   the   large   crystal   data   with  a   curve   representing 

t      i      i 

the fitting equation using the best value of 0C   ,   T,   A  and B . 

Also shown is an undamped logarithmic singularity corresponding 

to T =0.  The significant feature of these results is that in 

both cases T is approximately equal to T  - T   , as predicted cr
 N max r 

theoretically   (Fisher   67)   for   two-dimensional   Ising   arrays 

(the  width  may   be   less   than   the   shift   for   three-dimensional 

lattices).      The  procedure  was   also  applied  to   data   above  T   , 

but   it   did  not   converge   to  a   unique   value  of T   and 0L. 

One   can   speculate  concerning   the   differences   in   the   large 

and  small   crystals.     They   originated   from  different   laboratories, 

and   no   information   is   available   on   the   impurity   level   of   the 

small   crystal;   however,    it   is   probably   about   the   same  as   for 

the  large   one,   both  having   been  grown   from  commercial   reagent- 

grade  chemicals.     Outwardly   the  small   crystal   appeared   less 
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perfect   than   the  large   crystal,   but   it   is   likely   that   the   smaller 

one   had   fewer   strains   and   imperfections.   The   fact   that   the  size 

and   impurity   level   of  a   sample  can   change   its   transition   tem- 

perature   has   been  previously   observed.     The  heat   capacity   of 

two  high-quality   single  crystals   of MnF     have   been   measured 

(Teaney   65),   one with   a   mass   three   times   the   other.      The   transi- 

tion   temperature   of   the   larger   crystal  was   .1  K   lower    than   that 

of   the  small   one   (T    *J  67-3 K).     The  effect   of   impurities   on 
N 

the phase transition in Gd has been studied (Cadieu 68);    it 

was found that impurities reduce the transition temperature. 

D.  RESULTS IN APPLIED FIELDS 

Data obtained for various magnetic fields along the easy 

axis are given in Tables IV through VII and plotted in Fig. 12. 

Fig. 12 shows all of the applied field data on one graph.  Two 

general features are apparent:  The heat capacity maxima are 

shifted to lower temperatures, and they are reduced in magnitude. 

The shape of the curves does not change significantly away from 

the peak.  Although there is not enough data at all fields to 

attempt a functional fit, as was done in zero field, the data 

retain the shape of the zero field curves when plotted on semi- 

logarithmic graphs. 

In order to determine the effect of the field on the rounding 

of the peak, a width of each peak was measured as described in 

part C.  The width value, A, listed in Table I, definitely in- 

creases with field; however, no quantitative conclusions were 

reached about this dependence. 
-52- 



If the view is adopted that T    is not the theoretically 
max 

discussed   T   ,    but   is   shifted   from  T     by    imperfections   or    im- 
N N 

purities,    it   follows   that   the   same   shift   should  apply   in   finite 

fields,   and   hence 

T        (Ü)    -   T        (H)   =  TM(0)    -   T T(H) . 
max1 maxv    ' Nv Nv    ' 

This allows comparison of this experimental data to the pre- 

dictions about the phase boundary T (H).  Both mean field 
N 

and Ising theories predict that a plot of CT (0)-T (H)J/T (0) 

2 
against H (for H «H ) will yield a straight line.  Although 

the experimental points are sparce, they do seem to fall on a 

-11    -2 
line with slope 9 x 10   (Oe)  .  This agrees only in order of 

magnitude with the mean field prediction; while the three- 

-11    -2 dimensional Ising model predicts a slope of l6 x 10   (Oe) 

E.  CONCLUSIONS 

The specific heat of NiCl "6H 0 has been measured in zero 

and applied fields.  The temperature resolution was sufficient 

to study the rounding of the peak that occurs over a few milli- 

degrees.  The zero field data is seen to be in good agreement 

with estimates of the critical behavior of theoretical models. 

It is necessary to use a Neel temperature about 10 millidegrees 

higher than the temperature at which the specific heat maximum 

occurs.  The best estimate of the Neel temperature is 

5-3475 + .001 K. 
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The concept of a complex transition temperature is used to 

introduce a fitting parameter to describe the rounding and the 

shift of the peak.  This seems promising and hopefully can be 

put on firmer theoretical footing.  The tentative conclusion is 

that the basic cause of the non-ideal behavior are crystalline 

imperfections.  These restrict the range of correlations and 

lower the transition temperature of the small homogeneous re- 

gions.  The broadening is caused by the distribution of sizes 

of these regions, each with a separate transition temperature. 

This conclusion is supported by the observation, using NMR, 

that both ant iferromagnetic and paramagnetic phases coexist over 

a range of 10  K about the transition temperature in CoCl *6H 0 

(Sawatzy 64). 

The phase boundary between paramagnetic and antiferromagnetic 

states was determined for fields up to 20 kOe.  While the shape 

is in qualitative agreement with simple theoretical predictions, 

there is no quantitative agreement.  The transition remains fairly 

sharp in applied fields, although the maxima decrease in magni- 

tude and the rounding is slightly increased. 
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Figure 6: Specific heat of small sample, zero field 
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Figure fi:  Specific heat of large sample, T  "5.335 K 
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Figure 9:  Correlation coefficients for fit of Eq. II-4 to 
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Figure 10: Specific heat of large sample with TN=5.3U7 
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T C A 
max max 
(K) (joules/mole-K) (K) 

Large   Crystal 

H   =   0 5-335 29.6 .021 

Small   Crystal 

H   =  0 5.338 33-6 .014 

H   =   1 5.337 33-4 .016 

H =  5 5.327 33.1 .018 

H  =   10 5.286 31.6 .020 

H   =   19 5.170 30.4 .022 

T        :      temperature  at  which   C     is   larqest 
max r
 m 

C        :      largest   value   of  C 
max m 

A        :      temperature   interval   for   c  =   .9C 
max 

TABLE  I 
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Tables II - VII give the magnetic contribution to the 

specific heat, C , of NiCl -6H 0 in various fields. 
m z <L 

T   is   the  average   of   the   initial   and  final   temperatures   of 

a   heating   step. 

C     is   the  molar   magnetic   specific   heat.      Its   units   are 
m 

joules/mole-K.  The total specific heat, C , may be found by 

C  = C  + 1.503 x 10~3 T3. p    m 

Delta T is the difference between the final and initial 

temperature (the size of the heating step). 
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TABLE II 

T 

1 4.3502 

2 4.3792 

3 4.4076 

4 4.4355 

5 4.4628 

6 4.4895 

7 4.5207 

e 4.5568 

9 4.5927 

10 4.6279 

11 4.6623 

12 4.6983 

13 4.7353 

14 4.7707 

15 4.8070 

16 4.8427 

17 4.8779 

16 4.9153 

19 4.9541 

20 4.9914 

21 5.0270 

22 5.0482 

23 5.0541 

24 5.0599 

25 5.0657 

26 5.0715 

27 5.0772 

28 5.0828 

29 5.0884 

30 5.0940 

31 5.0996 

32 5.1051 

33 5.1106 

34 5.1167 

LARGE SAMPLE H K 0E 

CM 

8.3966 

8.5508 

8.7355 

8.9153 

9.1032 

9.2713 

9.5034 

9.7796 

10.0839 

10.3887 

10.6875 

11.0257 

11.3986 

11.7639 

12.1399 

12.5791 

13.0011 

13.4673 

13.9985 

14.5517 

15.1077 

15.4318 

15.5277 

15.6213 

15.7431 

15.8334 

15.9724 

16.0814 

16.1781 

16.3135 

16.4084 

16.5452 

16.5883 

16.7594 

DELTA T 

0.0293 

0.0288 

0.0281 

0.0276 

0.0270 

0.0266 

0.0353 

0.0365 

0.0354 

0.0353 

0.0336 

0.0384 

0.0357 

0.0352 

0.0374 

0.0340 

0.0366 

0.0382 

0.0394 

0.0351 

0.0361 

0.0059 

0.0058 

0.0058 

0.0053 

0.0057 

0.0057 

0.0056 

0.0056 

0.0056 

0.0055 

0.0055 

0.0055 

0.0068 
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TABLE II 

T 

35 5.1235 

36 5.1303 

37 5.1369 

38 5.1436 

39 5.1501 

40 5.1567 

41 5.1632 

42 5.1696 

43 5.1759 

44 5.1822 

45 5.1885 

46 5.1912 

47 5.1945 

48 5.1946 

49 5.1964 

50 5.1988 

51 5.2008 

52 5.2026 

53 5.2028 

54 5.2068 

55 5.2091 

56 5.2144 

57 5.2152 

58 5.2186 

59 5.2229 

60 5.2253 

61 5.2272 

62 5.2309 

63 5.2315 

64 5.2358 

65 5.2372 

66 5.2399 

67 5.2434 

68 5.2441 

LARGE SAMPLE H K 0E 

CM 

16.9006 

17.0537 

17.2404 

17.3553 

17.5243 

17.6874 

17.8700 

18.0367 

18.2130 

18.3919 

18.5817 

18.5738 

18.6835 

18.7632 

18.7277 

18.8653 

18.9724 

18.9006 

18.9889 

19.1593 

19.1472 

19.3709 

19.2809 

19.4929 

19.6465 

19.6683 

19.8282 

19.8910 

19.9604 

20.1642 

20.1659 

20.3119 

20.4410 

20.5525 

OELTA T 

0.0068 

0.0067 

0.0066 

0.0066 

0.0066 

0.0065 

0.0064 

0.0064 

0.0063 

0.0063 

0.0062 

0.0022 

0.0044 

0.0061 

0.0062 

0.0043 

0.0061 

0.0063 

0.0035 

0.0060 

0.0066 

0.0042 

0.0057 

0.0043 

0.0043 

0.0046 

0.0043 

0.0066 

0.0043 

0.0042 

0.0060 

0.0041 

0.0066 

0.0043 
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TABLE II 

T 

69 5.2483 

70 5.2500 

71 5.2526 

72 5.2569 

73 5.2570 

74 5.2614 

75 5.2658 

76 5.2695 

77 5.2696 

78 5.2722 

79 5.2745 

80 5.2746 

81 5.2772 

82 5.2795 

83 5.2797 

84 5.2817 

85 5.2840 

86 5.2846 

87 5.2860 

88 5.2878 

89 5.2893 

90 5.2896 

91 5.2914 

92 5.2931 

93 5.2940 

94 5.2949 

95 5.2966 

96 5.2983 

97 5.2985 

98 5.3000 

99 5.3017 

100 5.3030 

101 5.3034 

102 5.3051 

LARGE SAMPLE H 0  K 0E 

CM 

20.7929 

20.7188 

20.7736 

21.0377 

21.1269 

21.3049 

21.5272 

21.7962 

21.7484 

22.0894 

22.0464 

21.9421 

22.1917 

22.4138 

22.4569 

22.5682 

22.5497 

22.7707 

22.9056 

22.9406 

23.1158 

23.1843 

23.5099 

23.5098 

23.5179 

23.6307 

23.9193 

24.1778 

23.8875 

24.2785 

24.3190 

24.3318 

24.6648 

24.8665 

DELTA T 

0.0042 

0.006b 

0.0044 

0.0070 

0.0044 

0.0044 

0.0044 

0.0031 

0.0053 

0.0021 

0.0052 

0.0028 

0.0023 

0.0022 

0.0051 

0.0023 

0.0023 

0.0046 

0.0018 

0.0013 

0.0043 

0.0018 

0.0017 

0.0017 

0.0046 

0.0017 

0.0017 

0.0017 

0.0045 

0.0017 

0.0017 

0.0044 

0.0017 

0.0017 
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TABLE   II 

T 

103 5.3062 

104 5.3067 

105 5.3083 

106 5.3084 

107 5.3100 

108 5.3105 

109 5.3116 

110 5.3128 

111 5.3132 

112 5.3148 

113 5.3151 

114 5.3164 

115 5.3173 

116 5.3179 

117 5.3193 

118 5.3194 

119 5.3210 

120 5.3211 

121 5.3225 

122 5.3230 

123 5.3239 

124 5.3248 

125 5.3254 

126 5.3265 

127 5.3269 

128 5.3283 

129 5.3283 

130 5.3298 

131 5.3300 

132 5.3312 

133 5.3317 

134 5.3326 

135 5.3334 

136 5.3336 

LARGE SAMPLE H * 0  K 0E 

CM 

24.4102 

24.9260 

24.9940 

25.1240 

25.4400 

25.0700 

25.6285 

25.4497 

25.7617 

26.0934 

25.7820 

26.3420 

26.1960 

26.5266 

26.5339 

27.0493 

27.3460 

26.9515 

27.3832 

27.1056 

27.9448 

27.5738 

28.0113 

28.0198 

28.3144 

28.3747 

28.6273 

29.2107 

28.6957 

29.1919 

28.9045 

29.4411 

29.3693 

29.4878 

DELTA T 

0.0021 

0.0016 

0.0021 

0.0016 

0.0016 

0.0023 

0.0016 

0.0023 

0.0016 

0.0016 

0.0022 

0.0016 

0.0022 

0.0015 

0.0019 

0.0015 

0.0015 

0.0018 

0.0015 

0.0018 

0.0015 

0.0018 

0.0015 

0.0018 

0.0015 

0.0017 

0.0014 

0.0014 

0.0017 

0.0014 

0.0017 

0.0014 

0.0017 

0.0008 
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TABLE 11 

T 

137 5.3344 

138 5.3351 

139 5.3351 

140 5.3359 

141 5.3366 

142 5.3368 

143 5.3374 

144 5.3381 

145 5.3385 

146 5.3389 

147 5.3398 

148 5.3403 

149 5.3407 

150 5.3415 

151 5.3422 

152 5.3425 

153 5.3429 

154 5.3435 

155 5.3443 

156 5.3445 

157 5.3450 

158 5.3457 

159 5.3468 

160 5.3473 

161 5.3496 

162 5.3499 

163 5.3527 

164 5.3528 

165 5.3559 

166 5.3562 

167 5.3593 

168 5.3599 

169 5.3628 

170 5.3666 

LARGE SAMPLE H = 0  K 0E 

CM 

29.3561 

29.1876 

29.6872 

30.0517 

29.2940 

29.2122 

29.2915 

28.8840 

28.9292 

27.9650 

27.2007 

27.3940 

25.6627 

24.2574 

24.8617 

22.5406 

24.2318 

21.2117 

21.3278 

19.7123 

21.0494 

18.8009 

18.5889 

18.6090 

16.3273 

16.5155 

14.9287 

14.7699 

13.7629 

13.5147 

12.8556 

12.6267 

12.1621 

11.6888 

DELTA T 

0.0007 

0.0017 

0.0007 

0.0007 

0.0007 

0.0017 

0.0007 

0.0008 

0.0017 

0.0008 

0.0010 

0.0018 

0.0009 

0.0009 

0.0020 

0.0010 

0.0019 

0.0010 

0.0023 

O.OOli 

0.0022 

0.0012 

0.0026 

0.0024 

0.0030 

0.0027 

0.0030 

0.0033 

0.0033 

0.0036 

0.0035 

0.0038 

0.0037 

0.0038 
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TABLE II 

T 

171 5.3705 

172 5.3746 

173 5.3787 

174 5.3829 

175 5.3871 

176 5.3914 

177 5.3959 

178 5.4004 

179 5.4021 

180 5.4050 

181 5.4277 

182 5.4520 

183 5.4746 

184 5.4980 

185 5.5221 

186 5.5467 

187 5.5717 

188 5.5974 

189 5.6234 

190 5.6498 

191 5.6768 

192 5.7041 

193 5.7318 

194 5.7598 

LARGE SAMPLE H K OE 

CM 

11.2886 

10.9772 

10.7436 

10.4235 

10.6816 

10.0676 

9.9931 

9.6224 

9.6595 

9.5587 

9.0309 

8.6145 

8.3199 

8.0634 

7.8499 

7.6523 

7.5059 

7.3480 

7.2107 

7.0703 

6.9663 

6.8642 

6.7642 

6.6814 

DELTA T 

0.0040 

0.0041 

0.0042 

0.0043 

0.0042 

0.0044 

0.0044 

0.0046 

0.0249 

0.0046 

0.0263 

0.0223 

0.0230 

0.0237 

0.0243 

0.0249 

0.0254 

0.0259 

0.0263 

0.0268 

0.0271 

0.0275 

0.0279 

0.0282 
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TABLE   III 

T 

1 4.3342 

2 4.3633 

3 4.3929 

4 4.4248 

5 4.4580 

6 4.4898 

7 4.5212 

8 4.5534 

9 4.5890 

10 4.6245 

11 4.6533 

12 4.6816 

13 4.7153 

14 4.7480 

15 4.7784 

16 4.8095 

17 4.8714 

13 4.9031 

19 4.9351 

20 4.9664 

21 4.9967 

22 5.0262 

23 5.0547 

24 5.0828 

25 5.1099 

26 5.1359 

27 5.1610 

28 5.1852 

29 5.2086 

30 5.2311 

31 5.2527 

32 5.2733 

33 5.2928 

34 5.3111 

SMALL SAMPLE H K 3E 

CM 

8.3291 

8.4522 

8.7186 

8.9496 

9.2210 

9.4680 

9.7560 

10.0003 

10.3283 

10.6442 

10.8921 

11.1781 

11.5487 

11.9018 

12.2565 

12.6053 

13.3924 

13.8514 

14.2510 

14.7572 

15.2151 

15.7665 

16.3217 

16.9206 

17.4394 

18.0970 

18.7843 

19.5402 

20.3050 

21.2326 

22.2640 

23.4798 

25.0205 

27.0039 

DELTA T 

0.0303 

0.0285 

0.0304 

0.0338 

0.0326 

0.0312 

0.0317 

0.0331 

0.0381 

0.0330 

0.0246 

0.0321 

0.0351 

0.0305 

0.0303 

0.0320 

0.0303 

0.0326 

0.0313 

0.0308 

0.0299 

0.0289 

0.0281 

0.0281 

0.0264 

0.0255 

0.0247 

0.0238 

0.0230 

0.0 2 20 

0.0211 

0.0201 

0.0190 

0.0177 
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TABLE   III 

T 

35 5.3240 

36 5.3261 

37 5.3278 

38 5.3280 

39 5.3293 

40 5.3301 

41 5.3309 

42 5.3317 

43 5.3325 

44 5.3332 

45 5.3340 

46 5.3348 

47 5.3355 

48 5.3362 

49 5.3369 

50 5.3376 

51 5.3383 

52 5.3391 

53 5.3398 

54 5.3406 

55 5.3413 

56 5.3421 

57 5.3429 

58 5.3446 

59 5.3446 

60 5.3455 

61 5.3464 

62 5.3475 

63 5.3514 

64 5.3539 

65 5.3565 

66 5.3594 

67 5.3624 

68 5.3654 

SMALL   SAMPLE H = 0  K 0E 

CM 

29.3691 

29.6935 

30.2641 

30.5165 

30.7376 

30.4561 

30.7576 

31.2188 

31.7637 

31.6592 

32.2676 

32.6199 

33.2143 

33.1442 

33.4755 

33.5595 

33.6466 

33.2915 

33.0552 

32.7094 

31.6212 

31.0226 

29.9923 

27.2212 

27.1197 

25.4108 

24.3489 

22.5190 

17.6781 

16.3465 

14.9530 

13.5195 

13.3581 

12.8099 

DELTA T 

0.0022 

0.0019 

0.0159 

0.0019 

0.0008 

0.0003 

0.0008 

0.0008 

0.0008 

0.0008 

0.0008 

0.0008 

0.0007 

0.0007 

0.0007 

0.0007 

0.0007 

0.0007 

0.0007 

0.0007 

0.0008 

0.0008 

0.0008 

0.0009 

0.0176 

0.0009 

0.0010 

0.0011 

0.0024 

0.0025 

0.0028 

0.0030 

0.0030 

0.0031 
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TABLE III 

T 

69 5.3685 

70 5.3705 

71 5.3717 

72 5.3750 

73 5.3792 

74 5.4086 

75 5.4522 

76 5.4995 

77 5.5493 

78 5.6010 

79 5.6543 

80 5.7091 

81 5.7649 

SMALL SAMPLE H K 0E 

CM 

12.4001 

12.7320 

12.1233 

11.8608 

11.4586 

10.0200 

8.9103 

8.2027 

7.7364 

7.3782 

7.0520 

6.8036 

6.5977 

DELTA T 

0.0032 

0.0344 

0.0033 

0.0033 

0.0050 

0.0418 

0.0459 

0.0488 

0.0509 

0.0525 

0.0541 

0.0554 

0.0564 
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TABLE   IV 

T 

1 5.3119 

2 5.3154 

3 5.3187 

*• 5.3209 

5 5.3231 

6 5.3252 

7 5.3274 

8 5.3294 

9 5.3314 

10 5.3334 

11 5.3354 

12 5.3373 

13 5.3388 

14 5.3398 

15 5.3408 

16 5.3423 

17 5.3446 

18 5.3473 

19 5.3503 

20 5.3539 

21 5.3578 

22 5.3621 

SMALL   SAMPLE H = 1.04  K 0E 

CM 

27.2489 

27.8886 

28.6296 

28.9839 

29.3574 

30.0204 

30.4739 

31.2374 

31.8848 

32.3354 

33.0310 

33.3548 

33.2265 

32.3030 

32.1893 

29.7803 

25.9300 

21.6450 

18.342 8 

15.8502 

14.2608 

13.3296 

DELTA T 

0.0023 

0.0045 

0.0022 

0.0022 

0.0022 

0.0021 

0.0021 

0.0020 

0.0020 

0.0020 

0.0019 

0.0019 

0.0010 

0.0010 

0.0010 

0.0021 

0.0024 

0.0029 

0.0033 

0.0038 

0.0041 

0.0044 
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TABLE V     SMALL SAMPLE   H » 5.00  K 0E 

T CM OELTA T 

i 5.2665 23.4512 0.0051 

2 5.2715 24.0267 0.0050 

3 5.2764 24.2618 0.0049 

4 5.2813 24.8171 0.0048 

5 5.2860 25.1037 0.0047 

6 5.2906 25.6289 0.0046 

7 5.2952 26.1695 0.0045 

8 5.2997 26.8264 0.0044 

9 5.3041 27.3527 0.0043 

10 5.3084 28.0466 0.0043 

11 5.3126 28.8133 0.0041 

12 5.3140 29.4236 0.0021 

13 5.3160 29.8844 0.0018 

14 5.3166 29.9005 0.0040 

15 5.3177 30.5267 0.0017 

16 5.3194 31.0750 0.0017 

17 5.3196 30.5599 . 0.0020 

18 5.3210 30.8283 0.0009 

19 5.3212 31.5556 0.0017 

20 5.3219 31.3321 0.0008 

21 5.3227 30.7842 0.0009 

22 5.3228 32.2366 0.0016 

23 5.3236 31.3946 0.0008 

24 5.3244 31.6495 0.0008 

25 5.3245 32.3277 0.0016 

26 5.3252 32.2996 0.0008 

27 5.3261 31.7134 0.0008 

28 5.3261 32.5791 0.0016 

29 5.3269 32.3618 0.0008 

30 5.3277 32.5379 0.0008 

31 5.3278 31.7277 0.0017 

32 5.3285 33.1145 0.0008 

33 5.3293 32.4100 0.0008 

34 5.3294 31.0727 0.0017 
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TABLF VI     SMALL SAMPLE   H » 10.15 K 0E 

T CM DELTA T 

1 5.2414 24.0611 0.0049 

2 5.2463 24.8910 0.00*7 

3 5.2509 25.3013 0.0046 

4 5.2556 25.9405 0.0046 

5 5.2600 26.5271 0.00*4 

6 5.2644 27.1937 0.0043 

7 5.2687 27.9098 0.0042 

8 5.2729 28.6698 0.0041 

9 5.2769 29.6558 0.0040 

10 5.2804 30.4203 0.0007 

11 5.2808 30.6844 0.0039 

12 5.2810 30.6487 0.0007 

13 5.2817 30.8707 0.0007 

14 5.2825 31.0102 0.0009 

15 5.2834 31.0607 0.0009 

16 5.2844 31.3624 0.0009 

17 5.2853 31.5033 0.0009 

18 5.2862 31.5430 0.0009 

19 5.2871 31.4482 0.0009 

20 5.2881 31.1852 0.0009 

21 5.2890 30.9929 0.0009 

22 5.2899 30.4943 0.0010 

23 5.2909 30.1513 0.0010 

24 5.2919 28.4591 0.0010 

25 5.2923 28.932 5 0.0041 

26 5.2929 27.1150 0.0011 

27 5.2940 25.9553 0.0011 

28 5.2951 24.4889 0.0012 

29 5.2963 22.9237 0.0012 

30 5.2970 22.1591 0.0052 

31 5.2976 21.5919 0.0013 

32 5.3028 16.4954 0.0068 

33 5.3103 13.6192 0.0080 

34 5.3186 12.1701 0.0089 
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TABLE VII 

T 

1 5.0871 

2 5.0972 

3 5.1068 

5.1163 

5 5.1255 

6 5.1345 

7 5.1431 

8 5.1514 

9 5.1593 

10 5.1668 

11 5.1714 

12 5.1732 

13 5.1751 

14 5.1772 

15 5.1794 

16 5.1819 

17 5.1847 

18 5.1931 

19 5.2094 

20 5.2279 

SMALL SAMPLE H = 18.98  K OE 

CM 

20.4291 

22.1239 

22.5743 

23.1854 

23.7479 

24.6637 

25.6052 

26.8770 

28.4281 

30.0410 

30.2102 

29.5274 

28.3601 

25.4014 

23.4370 

20.5194 

18.0519 

13.7990 

10.9580 

10.0878 

DELTA T 

0.0106 

0.0093 

0.0096 

0.0094 

0.0092 

0,0089 

0.0085 

0.0082 

0.0078 

0.0074 

0.0018 

0.0019 

0.0020 

0.0022 

0.0023 

0.0026 

0.0029 

0.0148 

0.0180 

0.0193 
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APPENDIX A 

TEMPERATURE CALIBRATION PROCEDURE 

1.  INTRODUCTION 

The germanium resistor was calibrated from 1 K through 

30 K using the helium vapor pressure temperature scale, T -«, 

below 4-2 K and using the pressure-temperature equation of 

state for a fixed number of moles of helium gas above k .2  K. 

This appendix describes the procedure used to establish the 

temperature scale, the fitting of the data to an interpolation 

formula, and the experimental check on the accuracy of the 

temperature by measuring the specific heat of copper.  Al- 

though, for the experiment discussed in this dissertation, 

such a broad range to temperatures was not needed, the cali- 

bration was carried out for other experiments which use the 

same calorimeter over a larger temperature range. 

A calibration cryostat was constructed which consisted of 

a gas bulb and a vapor bulb machined into a copper cylinder. 

The resistors to be calibrated were inserted into holes in the 

copper.  The temperature of the cylinder was controlled by 

providing it with thermal links to the liquid helium bath and 

to a heated shield surrounding it.  The temperature of the 

shield was maintained with a Wheatstone-bridge controller 

similar to that used with the shield of the calorimeter.  A 

schematic drawing of the system is given in Figure 13-  The 

shield and outer vacuum can are not shown, nor is the vacuum 
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pumping line.  The tubes shown run inside the vacuum line, so 

that they were not in contact with the liquid helium.  The 

pressure of either bulb could be measured with a Texas Instru- 

ments quartz Bourdon tube gauge (maximum pressure: 300 Torr) or, 

at higher pressures, with a mercury manometer in conjunction 

with a cathetometer. 

2.  GAS BULB THERMOMETRY 

The equation of state for n moles of a gas at pressure p, 

volume V, and temperature T is 

- PV n - ~RTTB7 ' 

where B is the virial coefficient (temperature dependent).  The 

gas bulb thermometer is based on the fact that if V and n are 

known and if p is measured, T can be found since the virial 

coefficients are tabulated (Kilpatrick 55)-      This equation 

must be extended for a practical thermometer since not all parts 

of it are at the same temperature.  For the thermometer employed, 

the equation of state can be written as 

nR = p 
V        V V   . V 
bulb     eg    tubing gauge 

T+Bp/R        T T T 
eq          tubing gauge 

(1) 

The term V  /T   accounts for the capillary tube, which has a 
eq  eq 

temperature gradient along its length.  An expression for this 

term will be derived later.  The sum of the last three terms in 

equation (1) is designated D.  The virial coefficients become 

small at high temperatures and are neglected in the calculation 

of D.  If, at a known temperature T , the pressure is found to 
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be p , then 
o 

nR = p 
V 
bulb 
T  + B p /R 
o    o^o 

eq 

eq T=T 

tubing    gauge 
T  , .     f 
tubing    gauge 

All the terms on the right can be measured or calculated.  The 

bulb was filled at 77 K to about 770 Torr.  At 4 -2 K this pro- 

duced a pressure of about 42 Torr, so that the digital reading 

on the Bourdon tube gauge was roughly ten times the temperature. 

Aside from this nicety, the filling pressure is not critical; 

what is critical is a careful measurement of p  and T .  T  was r o o o 

determined   from   the   vapor-bulb   reading,   and  p     from   the   Bourdon 

tube  gauqe.      About   20   measurements   of  p     and  T     were   made  at 3 v
 'o      o 

temperatures between 3-8 and 4-2 K and were averaged to find n. 

With n known, equation (1) could be solved for temperature in 

terms of pressure, were it not for the fact that B and V  /T 
eq  eq 

depend on temperature.  However, as a first approximation, B 

and D can be neglected, and an approximate temperature is cal- 

culated from 

-r     PVbulb T  =   . 
1    nR 

This temperature is then used to enter a table of T vs B to 

find B and to calculate D.  These are used to find a second 

approximation to T, 

T2 =P 

V 
bulb 

nR-pD(T 

B(T1) 

R 

This value of T is used to find a better approximation for B 

and D. The process is repeated until successive values of T 

do not differ more than 5 x 10   K; this usually requires 
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about   five   iterations.      V,    ,,    was   assumed  not   to   change   over   the 
bulb s 

temperature range of calibration; however, since it was measured 

at room temperature, a correction for its thermal contraction 

at 4 K was made.  The sensitivity of the thermometer at 10 K 

was .1 mK/micron. 

The gas in the capillary is not at a single temperature, 

but an effective temperature can be defined as follows: 

X 
V  /T   = ( 
eq  eq   ) T 

" 0 

A.dy 

where  L   is   the   length   of   the   tube   and  A   its   cross-sectional   area 

This   can   be   rewritten 

^ =   A dT, 
T ) T   dT/dy 

eq J
T 

where T is the temperature at the bottom of the capillary and 

T  is room temperature (300 K) .  Since Q/A = H.(T) dT/dy, where 
K 

Q is a constant, and H(T) is the thermal conductivity of the 

capillary, the equation becomes 

v  /T   = JL.    \  AIT} dj_ 
eq  eq    Q/A  J     T 

T 

Now 

hence 

Q/A dy  = H (T ) dT 

T 
R 

Q/A  L  = \   H(T)dT 

V  /T 
eq  eq 

= V 
capillary 

T 

- ( T) dT 
) 

T 
T 

T 

r 
.     T   , 

H(T)dT 
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Up to 40 K the thermal conductivity of stainless steel can be 

1.25 
expiessed approximately as H(T) = . 5T    .  Using this fact, the 

integrals can be divided into two parts: 

V 
-^ = V T      capillary 
eq 

300 
(   H (T ) dT 

.5(40)1-25- .5T1-25 + 40   T 

r 300 

•5(40)
2
-
25
 .5T

2
'
25
 A       

H
(
T
>
dT 

2.25    2.25  40 

The remaining integrals are found by numerical integration of 

the published thermal conductivity data (N.B.S. 54). 

The gas bulb calibration points were taken with the helium 

bath at 4-2K.  The shield was set at the desired temperature, 

and the controller regulated the temperature so that when the 

reistors reached equilibrium with the shield, no drift was 

noticeable.  The pressure was read from the Bourdon tube gauge 

to + 1 micron, and simultaneously the resistance was recorded. 

To make measurements of the number of moles, n, exchange gas 

was admitted into the vacuum space and helium was condensed in 

the vapor bath; after equilibrium, the gas bulb and the vapor 

bulb pressures were measured together.  To obtain other points, 

the pressure above the bath was lowered from atmospheric pres- 

sure and held contant by a mechanical pressure regulator. 

3.  VAPOR BULB THERMOMETRY 

The calibration points from 1 to 4 K were obtained by mea- 

suring the vapor pressure of a small amount of liquid helium 

condensed in the vapor bulb, which was in thermal equilibrium 

with the resistors.  For pressures above 300 Torr a mercury 
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manometer was used, below 300 Torr the Bourdon tube gauge was 

used.  The manometer heights were corrected to standard gravity 

and to 0  C.  Below 1.6 K it was necessary to apply a correction 

to the measured pressures to account for the thermomolecular 

pressure difference between the hotter gas at the gauge and the 

cold gas in the bulb, the gauge read a higher pressure than the 

true vapor pressure.  This correction was calculated from pub- 

lished data (Roberts 56).  At the lowest temperature the cor- 

rection was about 5%.  The corrected pressures were entered in 

the "1958 He  Scale of Temperature" (N.B.S. 60) to find the 

corresponding temperatures. 

4-  INTERPOLATION PROCEDURE 

The final product of the calibration procedure outlined 

above was a collection of about 120 pairs of R and T.  In order 

to obtain the temperature corresponding to an arbitrary re- 

sistance it is necessary to somehow interpolate between cali- 

bration points.  Considerable effort was spent searching for 

the best method for doing this, since specific heat measure- 

ments of copper, to be described below, indicated that systematic 

errors would arise in calorimetry unless the interpolation pro- 

cedure is treated properly. 

If the calibration points had no experimental uncertainty, 

it would be a simple matter to interpolate using standard pro- 

cedures.  However one needs to smooth the calibration data; 

thus various function forms, T = f(R), were fitted to the data 

using a least squares procedure. 
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No "simple" equation has been found relating temperature to 

reistance of germanium thermometers (Schriempf 66).  A suitable 

criterion for a proper fit is one that shows no systematic trend 

in a plot of the deviation, (T.    ,  - T ,   ) vs T .   , where 
^ v formula    data'     data 

T     ,  = f(R    ).  One way found for achieving this is to formula    v data' 

determine a fit of the form 

6 
i = Z        A. (log R)1"1 1
   1 = 1  1 

The deviations calculated from this fit appear roughly sinusodial. 

A smooth curve was drawn through the deviations and a table of 

AT vs T was constructed from the curve.  The deviation corre- 

sponding to a given T is found by interpolation in the table, 

and the value of T given by the above equation is shifted by 

the deviation to get the final temperature. 

Another approach is to simply use more and more coefficients 

in the polynomial.  There is a limit to the success of this pro- 

cedure caused by round-off error in the calculation, due to the 

limited number of significant digits carried by the computer. 

However a fairly satisfactory fit of the calibration data is given 

11 
In T = E   A.(in R)1 (2) 

i=l  i K
    ' 

This form was used for the heat capacity calculations in this 

experiment.  It was successful because the range of temperatures 

for which the equation applied was restricted to 2 to 10 K. 

Figure l4 is a plot of the difference between the measured tem- 

perature and that calculated from equation (2). 
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5.      ACCURACY   OF  THE TEMPERATURE   SCALE 

It   has   been  pointed  out   that   heat   capacity  measurements   on 

high-purity   copper   can   be  used   to  compare   temperature   scales   and 

measurements   techniques   of   various   laboratories   (Osborne  67). 

To   this   end  a   standard  reference  formula   for   the   specific   heat 

of   copper   was   developed   by   fitting   the   data   of   several   workers 

to   the   equation 

| 2i+l 
CCu=E

i=1
AiT ' (3) 

As a check on the accuracy of the temperature scale above 

4 K, the specific heat of copper was measured and compared with 

values given by the reference equation.  Two pieces were spark- 

cut from a single crystal having 99.9995% purity.  Each piece 

had a mass of about 35 grams.  The thermometer and heater were 

mounted on one piece and the other piece was glued below it. 

The heat capacity of this composite sample was measured.  In a 

separate run the heat capacity of only one piece was measured. 

Subtraction of the two heat capacities eliminates the addenda 

contr ibution. 

The measurements with the temperature scale used in this work 

deviate from the value predicted by this equation by less than 

.5% except above 19 K.  It should be noted that two recent mea- 

surement (Ahlers 66) (Martin 66) also show about this same de- 

viation, even though the reference equation is based partly on 

their data.  Figure 15 is a plot of the deviation of the measured 

heat capacities from the values calculated using the reference 

formula.  The points marked by x are calculated by correcting 
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the temperature given by equation (1) with the deviations, as 

discussed above.  The points marked 0  are not corrected this 

way.  This illustrates the systematic error that can arise from 

an unsatisfactory interpolation procedure. 

In order to assess the accuracy of the temperature scale 

each calibration temperature was changed by x percent, and x was 

varied until the heat capacity deviation plot showed a systematic 

trend.  This provides an idea as to how sensitive the copper heat 

capacity measurements are to errors in the temperature scale. 

The conclusion of this test is that between 4 K and 20 K the 

temperature scale is accurate to better than .5%.  Or, worded 

more exactly, the scale agrees this well with the average of the 

scales of those workers whose data were used to determine the 

copper reference equation.  Below 4 K the temperature scale 

accuracy is limited by the accuracy of the pressure measurements, 

the inherrent accuracy of the T^Q scale, and the validity of cor- 

rection made to account for the thermomolecular pressure dif- 

ference.  The mercury manometer readings were reproducible to 

_+ .2 Torr, corresponding to an uncertainty in T of less than .5 

millidegrees.  Below 3 K the Bourdon tube gauge was used.  Its 

calibration was carried out by the manufacturer, and is based on 

a traceable standard having an accuracy of _+ .02 Torr.  At the 

lowest temperature used, this corresponds to a temperature un- 

certainty of 1%.  The thermomolecular correction is less than 5% 

of the temperature, and probably introduces negligible error.  In 

sum then, the maximum uncertainty in the temperature scale is 1% 

at the low end, from 1 K to 2 K, and is less than .5% up to 20 K. 
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APPENDIX B 

ELECTRONIC CIRCUITS 

1.  MAGNET AND POWER SUPPLY 

The superconducting magnet was made by Eastern Scientific 

Instruments.  It is a solenoid, wound of niobium-titanium wire, 

which produces a field of 20 kilo-oersteds with a count of 23 

amperes.  It has been operated with currents as high as 29 

amperes without destroying its superconductivity. 

The magnet is 4 in. long and 2 7/8 in. in diameter, with 

a 1 5/8 in. bore diameter.  It bolts to the outside of the brass 

can of the calorimeter and is immersed in the 4.2 K helium bath 

during the experiment.  The magnet is equipped with a persistent- 

current switch.  This is a superconducting shunt across the 

terminals of the magnet; wound around the shunt is a heater. 

When enough current is applied to the heater to raise the shunt's 

temperature above the transition temperature, the magnet ter- 

minals are effectively unshorted and connected to the power 

supply.  In normal operation one heats the switch, establishes 

the desired field in the magnet by adjusting the current de- 

livered by the power supply, then removes the heat from the 

persistent-current switch.  The current last established in the 

magnet decays with a time constant L/r, where L is the induct- 

ance of the solenoid and r is the resistance of the connections 

between the shunt and the coil.  In an experiment lasting several 

hours this decay of current is noticeable and the data must be 
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adjusted to correspond to a common field.  To evaluate the time 

constant, a rotating-coil gaussmeter was placed outside the dewar 

near the position of the top of the magnet.  At this position the 

fringe field was several-hundred gauss when the field at the center 

of the magnet was 10 kOe.  The fringe field was measured at ^  hour 

time intervals for six hours.  The field decayed approximately 

linearly with time, and L/r was evaluated to be 4 x 10  seconds, 

yielding r = 4-6 x 10   ohms. 

The homogeneity of the magnet was measured using the magneto- 

resistance change of a germanium resistor which was moved verti- 

cally through the center of the coil.  To do this, the jaws of 

the heat swtich were removed, leaving the shaft free to travel 

vertically when the bellows at the top of the cryostat was moved. 

The germanium resistor was mounted on the end of the shaft.  Ex- 

change gas was admitted into the sample space, so that, as the 

resistor was moved vertically any change in resistance was due 

to change in magnetic field, since the resistor's temperature 

quickly returned to that of the helium bath.  Over a vertical 

range of + 1 cm the field changed by .7%. 

A controller and current regulator were constructed so that 

thecurrent to the solenoid could be increased or decreased at a 

steady rate.  This control is important because superconducting 

magnets will go normal if the current is changed too rapidly. 

The maximum recommended rate of change of current for the magnet 

used was 1.6 amperes/second.  The schematic diagram of the regu- 

lator and controller are shown in Fig. l6.  This circuit is based 
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on one previously published (Fietz 65).  The full magnet current 

Hows through R , a .0477 ohm manganin strip mounted in an oil 

bath.  The voltage drop across this resistor, R   is compared to 

that selected by the setting of R , which together with the 1.35 

volt mercury cell, is also mounted in the oil bath.  The dif- 

ference between the two voltages is theerror voltage which is 

amplified by A  and applied to the series transistor Q .  This 

transistor adjusts the current to return the error voltage to 

zero.  The magnet current is accurately determined by measuring 

the voltage across R  with a potentiometer.  The additional cir- 

cuit associated with amplifier A„ serves to maintain dl/dt below 

a certain set point determined by the setting of R , R,, and R-. 

Their influences on dl/dt are coupled, but almost any combination 

of increase and decrease rates can be set.  The terminal voltage, 

-Ldl/dt, is monitored on the voltmeter, while the ammeter gives 

the approximate magnet current.  A Kepco high-current power 

supply serves as the current source, although a 6 volt storage 

battery is sufficient.  A No. 20 copper wire delivers the current 

to the solenoid in the dewar, and the return is made via the 

cryostat tubing.  Considerable Joule heating is developed at the 

higher currents because of the use of such a small current lead. 

This results in rapid helium loss; however, such a situation 

exists only for a few minutes while the current is being estab- 

lished and measured, after which the magnet is put into the per- 

sistent mode.  The terminal voltage and heater leads are .005 

inch manganin wires. 
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2.      SHIELD  TEMPERATURE  CONTROLLER 

The   calorimeter   described   in   Section   IV  achieves   adiabatic 

conditions   because   the   sample   is   surrounded  with  a   thermal   shield 

which   is   maintained  at   the   same   temperature   as   the  sample.      The 

electronic   circuit   developed   for   controlling   and   setting   the 

shield   temperature   is   described   in   this   section. 

The   initial   controller   which  was   constructed   used  a   dc   Wheat- 

stone   bridge   to  measure   the   shield   temperature.      The error   voltage 

was   amplified with a   chopper   amplifier   and  used   to  control   power 

to   the  heater.      This   system   had  several   disadvantages;      Stray 

thermal   voltages   were  developed and  resulted  in   zero   drift;    the 

bridge   dissipated  about   5  x   10       watts   in   the   shield   resistor, 

and  when  attempting   to  reach   temperatures   near   1   K,   this   much 

power   caused  noticeable   heating  and   limited   the   lowest   tempera- 

ture   that   could   be   reached. 

A  second  controller   was   constructed using  an   ac   bridge 

-7 . .      . 
dissipating  about   10       watts.      The  circuit  was   based   on  a   liquid 

helium   controller    (Venegas   69);   several   modifications   were  made 

to   improve   the   stability  and   sensitivity.      A  simplified   version 

of   the   circuit   is   shown   in   Fig.   17-      This   does   not   show   dc   power 

circuits,   switches,   or   other   non-essential   items. 

A   three-lead   Wheatstone   bridge   operates   at   318   Hz   ( 1000/TTHZ ) ; 

power   is   supplied   to   the   bridge   from  an   internal   oscillator. 

Mounted  on   the   shield  are  several   carbon   resistors,   which   can   be 

selected for   different   temperature   ranges.     The  off-balance 

bridge   voltage   is   amplified  by   50X  by   A,,   a   balanced  amplifies 

with   an   FET   input.      When   the   bridge   is   nulled,    the   output   of   A 
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is not zero because of reactive components in the bridge.  However 

as the error signal passes through minimum, the phase relative to 

the oscillator changes by l80 .  At the exact null point, the 

error voltage is 90  out of phase with the oscillator.  This phase 

change is detected and converted to a dc signal proportional to 

theerror voltage. 

A„ is a narrow band-pass filter with a gain of one.  It 

effectively rejects noise and passes only theerror signal.  The 

output of A„ goes to A_, whose gain can be varied from 4 to 400. 

A< is a follower used to provide low-impedance output to the 

chopper transistor, Q   A„ is a sine wave to square wave con- 

verter which delivers switching pulses to Q .  The pulses short 

the drain of Q  to ground each half cycle.  Applied to the drain 

is the amplified 318 Hz error signal.  This error signal is 

sampled for % cycle and integrated by a 5 KÜ, 10 /ifd filter.  If 

theerror signal is 90  out of phase with the oscillator (and 

therefore with the switching pulses), the input to A- is zero. 

If the bridge is unbalanced, a positive or negative voltage 

appears at the input of A-.  The output of A- varies from +5 

through 0 to -5 volts as the phase of the error signal varies 

from 0  to l80  relative to the reference signal. 

A/- is a power amplifier which delivers a current to the 

shield heater proportional to its input.  If the output of Ar is 

zero, some quiescent current is required for the shield heater 

in order to maintain equilibrium.  Therefore the output of Ar is 

biased with a voltage divider circuit.  If the output of A^  goes 
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negative, A,- delivers more current.  If the error signal is 

positive, the heater current decreases and reaches zero when 

tho voltage from A_ cancels the bias voltage.  A diode prevents 

A,- from delivering current to the heater when the output of A^ 

exceeds the magnitude of the bias voltage. 

The gain of the controller can be adjusted in several places. 

The gain is set so that the system is nearly critically damped. 

If too much gain is used, the controller will run away with 

current oscillations growing in amplitude.  In operation the 

decade box is set to correspond to the desired shield temperature. 

If this is warmer than the actual temperature, an increased heater 

current develops,  the shield warms, usually overshooting the 

desired point.  After a few oscillations (taking only a second or 

two) the current reaches a steady value, but the output of A^ 

may not be zero.  If not, the voltage divider is adjusted to 

br ing it to zer o . 

The controller is capable of maintaining the shield tempera- 

-4 ture to within less than 2 x 10  K.  During specific heat mea- 

surements for which maximum sample thermometer sensitivity was 

used, steady temperature drifts could be observed if the shield 

was misset by as little as 2d,   corresponding to a temperature 

difference of 4 x 10  K.  However when the shield was properly 

set, the sample would remain in equilibrium, indicating that the 

regulator was keeping the shield temperature constant to within 

-4 + 2 x 10 H K. 
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APPENDIX C 

HEAT CAPACITY OF MIXED NICKEL-COBALT CHLORIDE HEXAHYDRATE 

This appendix describes measurements of the heat capacity 

of Ni Co,  C1„'6H„0 where x = .25 and .86.  The purpose of these x  1-x  2   2 r-  r- 

measurements was to determine if such a mixed salt would have a 

definite transition temperature, different from either the pure 

cobalt of nickel salt.  NMR and susceptibility experiments had 

indicated that the Neel temperature was unique and varied between 

2.29 K for x = 0 to 2.75 K for x = .5 (Robinson 65, 66). 

CoCl -6H 0 has the same crystal structure as NiCl *6H 0; 

however, the Co ions have a spin of %, and the easy axis is 

along the c_ crystal axis.  A further difference is that the 

cobalt salt has a much higher anisotropy (Flippen 60).  The 

mixed crystals were found to have the same lattice parameters 

with x = 0 as with x = .5 indicating that the mixed crystals 

are isomorphic to both the pure Co and Ni crystals. 

The heat capacity measurements were made by the author and 

W. Reese in 1966 .  An entirely different cryostat and temperature 

calibration procedure than described in this thesis were used 

(Tucker 66).  There was an uncertainty in the temperature scale 

of about .03 K. 

About 5 grams of small mixed crystals were placed in a copper 

can on which a heater and thermometer were mounted.  The can was 

filled with silicon oil to provide thermal contact between the 

crystals and the can.  No attempt was made to evaluate the addenda; 

it is estimated that it contributes about 1-2% of the total near 

the maximum. 
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The data for x = .25 are plotted in Fig. l8.  The shape of 

the peak is similar to that observed in the pure cobalt salt 

(Skalyo 64); however, it is broader, probably because the sample 

was polycrystalline.  The sample with x = .86 was not investi- 

gated as throughly.  Its heat capacity has a peak at 3-9 K.. 

While these experiments are not conclusive, it appears that 

large concentrations of nickel in the cobalt salt, or vice versa, 

give rise to an antiferromagnetic transition at a temperature 

intermediate between the Neel temperature of the two pure salts. 

Further research on the sublattice magnetization direction and 

careful measurements of the specific heat of mixed single crystals 

would be useful in understanding these transitions. 
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