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The quasiparticle density of states in correlated and quantum-critical metals directly probes the
effect of electronic correlations on the Fermi surface. Measurements of the nuclear spin-lattice
relaxation rate provide one such experimental probe of quasiparticle mass through the electronic
density of states. By far the most common way of accessing the spin-lattice relaxation rate is via
nuclear magnetic resonance and nuclear quadrupole resonance experiments, which require resonant
excitation of nuclear spin transitions. Here we report non-resonant access to spin-lattice relaxation
dynamics in AC-calorimetric measurements. The nuclear spin-lattice relaxation rate is inferred
in our measurements from its effect on the frequency dispersion of the thermal response of the
calorimeter-sample assembly. We use fast, lithographically-defined nanocalorimeters to access the
nuclear spin-lattice relaxation times in metallic indium from 0.3 K to 7 K and in magnetic fields up
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I. INTRODUCTION

In nuclear magnetic resonance (NMR) and nuclear
quadrupole resonance (NQR) experiments, the nuclear
spin transitions are excited resonantly by radio-frequency
(RF) pulses. To measure the nuclear spin-lattice relax-
ation rate, the first RF pulse takes nuclear spins out of
their equilibrium with the electrons on the Fermi surface
and lattice excitations (phonons), and the second pulse
probes their relaxation toward equilibrium®°. By apply-
ing the heat load on the lattice, nuclear spin transitions
can be excited non-resonantly by the same spin-lattice
interactions that are responsible for nuclear spin relax-
ation towards equilibrium. With fast calorimeters, one
can resolve the dynamics of the heat flow between the
lattice and the nuclear spins, as manifest in the delayed
temperature response of the lattice to the heat load.

Because of the large mismatch between nuclear- and
electronic energy-level splittings in a magnetic field, the
nuclear spin-lattice relaxation times in elemental met-
als are extremely slow compared to other microscopic
timescales®, ranging from 5 ms in thallium at 1 K, 100
ms in indium and palladium, and 1 to 50 seconds for
most other metals. These timescales can be accessed
in small calorimeters. The slow spin-lattice relaxation
dynamics determines the characteristic time delay be-
tween the temperature of the sample and the heat load
on it through the thermal link to the calorimeter plat-
form. Equivalently, the spin-lattice relaxation shows up
as the characteristic time in the frequency dependence
of the complex thermal impedance of the calorimeter-
sample assembly.

The specific heat of the nuclear spins (nuclear Schot-
tky) and the specific heat of the lattice (electrons +
phonons) can be determined independently by such “ther-
mal impedance spectroscopy” (TISP), because they are
distinguished by their time-delayed response rather than
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FIG. 1. Thermal impedance spectroscopy with litho-

graphic nanocalorimeters. A. Sketch of the components of
the nanocalorimeter. Colored elements indicate the heat bath
(purple), chromium leads (orange), and calorimeter platform
(blue) which contains the heater and the thermometer as well
as the 1x1 mm SiN membrane (black). The distance mark-
ers ¢ = 0,L,s,h on the lead (highlighted in orange) illus-
trate the notation used in the discussion of the thermal sus-
ceptibility of a quasi-onedimensional object in Appendix D.
kLB and kcr, indicate the thermal conductance of the leads-
bath contact and lead-platform contact respectively used in
the discussion in Appendix B. B. Thermal conductance of
calorimeter-heat-bath heat link kcg and heat capacity of the
calorimeter platform Cc. The ratio of Cc/kcs is an indicator
of the characteristic time of the calorimeter platform, ranging
from 1 ms to 2 ms between 0.1 K and 1 K. C. The heat flow
diagram of the calorimeter-sample assembly. The sample is
thermally coupled to the calorimeter platform via a thin layer
of grease with contact conductance kcs. D. Optical image of
the nanocalorimeter. The gold-capped chromium leads are
400 pm long, 35 pm wide, and 60 nm thick. The 1 x 1 mm?
SiN membrane is 150 nm thick'+?.



by their magnitude. This presents a significant ad-
vantage, compared to the traditional, “static” specific
heat measurements, where the two are superimposed.
Compared to NMR and NQR measurements, the non-
resonant excitation of nuclear spins in TISP experiments
puts less stringent requirements on the homogeneity of
the internal and external magnetic fields. Here we report
TISP measurement of the nuclear spin-lattice relaxation
rate in metallic indium.

II. THERMAL IMPEDANCE OF THE
CALORIMETER-SAMPLE ASSEMBLY

Our lithographically-defined nanocalorimeter consists
of a 150 nm-thick, 1x1 mm? SiN membrane with a
100x100 pm? calorimeter platform at the center':?. The
platform contains a calorimeter stage, heater, and ther-
mometer, all in fast thermal contact with each other
(Figure 1A,D). The thermal link to the heat bath is
provided by gold-capped chromium leads (Figure 1A,D).
The strength of the link is approximately 10 nW/K at
1 K and increases approximately linearly with the tem-
perature between 0.1 K and 10 K (Figure 1A). The heat
capacity of the calorimeter platform is 10 pJ/K at 1 K
and increases approximately linearly with temperatures
between 1 K and 10 K (Figure 1B). The nominal char-
acteristic time of such a calorimeter, given by the ratio
of the heat capacity of the calorimeter platform and the
thermal conductance of the thermal link, is 1 ms. On a
millisecond time scale, the calorimeter stage, thermome-
ter, and heater act as a monolithic calorimeter platform
with uniform temperature 7'(t)° measured by the ther-
mometer (Figure 1A,D). A metallic indium sample with
a mass of 1.7 ug (15 nmol) is mounted on the calorimeter
platform using a thin layer of grease.

We drive an oscillating heat load, P(w) (Figure 1C),
and measure the complex (both in-phase and out-of-
phase) temperature response of the calorimeter platform,
T(w)®. This defines a complex thermal impedance”® of
the calorimeter-sample assembly, ((w)¢ = T(w)*/P(w).
Figure 2A shows the observed thermal impedance of the
metallic indium sample in the frequency range of 10 mHz
to 1 kHz plotted in the complex plane of (¢. Figure 1C
shows the different components that make up the ther-
mal response of the calorimeter. The thermal impedance
corresponding to the heat flow diagram in Figure 1C is
given by
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where ksc is the thermal conductance of the contact be-
tween the calorimeter platform and the sample, kKcp is
the thermal conductance from the calorimeter platform
to the heat bath, T'1 is the nuclear spin-lattice relaxation
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FIG. 2. The thermal impedance of the calorimeter-sample
assembly in the complex plane of (. A. Measured thermal
impedance ¢(w) at 35 T at temperatures in the range from
0.7 K to 8 K. The upper half Im{ > 0, shows the observed
thermal impedance. The lower half, Im{ < 0, is added as a
guide for the eye to represent the thermal impedance at nega-
tive frequencies, ¢((—w) = ¢*(w). B. The normalized thermal
impedance ((w)/¢(w = 0) where {(w = 0) = 1/kcB. The
upper half of the plot shows the observed normalized thermal
impedance. The lower half shows the fit to Eq. (1) with fitting
parameters discussed in Figure 3A.

time, and Cc g n are heat capacities of the calorimeter
platform, and electron+phonon and nuclear spin subsys-
tems in the sample, respectively. Eq. (1) faithfully de-
scribes the heat circuit in Figure 1C below 3 kHz, set
by the thermal diffusion time across the leads, 50 us at
1 K. At higher frequencies, the frequency dispersion of
the thermal link kcp(w) needs to be accounted for (Ap-
pendix B).

The thermal impedance in Eq. (1) is a su-
perposition of three complex Lorentzians, ((w) =
> iz12.3 Ai/[—iw +1/m;], all centered at zero frequency.
The amplitudes A; 5 3 are real and characteristic times,
denoted mq 23, are all positive, by causality. The tem-
perature dependencies of m; 23 obtained from the data
in Figure 2 are shown as gray lines in Figure 3A. The two
longer characteristic times, m; and mo, span the interval
from 1 sec to 1 ms in the temperature interval from 0.2 K
to 7 K. The measurement frequency range encompasses
the two longer characteristic times m; and mso in this



temperature interval.

We can define three timescales using parameters in
Eq. (1), 7s = Cs/kcB, ¢ = Cc/kc, and 7n = COx/kcB.
Figure 3A shows the temperature dependence of 75, 7¢,
and 7y determined by the fit of the observed frequency
dependence to Eq. (1) at each temperature and magnetic
field (Appendix C).

At higher temperatures, the sample and the
calorimeter platform are in thermal equilibrium. In
this low-frequency regime, the thermal impedance in
Eq. (1) reduces to a single-characteristic-time form
used in AC-calorimetric measurements’?" 11 ¢(w)® =
1/[kcB — iw(Cc+ Cs+Cn)]. At 7 K, this low-frequency
regime extends up to about 20 Hz, which is the inverse
of the second-largest characteristic time at that temper-
ature (Figure 3A). The plateauing of the amplitude at 7
K below about 1 Hz (red curve in Figure 3B) corresponds
to the longest characteristic time m; at 7 K (Figure 3A).
This low-frequency regime corresponds to a large circle
in the complex plane of (€, defined by the Lorentzian
Ay /[—iw + 1/m;] with the longest characteristic time m;
shown in Figure 2B where we plot the normalized value
of the thermal impedance ¢(w)®/¢(w = 0)°.

As we lower the temperature, the internal thermal
equilibrium between the calorimeter platform and the
sample, and between the electron-phonon and nuclear-
spin subsystems of the sample, breaks down. The
multiple-relaxation-time character of the frequency de-
pendence of the thermal impedance in this regime is evi-
dent in the “multicircle” geometry of the frequency traces
of ((w) in the complex plane (Figures 2A,B). At 0.7 K
the two resonances in ((w)® are clearly visible in the
amplitude plot (Figure 3B). The plateau below 30 Hz
corresponds to a broad resonance with a characteristic
time of 5 ms, the intermediate characteristic time ms in
Figure 3A at 0.7 K, which is close to 7¢ and 7g at that
temperature. The plateau in the amplitude below 0.3 Hz
(purple curve in Figure 3B) corresponds to the longest
characteristic time of 0.5 sec in Figure 3A at 0.7K.

IIT. TISP MEASUREMENTS OF INDIUM
METAL

Figure 4A shows the specific heat of the nuclear spin
(in red) and lattice (electrons + phonons, in blue) subsys-
tems, as extracted from the data shown in Figure 2 using
the model given by Eq. (1). The specific heat of metal-
lic indium, measured in Ref. 14, is shown as a dashed
blue line in Figure 4A. Naturally-occurring indium has
two isotopes: 11%In (95.7%) and 13In (4.3%). Both iso-
topes have nuclear spin J = 9/2 and g-factors differing
by 0.2%, "2gn = 4+1.231 and "3gx = +1.229'°. At low
magnetic fields, unyB < kT, the nuclear Schottky per
mol is ex = (1/3)J(J+1)Naks (gnpunB/ksT)? where
pun = 32.5 neV/T is the nuclear magneton. For elemen-
tal indium, this is shown as a dashed red line in Figure
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FIG. 3. Fitting the thermal impedance of the calorimeter-

sample assembly. A. The temperature dependence of the
fitting parameters 7s = Cs/kcB, 7¢ = Cc/keB, and ™ =
Cn/kcB, the nuclear spin-lattice time, T'1, and a dimension-
less ratio v = kcB/ksc, determined by the fit to Eq. (1). The
solid circles represent measurements in the resistive magnet
at 35 T on a 15 nmol-size sample. The open circles repre-
sent measurements in the superconducting magnet at 12 T
on a 7.8 nmol sample. The nuclear Schottky for the 12 T
measurements is scaled by a factor (35/12)2. Thick gray
lines represent the characteristic times mi, mz, and ms of
the calorimeter-sample assembly determined by the observed
thermal impedance via ((w) = >7,_, ;5 Ai/[—iw+1/my].
The dashed cyan line indicates the nuclear spin-lattice time
T1 measured in NQR experiments'?'®. Solid lines tracing
7g,N,c and v are guides for the eye. B,C. Frequency depen-
dence of the polar components (amplitude and phase) of the
observed thermal impedance in the frequency range of 10mHz
to 1 kHz. D,E. Frequency dependence of the polar compo-
nents of ((w) in Eq. (1) with the best-fit parameters from
A. The values of parameters 7c,g,n and T1 are indicated by
markers at f = 1/(277¢,s,x) on top of 7.3 K and at 0.7 K
frequency scans.

4A.

The nuclear spin-lattice interactions in metallic in-
dium were studied previously in NQR'%!%!6:17 and
NMR!'®19 experiments. Figure 4B shows the nuclear
spin-lattice relaxation rate 1/T1T determined by the



fits of Eq. (1) to the data in Figure 2. The dashed
line shows the value of T1T = 0.086 s K from NQR
experiments'?!3,

IV. THE THERMODYNAMICS OF THE
NUCLEAR SPIN RELAXATION.

We now briefly discuss the thermodynamic descrip-
tion of nuclear spins®?"??, as it relates to TISP exper-
iments. In a metal, the spin temperature is established
by spin-spin interactions on the timescale of the spin-spin
relaxation time, T2 of the order of 1 - 100 us®??, faster
than T1 in a typical metal. In indium metal, T2 = 100
pus'3. Thus, the nuclear spin temperature is well-defined
on the timescale of 1 ms. The non-uniform spatial de-
pendence of the nuclear spin- and lattice temperatures
do not need to be similar to each other, despite the fact
that the spin-lattice interaction is local. This is because
the heat can flow “laterally” between the nuclear spins
mediated by spin-spin interaction and across the lattice,
mediated by heat diffusion. The (lattice) heat diffusion
time across the cuboid-shaped sample of mass of 1.7 ug
is short, about 10 ns (Appendix B). Therefore, both the
lattice Ts and spin Tn temperatures are uniform across
the sample in our measurements, as assumed in Eq. (1).

Different isotopes of the same nucleus will be out of
equilibrium with each other when an oscillating heat load
is applied to the lattice because spin-spin relaxation is in-
effective in establishing the common temperature for iso-
tope species when energy-matching conditions between
them are broken. Indium, however, is peculiar in this
respect: the g-factors of its two naturally occurring iso-
topes, *3In and '1°In, differ by only 0.2%. At low mag-
netic fields, the nuclear-spin energy levels of the two iso-
topes effectively overlap due to finite-width effects. The
nuclear-spin energy states are broadened by inelastic en-
ergy exchange mediated by either the spin-spin or the
spin-lattice interactions. In metals, the energy transfer
mediated by the spin-spin interactions dominates these
effects®?%24, In metallic indium, the width of the nu-
clear energy states, ~ i/T2, is comparable to the energy
mismatch of its two isotopes in applied magnetic fields of
10 T or less.

Regardless, the detection of partial thermal equilib-
rium between indium isotopes in metallic indium requires
a sub-percent-level of determination of T1, beyond our
current sensitivity (Figure 4B). The partial equilibrium
between different isotopes (or different lattice sites with
different Knight shifts) might be an important consider-
ation in other systems (Appendix E).

Finally, the spin-lattice time T1 is defined in Eq. (1)
via effective “contact” thermal conductance between the
nuclear-spin and the lattice, k& = On/T1. To es-
tablish a connection between the TISP measurements
and the NMR and NQR experiments®?%?*, we consider
the energy exchange between the nuclear spins and the
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FIG. 4. Temperature and magnetic field dependence of the

spin-lattice relaxation rate and nuclear- and lattice heat ca-
pacity. A. Magnetic field dependence of the nuclear Schottky
Cx (in red) and electronic specific heat Cs (in purple) at
0.7 K. The magnetic field axis scales as field-squared. The
shaded region around the line represents the error bars (Ap-
pendix C). B. The nuclear spin-lattice relaxation rate 1/T1T
vs field. C. Temperature dependence of the nuclear Schottky
Cx (per mol) and the electronic (+ phonon) specific heat Cs
(per mol) at 35 T (solid circles) and 12 T (open circles). For
the sake of comparison, the nuclear Schottky at 12 T is scaled
up by a factor of (35/12)2. The dashed blue line indicates heat
capacity measured in Ref. 14, ¢s = (1.69 mJ / mol K*) T +
(1.43 mJ / mol K *) . The dashed red line indicates the
expected magnitude of the nuclear Schottky in indium metal,
env = (0.015 mJ K / mol T?) B?/T?. D. Temperature de-
pendence of the nuclear spin-lattice relaxation rate 1/T1T at
35 T (solid circles) and 12 T (open circles).

lattice. The approach to thermal equilibrium is gov-
erned by the relaxation dynamics of the entropy?”:2%,
d(Sx + Ss)/dt = ¢~ (1/Tx — 1/Ts), where heat flux
from the electron-phonon subsystem to the nuclear spins,
NS = T (dSx/dt) = —Ts(dSs/dt), is equal to the
rate of change of energy of nuclear-spin subsystem,
NS = dQy/dt. Following Refs. (25 and 26), we chose
r = dQ@Qn = CndIn as a measure of the deviation
from complete equilibrium and X = 1/Ty — 1/Ts as
the corresponding thermodynamic force. Then the rate
of change of x is proportional to the thermodynamic
force, dx/dt = T' X. Rewriting dz/dt = Cn dIn/dt as
~T2Cx x d(1/Tx)/dt we obtain the rate equation for
the nuclear temperature

d(1/Tx) 1(1 1)7

& - T\ T (2)

where 1/T1 = T'/(T2Cx) is the nuclear temperature re-
laxation rate. When temperature oscillations are weak,



0T <« T, this equation sets the effective contact thermal
conductance between the nuclear spins and the lattice
to Cn/T1. This establishes the equivalence of our defi-
nition of T1 in Eq. (1) and that in magnetic resonance
experiments®??,

The nuclear spin-lattice relaxation indicates the spin-
flip dynamics of electrons in the host material®>®. In
conventional metals and in liquid *He below 1 K?7, all
spin flips occur on the Fermi surface®?%?% and the nu-
clear spin-lattice relaxation rate indicates the quasipar-
ticle density of states®® as well as the static Fermi lig-
uid renormalization factors?”?? 32, Beyond conventional
metals, nuclear spin-lattice relaxation probes the corre-
lation dynamics and its impact on the Fermi surface, as
well as Fermi liquid renormalization factors not included
in mass renormalization. One advantage of TISP mea-
surements in this broader scientific context is that the
nuclear spin-lattice relaxation rates can be measured si-
multaneously with electronic specific heat, thus providing
two independent and complementary ways to access the
quasiparticle mass or the density of states on the Fermi
surface in the same measurement.
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Appendix A: Thermal impedance.

In lithographically defined nanocalorimeters'?, the
calorimeter stage, heater, and thermometer are in tight
thermal contact (Figure 1). The complete thermal signa-
ture of the calorimeter-sample assembly (Figure 1) is ob-
tained by measuring its thermal impedance ¢ (t —t/)°7*,
which describes the temperature change §T'(t)¢ of the
thermometer at time ¢ in response to the heat influx at
the heater §P(t') at an earlier time ¢/,

ST (1)C = / 4t C(t—t)CP(t'), T(w) =((w)CPw).

— 0o

(A1)

The second equation defines the thermal impedance in
the frequency domain measured directly in AC calorime-
try. The time-dispersion of ((t — ')C encapsulates an
internal memory of the history of heat injection over a
finite time interval into the past. To describe compo-
nents of the thermal circuit with finite thermal memory
we also use dimensionless thermal susceptibilities, =(w) =
—iwC((w), which describe the frequency-dispersed re-
sponse to the heat influx of the rate of temperature
change, —iwCT(w) = E(w)q(w). For thermally isolated
components it approaches unity in the low-frequency
limit, E(w — 0) = 1.

On millisecond time scales, the calorimeter stage,
thermometer, and heater act as a monolithic “calorime-
ter platform” with temperature 7'(t)C measured by the
thermometer.

At very low frequencies, the calorimeter platform
(Cc) is in thermal equilibrium with the sample (electron-
phonon subsystems (Cs) and nuclear spin (Cx)),
—iw(Cs + Co + ON)T (W)€ = P(w) + q(w)°B, where
q(w)°B = —kepT(w)€ is the heat flux from the ther-
mal bath into the calorimeter platform and kcp is its
heat conductance (Figure 1). In this limit the ther-
mal impedance is characterized by a single characteristic
time,

1

Cw) = —iw(Cs+Co+Cx) + ko (42)

determined by the ratio of the total heat capacity Cs+
Cc+Cn and kcp (Figure 1D). Thus, the total heat ca-
pacity Cs+Cc+Cn and kcp can be determined from the
measurement of ((w) at a single frequency, typically cho-
sen near arg((w) = 45°5%9711 " At higher frequencies, the
sample and the calorimeter platform are out of equilib-
rium, and single-characteristic time no longer faithfully
represents the thermal response of the calorimeter.

To access nuclear relaxation rates, one needs to an-

alyze the thermal impedance of a calorimeter with its
components out of equilibrium.

Appendix B: Thermal impedance of the
calorimeter-sample assembly.

The heat balance of the calorimeter platform (Figure
1AC) is described by

—iwCeT (W)= P(w) —q(w)3 = q(w)F = q(w)M*C.
(B1)

The right-hand side lists all the heat sources of the
calorimeter platform, including the heat flux from the
membrane —q(w)MC, the electric leads —q(w)™“, and
the sample, —q(w)®, determined self-consistently by
the temperature T'(w) of the calorimeter platform.
The heat fluxes across the leads and across the mem-
brane —q(w)*¢ and —q(w)M*C act together to provide



the heat link to the heat bath (Figure 1A,C),
¢(@)"C + g = k(W) T(w),  (B2)

where kcp(w) is the frequency-dependent heat conduc-
tance from the calorimeter platform to the heat bath.

The heat conductance through leads can be under-
stood in terms of the series-connected heat conductances
of the lead-platform contact, xpc, the lead-heat-bath
contact, kg, and the leads themselves, ky A/L (where
A is the crosssectional area of the leads and L is their
length), 1/kcp = 1/krc + 1/kip + 1/(kLA/L) (Figure
1A). Of the three, the heat conductance of the leads
kr, A/L is the weak link, because both ki c and kpp are
controlled by the thermal flow across wide metallic sur-
faces in the lithographic assembly. The combined heat
conductance of the gold-capped chromium leads (ki =
5 mW /cm K Figure 1AC) is 10 nW/K at 1 K, comparable
to the measured value of kcp at this temperature (Figure
1B). The SiN membrane accounts for about 0.3 nW/K
(kM = 1 mW/cm K, Figure 1A). The heat diffusion time
across the 400 pm-long gold-capped chromium leads,
L = (cr/kp)L?, is estimated as L2/(vpl/3) = 50 us
at 1 K, where £ is the mean free path in chromium at
1 K3334, Therefore, kcp is independent of frequency be-
low about 3 kHz.

The same conclusion is reached in a detailed analysis
of the heat balance in the leads (Figure 1AC in the text),

e [T(@)m0]"_[€00:0) €(0L:w)]" Ta(w)um
@iTw» i i( W) &(LL; ﬂ Lw> ]’
(I(W) —0 — — KLC [T(W)]E:O (w)c ]

q(w) - — — KLB T( )a: L- (B3)

The first equation determines the temperature T'(w)% at
the x = 0, L ends of the leads when two heat sources,
q(w)z=o0 and g(w),=r, act simultaneously. £(sh;w) is the
dimensionless thermal susceptibility of the bar-like ob-
ject (Appendix D)?*°, describing temperature at point s
when heat is applied at point A in the bar (Figure 1A),
_iwCLT(W)IQZ:s = f(Shvw) Q(w)gzh'

The second line in Eq. (B3) determines the heat flux
q(w)k_, at the calorimeter end of leads in terms of the
temperature difference at that contact point (kpc is the
contact conductance) The third equation determines the
heat flux g(w)k —p at the heat bath end of leads in a
similar way (k1p is the contact conductance).

Solving Eq. (B3) for ¢(w)**C = q(w)L_, we find
—iwCL

—iw (Cr/kcr) + E(w)t’

—iwr,—iw (CL/kLB) €(00;w)E

—iw (Cr/kLB) + £(00;w)"
(B4)

( )L<—C _

q(w T(w)®

where Z(w)¥ =

The factor multiplying 7'(w)® on the first line is equal to
keg(w). In the low-frequency limit, wry, < 1, the thermal

susceptibility of the leads approaches unity (Appendix
D), £(00;w)* = 1, and thermal susceptibility in the sec-
ond line approaches Z(w < 1/, = —iw[m, + (CL/kLB)]-
Therefore, when wr, < 1, all frequency factors in the
heat conductance kcp(w) cancel out, that is, kcop is fre-
quency independent at frequencies below 1/7L.

The sample-platform heat flux —gq(w)3C is deter-

mined by the heat balance for the sample (Figure 1C)
—iwCsT(w)® = E(w)® q(w)¥C — g(w)N*5,
q(w)> = —rsc[T(w)® = T(W)°], (B5)

where kgc is the heat conductance of the contact be-
tween the sample and calorimeter platform. Z(w)® is the
thermal susceptibility for the sample at the calorimeter
contact end. The sample has a standing-bar geometry,
therefore, Z(w)S = £(00;w) (Appendix D). At 1 K the
heat diffusion time 75 = (cs/ks)L? across the height
(L = 30 pum) of the sample is 10 ns. Therefore, in this
measurement the thermal impedance Z(w)® is frequency-
independent, Z(w < 1/75)°% = 1.

q(w)N*S in Eq. (B5) is the heat flux from nuclear spins

to the sample. The heat balance of the nuclear spins is
described by

—iwCONT (W)Y = g(w)NS

9 = - DTN -1, (B6)
where T'(w)N
system, and T'1 is the spin-lattice relaxation time
Solving Eq. (B6) for q(w)N*S in terms of electron-phonon
temperature T'(w)®, Eq. (B5) for ¢(w)%C in terms of
T(w)®, and combining with Egs. (B1,B2) we finally ob-

tain the thermal impedance of the calorimeter, ¢(w)® =

T(w)°/P(w),

1 , —iw (CS+T71+1) Ksc
g = —iwCo+kcep+ :
((w) —iw (CS +T71\i+1) +Ksc

is the temperature of the nuclear spin sub-
6,22,36

. (B7)

The frequency sweeps are fitted to the model,
Eq. (B7), using six parameters, kcp, 75 = Cs/KcB,
7¢ = Cc/kcs , T1, v = Ox/keB, and v = KeB/ksc
defined by

sz1+1)
—iWU (’TS + 7MT1+1) +1

The spectral decomposition of the thermal impedance in
Eq. (B7), ((w) = >,y 93 Ai/[—iw+ 1/m;], has three
characteristic times mj 2 3. They are related to the pa-
rameters in the model via the set of equations,

1 —iw (TS +
= —iwre+1+
((w)kcn

. (B8)

mimoms =vTsTc 11,
mi+me +ms=Tl+17¢c + (1 +v)(7n + 75) ,
m1ma-+mamsg + m3m;
=Tlrc + (1 4+ v)7sT1 +vrc(Tn + 75) . (B9)



Appendix C: Fitting.

The fitting parameters are found by the gradient-
descent minimization of the “goodness” function

w); {Ai})

"l

where ((w) is the weight function, and \;—; ¢ are pa-
rameters in Eq. (B8). [c.c.] is the complex conjugate of
the first square bracket. The sensitivity of the fitting
parameters (variances AX;—1. ) to the changes in the
measured ¢(w)°Pse™ved is determined by the curvatures of
the “effective” goodness function G(S(w); {Ai}), defined

via

observcd

—((w )f{n)\o‘id} X [c.c.] = min
(C1)

~GBWHND) — <efg<5<w>;{xi}>> : (C2)
as
dPG(B(w); N\
AXi—1..6 = V[C7 i, where Cij = d(fl(d/\)j)
(C3)
Here (---) is the average with respect to the noise in
C(w)observedsT  Assuming Gaussian noise with power

spectrum 7(w), the averaging (- - -) over the noise is equiv-
alent to setting the frequency-dependent “temperature”
in the effective goodness function to the power spectrum
m(w) or the weights B(w) to its inverse, S(w) =1/m(w).
The variances determined this way are shown as error
bars in Figure 4.

Appendix D: Thermal susceptibility of a
quasi-one-dimensional object

The thermal susceptibility £(sh,w) describes the tem-
perature change at the point x = s at time ¢ in response
to heat injection at x = h, at earlier time t' (Figure 1),

—iwCOT(W)ges = E(5h,w) q(wW) e - (D1)

It is determined by the heat flow dynamics in a quasi-one-
dimensional (bar-like) object with boundary conditions
of no heat influx at both ends, = 0, L, satisfied by the
basis

ok, (x) = \/2/Lcos kpx, where k, = mn/L ,and n =1...00
(D2)
is a positive integer. One finds
T coskpscoskyh, (D3)

&(shyw)=1+42 ZW
k'n/

where 7 = L?/D is the heat diffusion time across the
bar, and D is the heat diffusion coefficient, D = x/c.

For s,h = 0, L at either end of the bar, {(sh;w) can be
expressed in terms of elementary functions as,

£(00;w) =v/—iwT coth v—iwT ,
£(0L; w)? =£(00; w)? + iwT . (D4)

Appendix E: Cross-relaxation

The thermodynamics of the nuclear spin subsystem
can be described in a standard way>®, starting from the
free energy, dFNy = —SndT — MndB (where Sy is its
entropy and My is the magnetization) and then defin-
ing three thermodynamic coeflicients, the heat capacity
(Cn), the magnetic susceptibility (yn) and the nuclear
magnetocaloric coefficient (yx) via

i) = [ 2] ]
dMy| — w xn| |dB |
The heat exchange rate of nuclear spins is deter-
mined by the first line in this equation, Tx (dSn/dt) =
Cn (dTn/dt) + Tnyn (dB/dt). It equates the heat influx
qN*S = Ty (dSx/dt) from the lattice to the difference be-
tween the rate of change of the energy stored in the nu-
clear spin subsystem and the work done per unit time by
an external magnetic field. For nuclear spins, the mag-
netocaloric coefficient™ yn = (dSx/dB); = (dMn/dT) 5
is proportional to their magnetization, yxv = —Mn/TN,
and, therefore, the magnetocaloric term in the energy
balance, TN (dB/dt) is equal to the work done per sec-
ond by the external magnetic field on the nuclear spins,
—M (dB/dt).

When several nuclear spin species (or several inequiv-
alent lattice sites) are out of equilibrium, the energy ex-
change rates between nuclear spins and the lattice are
determined not only by a distinct nuclear spin-lattice
time for each isotope species but also by cross-relaxation
coefficients®??. In the context of calorimetric measure-
ments, the energy exchange between spins and lattice
is determined by the symmetric matrix of relaxation
coefficients®>?®, and therefore, the effective nuclear spin-
lattice contact heat conductance is described by a sym-
metric matrix of transport coefficients.

(E1)

The entropy relaxation is governed by

d(Sn1 + Sn2 + Ss)
dt

1 1 1 1

N1<S N2¢S

=q AV ) Ta ——— . (E2

<TN1 Ts) (TNz TS> (52)
The heat exchange between two isotopic components and
the electron-phonon subsystems is described by a sym-
metric 2x2 matrix I';; of kinetic coefficients®*?% dx; /dt =
ijl’z I';; X; or, explicitly,

-
NS Ui Too| |7 — 7%

(E3)
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relaxation

[
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17

term proportional to I'j2 describes cross-
6,22,24,39,40 in the two-isotope system. These

equations replace Eq. (B6) for multi-isotope nuclear
spins.
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