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Abstract Using detailed simulations of calorimeter show-

ers as training data, we investigate the use of deep learning

algorithms for the simulation and reconstruction of single

isolated particles produced in high-energy physics collisions.

We train neural networks on single-particle shower data at

the calorimeter-cell level, and show significant improve-

ments for simulation and reconstruction when using these

networks compared to methods which rely on currently-used

state-of-the-art algorithms. We define two models: an end-

to-end reconstruction network which performs simultane-

ous particle identification and energy regression of particles

when given calorimeter shower data, and a generative net-

work which can provide reasonable modeling of calorime-

ter showers for different particle types at specified angles

and energies. We investigate the optimization of our mod-

els with hyperparameter scans. Furthermore, we demonstrate

the applicability of the reconstruction model to shower inputs

from other detector geometries, specifically ATLAS-like and

CMS-like geometries. These networks can serve as fast and

computationally light methods for particle shower simula-

tion and reconstruction for current and future experiments at

particle colliders.

a e-mail: mzhang60@illinois.edu (corresponding author)

1 Overview

In high energy physics (HEP) experiments, detectors act as

imaging devices, allowing physicists to take snapshots of

final state particles from collision “events”. Calorimeters are

key components of such detectors. When a high-energy pri-

mary particle travels through dense calorimeter material, it

deposits its energy and produces a shower of secondary par-

ticles. Detector “cells” within the calorimeter then capture

these energy depositions, forming a set of voxelized images

which are characteristic of the type and energy of the primary

particle.

The starting point of any physics analysis is the identi-

fication of the types of particles produced in each collision

and the measurement of the momentum carried by each of

these particles. These tasks have traditionally used manually-

designed algorithms, producing measurements of physical

features such as shower width and rate of energy loss for

particles traversing calorimeter layers. In the last few years,

researchers have started realizing that machine learning (ML)

techniques are well suited for such tasks, e.g. using boosted

decision trees (BDTs) on calculated features for doing ID

classification and energy regression. Indeed, ML has long

been applied to various tasks in HEP [1–3], but has recently

seen much wider application [4–9], including the 2012 dis-

covery of the Higgs boson [10,11] at the ATLAS [12] and

CMS [13] experiments at the Large Hadron Collider (LHC).

In the next decade, the planned High Luminosity Large

Hadron Collider (HL-LHC) upgrade [14] will enhance the
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experimental sensitivity to rare phenomena by increasing the

number of collected proton–proton collisions by a factor of

ten. In addition, many next-generation detector components,

such as the sampling calorimeters proposed for the ILC [15],

CLIC [16], and CMS [17] detectors, will improve physicists’

ability to identify and measure particles by using much finer

3D arrays of voxels. These and future accelerator upgrades

will lead to higher data volumes and pose a variety of techno-

logical and computational challenges in tasks, such as real-

time particle reconstruction.

In addition to actual collision data, physics analyses typ-

ically require extremely detailed and precise simulations

of collisions, generated using software packages such as

GEANT4 [18]. This simulated data is used to develop

and test analysis techniques. These simulations involve the

physics governing the interaction of particles with matter in

the calorimeters, and are generally very CPU intensive. In

some cases, such as the ATLAS experiment, simulation cur-

rently requires roughly half of the experiment’s computing

resources [19]. This fraction is expected to increase signifi-

cantly for the HL-LHC. These challenges require novel com-

putational and algorithmic techniques, which has prompted

recent efforts in HEP to apply modern ML to calorimetry

[20–23].

With this work, we aim to demonstrate the applicability of

neural-network based approaches to reconstruction and sim-

ulation tasks, looking at a real use case. To do this, we use

fully simulated calorimeter data for a typical collider detec-

tor to train two models: (i) a network for end-to-end parti-

cle reconstruction, receiving as input a calorimeter shower

from a single isolated particle and acting both as a parti-

cle identification algorithm and as a regression algorithm

for the particle’s energy; (ii) a generative adversarial net-

work (GAN) [24] for simulating particle showers, designed

to return calorimeter-cell voxelized images like those gener-

ated by GEANT4. Both models aim to preserve the accuracy

of more traditional approaches while drastically reducing the

required computing resources and time, thanks partly to a

built-in portability to heterogeneous CPU+GPU computing

environments.

This paper is a legacy document summarizing two years

of work. It builds upon initial simulation, classification, and

regression results which we presented at the 2017 Workshop

on Deep Learning for Physical Sciences at the NeurIPS con-

ference. Those results were derived using simplified problem

formulations [25]. For instance, we only used particles of a

single fixed energy for classification, and had only consid-

ered showers produced by particles traveling perpendicularly

to the calorimeter surface. The results presented in this paper

deal with a more realistic use case and supersede the results

in Ref. [25].

For the studies presented in this paper, we used two com-

puting clusters: at the University of Texas at Arlington (UTA),

and at the Blue Waters supercomputing network, located at

the University of Illinois at Urbana Champaign (UIUC). The

UTA cluster has 10 NVIDIA GTX Titan GPUs with 6 GB of

memory each. Blue Waters uses NVDIA Kepler GPUs, also

with 6 GB of memory each.

GAN models were implemented and trained using Keras

[26] and Tensorflow [27]. Reconstruction models were

implemented and trained using PyTorch [28]. The sample

generation [29] and training [30] frameworks were both writ-

ten in Python.

This document is structured as follows: In Sect. 2, we

describe how we created and prepared the data used in these

studies. Section 3 introduces the two physics problems, parti-

cle simulation and reconstruction. Sections 4 and 5 describe

the corresponding models, how they were trained, and the

performances they reached. In particular, Sect. 5 compares

our results to those of more traditional approaches, and also

extends those comparisons to simulated performances on

detector geometries similar to those of the ATLAS and CMS

calorimeters. Conclusions are given in Sect. 6.

2 Dataset

This study is based on simulated data produced with

GEANT4 [18], using the geometric layout of the proposed

Linear Collider Detector (LCD) for the CLIC accelerator

[31]. We limit the study to the central region (barrel) of

the LCD detector, where the electromagnetic calorimeter

(ECAL) consists of a cylinder with inner radius of 1.5 m,

structured as a set of 25 silicon sensor planes, segmented

in 5.1 × 5.1 mm2 square cells, alternated with tungsten

absorber planes. In the barrel region, the hadronic calorime-

ter (HCAL) sits behind the ECAL, at an inner radius of 1.7 m.

The HCAL consists of 60 layers of polystyrene scintillators,

segmented in cells with 3 × 3 cm2 area and alternated with

layers of steel absorbers.

The event simulation considers the full detector layout,

including the material in front of the calorimeter and the

effect of the solenoidal magnetic field. The inner tracker

is included in simulation, which allows particles to inter-

act before hitting the calorimeter, but in our studies we focus

only on calorimeter data. From the full data for each event

we take slices centered around the barycenter of each ECAL

energy deposit and we represent the ECAL and HCAL slices

as 3D arrays of energy deposits in the cells.

We consider four kinds of particles (electrons e, photons

γ , charged pions π , and neutral pions π0) with energies uni-

formly distributed between 2 and 500 GeV, and with inci-

dent angles uniformly distributed between a polar angle θ

between 1.047 and 2.094 radians with respect to the beam

direction (equivalently, a pseudorapidity η between −0.549

and 0.549).
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Fig. 1 3D image of a photon (left) and neutral pion (right) shower in ECAL (bottom) and HCAL (top)

We get the barycenter of a shower by taking the 2D pro-

jection of its energy deposit on the ECAL inner surface.

This projection is taken along the z direction, which runs

perpendicular to the calorimeter surface. Then, knowing the

point of origin of the incoming particle, we use the barycen-

ter to estimate the particle’s polar and azimuthal angles θ

and φ. The estimated pseudorapidity η is then computed as

η = − log[tan
(

θ
2

)

]. Each single-shower event is prepared by

taking a slice of the ECAL in a window around the shower

barycenter, as well as the corresponding HCAL slice behind.

Depending on the task (generation or reconstruction), we

take:

– GEN dataset: A 51×51×25 cell window in the ECAL,

for electrons in the energy range 100 − 200 GeV. Used

in the shower generation task.

– REC dataset: A 25×25×25 cell slice of the ECAL and

a corresponding 11 × 11 × 60 cell slice of the HCAL,

for e, γ, π, or π0 in the energy range 2 − 500 GeV

and with η from −0.524 − 0.524. Used in the particle

reconstruction task.

Examples of a photon shower and a neutral-pion shower

can be seen in Fig. 1. The incoming particles enter from the

bottom (z = 0), at the center of the (x, y) transverse plane

(x = y = 25). Both events are around 35 GeV in energy.

We can see the presence of two subtracks in the neutral pion

event, due to decay into two photons.

The window size for the GEN dataset has been defined

in order to contain as much of the shower information as

practically possible. Motivated by the need of reducing the

memory footprint for some of the classification models, we

used a smaller window size for the REC dataset. When train-

ing classification models on these data, a negligible accuracy

increase was observed when moving to larger windows, as

described in Appendix A.

We apply a task-dependent filtering of the REC dataset,

in order to select the subset of examples for which the task

at hand is not trivial. For instance, in general distinguish-

ing a charged pion from an electron is an easy task, and

can be accomplished with high accuracy by looking at the

HCAL/ECAL energy ratio. On the other hand, a pion with

a small HCAL/ECAL ratio leaves most of its energy in the

ECAL due to charge conversion processes, and as such would

be difficult to distinguish from an electron of equal momen-
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Fig. 2 HCAL/ECAL energy ratios for electrons and charged pions,

plotted on a log scale. The last bin is an overflow bin

tum. Thus, we ignore charged-pion showers with a large

HCAL/ECAL energy ratio. To be more specific, we see in

Fig. 2 that the ratio of total ECAL energy to total HCAL

energy is very different for electrons and charged pions, with

the heavier charged pions tending to leave little energy in the

ECAL. In order to make the particle-identification task more

challenging, we only consider showers with HCAL/ECAL

< 0.1 cut. The effects are shown in Fig. 3, where we see the

fraction of events from 2 to 500 GeV that pass this selec-

tion. We can see that the selection favors mostly low-energy

charged pions, which tend to leave less energy in the HCAL

if they manage to make it through the ECAL at all. Discrim-

inating accurately between electrons and charged pions in

this range is thus crucial for physics analyses where we are

interested in decay products with low energy.

Photons and neutral pions are more difficult to distinguish.

This is because neutral pions decay preferentially into two

photons, with a branching ratio of almost 99%. A Lorentz

boost due to the motion of the pion causes the photons to

become collimated, to the point where they are only sep-

arated by a small angle. If the pion has a low energy, the

opening angle between the two photons is larger and the

shower is easily identified as originating from a neutral pion.

High-energy neutral pions produce more collimated photon

pairs, which are more easily mistaken as a single high-energy

photon. The opening angle distribution for neutral pions is

shown in Fig. 4. In order to limit the study to the most chal-

lenging case, we filter the neutral-pion dataset by requiring

the opening angle between the two photons to be smaller than

0.01 radian. The effect of this requirement on the otherwise

uniform energy distribution is shown in Fig. 5. As expected,

the selection mostly removes low-energy neutral pions.

The ECAL and HCAL 3D arrays are passed directly to our

neural networks. We also compute a set of expert features,

as described in Ref. [25]. These features are used to train

Fig. 3 Fractions of electrons and charged pions that pass a

HCAL/ECAL<0.1 cut at various particle energies (top). Mean charged

pion energy as a function of HCAL/ECAL energy ratio (bottom). We

see that if a pion makes it into the HCAL, then we tend to see a positive

relation between particle energy and the HCAL/ECAL ratio. About 1

out of 5000 events will leave no hits in the calorimeter window at all.

These events form the bump in the HCAL/ECAL=0 bin

alternative benchmark algorithms (see Appendices C and D

), representing currently-used ML algorithms in HEP.

3 Benchmark tasks

In this section, we introduce the two benchmark tasks that

we aim to solve with ML algorithms:

– Particle reconstruction: starting from raw detector hits,

determine the nature of a particle and its momentum.

– Particle simulation: starting from a generator-level infor-

mation of an incoming particle, generate the detector
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Fig. 4 Opening angle distribution for neutral pions decaying into two

photons, plotted on a log scale with an overflow bin. Plot is zoomed

in to show opening angle < 0.01. Number of equivalent ECAL cells is

shown on the top axis. This plot was generated using pions from the

full 2–500 GeV energy range

response (raw detector hits) using random numbers to

model the stochastic nature of the process.

This paper extends upon previous ML investigations in

ATLAS. Some prior classification studies on ATLAS data

can be found at [32], and work involving the generation of

electron showers at ATLAS can be found at [33,34]. Since

the CLIC datasets we use here are much more granular than

those from ATLAS data, we were able to examine more com-

plex neural architectures. Furthermore, we demonstrate the

use of a single tool which performs multiple aspects of par-

ticle reconstruction simultaneously, simply starting from a

calorimeter image.

3.1 Simulation

It is common in HEP to generate large amounts of detailed

synthetic data from Monte Carlo simulations. This simulated

data allows physicists to determine the expected outcome of a

given experiment based on known physics. Having this prior

expectation, one can reveal the presence of new phenomena

by observing an otherwise inexplicable difference between

real and simulated data. An accurate simulation of a detector

response is a computationally heavy task, currently taking

a significant fraction of the overall computing resources in

a typical HEP analysis. Thus we also investigate the use of

ML algorithms to speed up the event simulation process. In

particular, we build a generative model to simulate detector

showers, similar to those on which we train the end-to-end

reconstruction algorithm. Such a generator could drastically

Fig. 5 The fraction of neutral pions passing an opening angle < 0.01

radian selection at various particle energies (top). The mean neutral pion

energy as a function of opening angle (bottom)

reduce Monte Carlo simulation time, and turn event genera-

tion into an on-demand task.

In order to create realistic calorimetric shower data, we

train a generative adversarial network (GAN) on the GEN

dataset defined in Sect. 2. Due to training time constraints, we

have restricted the current study to ECAL showers for incom-

ing electrons with energy between 100 and 200 GeV. How-

ever, we have performed initial studies on expanded energies

from 2 to 500 GeV, and will extend on these results in future

publications. The task is to create a model that can take an

electron’s energy and flight direction as inputs and generate

a full ECAL shower, represented as a 51 × 51 × 25 array of

energy deposits along the trajectory of the incoming electron.

The advantage of using a GAN is that it’s much faster and

less computationally intense than traditional Monte Carlo

simulation, and the results may more accurately reproduce

physical behavior if the GAN is trained on real data.
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3.2 Reconstruction

At particle-collider experiments, data consist of sparse sets

of hits recorded by various detector components at beam col-

lision points. A typical analysis begins with a complex recon-

struction algorithm that processes these raw data to produce

a set of physics objects (jets, electrons, muons, etc.), which

are then used further down the line. Traditionally, the recon-

struction software consists of a set of rule-based algorithms

that are designed based on physics knowledge of the specific

problem at hand (e.g., the bending of particles in a solenoidal

magnetic field, due to the Lorentz force). Over the past decade

or so, machine-learning algorithms have been integrated into

certain aspects of particle reconstruction. One example is the

identification of electrons and photons via a BDT, taking as

input for each event a set of high-level features quantifying

the shape of the energy cluster deposited in a calorimeter

shower [35].

Event reconstruction is a challenging task, and is a

crucial part of any particle physics analysis. In order to

improve reconstruction performance beyond conventional

techniques, one could imagine using deep learning to extract

information directly from calorimetric cell-level data, with-

out first computing high-level features. Following this idea,

we investigate here an end-to-end ML model based on com-

puter vision techniques, treating the calorimeter input as a 3D

image. Using a combined architecture, the model is designed

to simultaneously perform particle identification and energy

measurement.

When dealing with particle reconstruction, one is inter-

ested in identifying a particle’s type (electron, photon, etc.)

and its momentum. An end-to-end application aiming to pro-

vide a full reconstruction of a given particle should thus

be able to simultaneously solve a multi-class classification

problem and a regression problem. In our study, we filter

the REC dataset to make the classification task non-trivial,

as described in Sect. 2. Since differentiating charged and

uncharged particles is trivial, we judged the classification of

our model on its ability to distinguish electrons from charged

pions, and photons from neutral pions.

Our reconstruction networks were thus given the follow-

ing three tasks:

– Identify electrons over a background of charged

pions: Charged pions are the most abundant particles

produced in LHC collisions. They are typically located in

jets, which are collimated sprays resulting from the show-

ering and hadronization processes of quarks and gluons.

On the other hand, electrons are rarely produced, and

their presence is typically an indication of an interesting

event occurring in the collision. A good electron identifi-

cation algorithm should aim at misidentifying at most 1 in

10,000 pions as an electron. In order to increase the diffi-

culty of our ML problem and to approach the kind of task

that one faces at the LHC, we apply the HCAL/ECAL

energy ratio cut as described in Sect. 2.

– Identify photons over a background of neutral pions:

At particle colliders, the main background to photon iden-

tification comes from neutral pions decaying to photon

pairs. In general, a generic γ /π0 classification task is rel-

atively easy, since the presence of two nearby clusters is

a clear signature of π0. Thus, we focus on events with

high π0 momentum, using the opening angle selection

described in Sect. 2.

– Energy measurement: Once the particle is identified, it

is very important to accurately determine its energy (and

by extension, its momentum), since this allows physi-

cists to calculate all the relevant high-level features, such

as the mass of new particles that generated the detected

particles when decaying. In this study, we address this

problem on the same dataset used for the classification

tasks, restricting the focus to range of energies from 2 to

500 GeV, and at various incident angles (η). Regression

results using various neural network architectures were

compared with results from linear regression, compar-

ing both resolution and bias. The models we consider are

designed to return the full particle momentum (energy,

η, and φ) of the incoming particle momentum. At this

stage, this functionality is not fully exploited and only

the energy determination is considered. An extension of

our work to include the determination of η and φ could

be the matter of future studies.

4 Generative model

Generative Adversarial Networks are composed of two net-

works, a discriminator and a generator. Our model, 3DGAN,

implements an architecture inspired by the auxiliary classi-

fier GAN [36]. The generator takes as input a specific par-

ticle type, flight direction, and energy, and generates the 3D

image of an energy deposit using an auxiliary input vector

of random quantities (latent vector). The output has the same

format as the 3D array of ECAL hits in the GEN sample

(see Sect. 2). The discriminator network receives as input an

ECAL 3D array and classifies it as real (coming from the

GEANT4-generated GEN dataset) or fake (produced by the

generator).

Our initial 3DGAN prototype [25] successfully simulated

detector outputs for electrons which were orthogonally inci-

dent to the calorimeter surface. In addition, the discriminator

performed an auxiliary regression task on the input particle

energy. This task was used to cross check the quality of the

generation process.

In this study, we consider a more complex dataset, e.g.,

due to the variable incident angle of the incoming electron
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Fig. 6 3DGAN generator and discriminator network architectures

on the inner ECAL surface. To monitor this additional com-

plexity, we include more components in the loss function,

related to the regression of the particle direction and the pixel

intensity distribution (energy deposition in cells). This will

be described in more detail below.

Before training our GAN, we pre-processed the GEN

dataset by replacing each cell energy content E with Eα ,

where α < 1 is a fixed hyperparameter. This pre-processing

compensates for the large energy range (about 7 orders of

magnitude) covered by individual cell energies, and miti-

gates some performance degradation we previously observed

at low energies. After testing for different values of α, we

observed optimal performance for α = 0.85.

4.1 GAN architecture

The 3DGAN architecture is based on 3-dimensional convo-

lutional layers [37], as shown in Fig. 6. The generator takes

as input a vector with a desired particle energy and angle, and

concatenates a latent vector of 254 normally distributed ran-

dom numbers. This goes through a set of alternating upsam-

pling and convolutional layers. The first convolution layer

has 64 filters with 6 × 6 × 8 kernels. The next two convolu-

tional layers have 6 filters of 5×8×8 and 3×5×8 kernels,

respectively. The last convolutional layer has a single filter

with a 2×2×2 kernel. The first three layers are activated by

leaky ReLU functions [38], while ReLU functions [39] are

used for the last layer. Batch normalization [40] and upscal-

ing layers were added after the first and second convolutional

layers.

The discriminator takes as input a 51 × 51 × 25 array

and consists of four 3D convolutional layers. The first layer

has 16 filters with 5 × 6 × 6 kernels. The second, third, and

fourth convolutional layers each have 8 filters with 5 × 6 × 6

kernels. There are leaky ReLU activation functions in each

convolutional layer. Batch normalization and dropout [41]

layers are added after the second, third, and fourth convo-

lutional layers. The output of the final convolution layer is

flattened and connected to two output nodes: a classification

node, activated by a sigmoid and returning the probability

of a given input to be true or fake; and a regression node,

activated by a linear function and returning the input particle

energy. The 3DGAN model is implemented in KERAS [26]

and Tensorflow [27].

Aside from the architecture shown here, we also tested

the use of a Wasserstein GAN [42], but found no practical

advantage in terms of computational speed-up or training

performance.

4.2 Training and results

The 3DGAN loss function

LT ot = WG LG + WP L P + WA L A + WE L E + WB L B (1)

is built as a weighted sum of several terms: a binary cross

entropy (LG) function of the real/fake probability returned

by the discriminator, mean absolute percentage error terms

(MAPE) related to the regression of the primary-particle

energy (L P ) , the total deposited energy (L E ) and the binned

pixel intensity distribution (L B), and a mean absolute error
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Fig. 7 GEN sample: electrons with different primary particle energies

and angles

(MAE) for the incident angles measurement (L A). The binary

cross entropy term, percentage errors and absolute error are

weighted by 3.0, 0.1 and 25 respectively. The weights W are

tuned to balance the relative importance of each contribution.

The predicted energy and incident angle provide a feedback

on the conditioning of the image. The binned pixel inten-

sity distribution loss compares the counts in different bins of

pixel intensities.

The model training is done using the RMSprop [43] opti-

miser. We alternately train the discriminator on a batch of

real images and a batch of generated images, applying label

switching. We then train the generator while freezing the

discriminator weights.

Figure 7 shows a few events from the GEN data set. The

events were selected to cover both ends of the primary-

particle energy and angle spectrum. Figure 8 presents the

corresponding generated events with the same primary parti-

cle energy and angle as the GEN events in Fig. 7. Initial visual

inspection shows no obvious difference between the original

and GAN generated images. A detailed validation based on

several energy-shape related features confirms these results.

We discuss a few examples below.

The top row in Fig. 9 shows the ratio between the total

energy deposited in the calorimeter and the primary parti-

cle energy as a function of the primary particle energy (we

refer to it as “sampling fraction”) for different angle values.

3DGAN can nicely reproduce the expected behaviour over

the whole energy spectrum. The second row in Fig. 9 shows

the number of hits above a 3 × 10−4 MeV threshold: the

GAN prediction is slightly broader than the Monte Carlo,

consistently with the slight overestimation on the shower

shapes distributions (10). Figure 9 also shows the calorimeter

shower shapes projected onto the x, y, and z axes. Here, z is

the axis pointing into the calorimeter, perpendicular to its sur-

Fig. 8 GAN generated electrons with primary energies and angles cor-

responding to the electrons showed in Fig. 7

Fig. 9 GEANT4 vs. GAN comparison for sampling fraction, number

of hits and shower shapes along x, y, z axis for different angle bins with

100–200 GeV primary particle energies

face. The agreement is very good, and in particular 3DGAN

is able to mimic the way the energy distributions changes

with incident angle. Figure 10 shows some additional fea-

tures aimed at defining the shape of the deposited energy

distribution. In particular the second moments along the x,

y and z axes are shown on the first column, measuring the

width of the deposited energy distribution along those axes.

The second column shows the way the energy is deposited

along the depth of the calorimeter, by splitting the calorimeter

in three parts along the longitudinal direction and measuring

the ratios between the energy deposited in each third and the
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Fig. 10 GEANT4 vs. GAN comparison for shower width (second

moment) in x, y, z, ratio of energy deposited in parts along direction of

particle traversal to total energy and shower shapes along x, y, z axis in

log scale for 100–200 GeV primary particle energies and 60◦ − 120◦θ

total deposited energy. Finally, the third column in Fig. 10

highlights the tails of the “energy shapes”. It can be seen

that, while the core of the distribution is perfectly described

by 3DGAN, the network tends to overestimate the amount

of energy deposited at the edges of the volume. It should be

noted however that energy depositions in those cells are very

sparse.

The 3DGAN training runs in around 1.5 h per epoch on a

single NVIDIA GeForce GTX 1080 card for 60 epochs. The

simulation time on a Intel Xeon 8180 is about 13 ms/particle

and it goes down to about 4 ms/particle on a NVIDIA

GeForce GTX 1080. For comparison GEANT4 simulation

takes about 17 s per particle on a Intel Xeon 8180 (currently

it is not possible to run a full GEANT4-based simulation

on GPUs). Thus our GAN represents a potential simulation

speedup of over 4000 times for this specific aspect of the

event simulation.

When given as input to a particle regression and recon-

struction model (see Sect. 5), this dataset produces the same

output as the original GEANT4 sample, as described in

Appendix B.

5 End-to-end particle reconstruction

This section describes the use of a deep neural network to

accomplish an end-to-end particle reconstruction task. The

model consists of a neural architecture which simultaneously

performs both particle classification and energy regression.

This combined network is trained using the ECAL and HCAL

cell arrays as well as the total ECAL energy and total HCAL

energy as inputs. The training loss function is written as the

sum of a binary cross entropy for particle identification and a

mean-square error loss for energy regression. Through exper-

imentation, we found that multiplying the energy component

of the loss function by a factor of 200 gave the best results,

as it was easier to quickly achieve low loss values for energy

regression.

We compare three different architectures for our recon-

struction model, each trained using calorimeter cell-level

information as inputs:

– A dense (i.e, fully connected) neural network (DNN).

– A 3D convolutional network (CNN).

– A network based on GoogLeNet (GN) [44], using layers

of inception modules.

In order to compare the model performance to a typi-

cal state-of-the-art particle reconstruction algorithm, we also

consider the following alternatives:

– A feature-based BDT (see Appendix C) for the classifi-

cation task.

– A linear regression for the regression task.

– A BDT for the regression task (for more info on regres-

sion baselines see Appendix D).

In a previous study [25], we compared the classification

accuracy obtained with a neural model taking as input the

energy cells, a feature-based neural models, and a feature-

based BDTs. In that context, we demonstrated that feature-

based BDTs and neural networks perform equally well, and

are both equally capable of correctly classify particles from a

small set of calculated features. We do not compare feature-

based neural networks in this paper, and use feature-based

BDTs to represent the current state-of-the-art classification

algorithms.

5.1 Deep network models

The three ML models take as input the ECAL and HCAL

3D energy arrays of the REC dataset (see Sect. 2), together

with the total energies recorded in ECAL and in HCAL (i.e.,

the sum of the values stored in the 3D arrays), as well as

the estimated φ and η angles of the incoming particle, cal-

culated using the collision origin and the barycenter of the

event. The architecture of each model is defined with a num-

ber of floating parameters (e.g. number of hidden layers),

which are refined through a hyperparameter optimization, as

described in Sect. 5.2. Each model returns three numbers.

After applying a softmax activation, two of these elements

are interpreted as the classification probabilities of the cur-

rent two-class problem. The third output is interpreted as the

energy of the particle.

Here we describe in detail the three model architectures:
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– In the DNN model we first flatten our ECAL and HCAL

inputs into 1D arrays. We then concatenate these array

along with the total ECAL energy, total HCAL energy,

estimated φ, and estimated η, for an array of total size

25 × 25 × 25 + 11 × 11 × 60 + 4 = 22889 inputs. This

array is fed as input to the first layer of the DNN, fol-

lowed by a number of hidden layers each followed by a

ReLU activation function and a dropout layer. The num-

ber of neurons per hidden layer and the dropout proba-

bility are identical for each relevant layer. The number of

hidden layers, number of hidden neurons per layer, and

dropout rate are hyperparameters, tuned as described in

the next session. Finally, we take the output from the last

dropout layer, append the total energies and estimated

angles again, and feed the concatenated array into a final

hidden layer, which results in a three-element output.

– The CNN architecture consists of one 3D convolutional

layer for each of the ECAL and HCAL inputs, each fol-

lowed by a ReLU activation function and a max pooling

layer of kernel size 2 × 2 × 2. The number of filters

and the kernel size in the ECAL convolutional layer are

treated as optimized hyperparameter (see next session).

The HCAL layer is fixed at 3 filters with a kernel size of

2 × 2 × 6. The two outputs are then flattened and con-

catenated along with the total ECAL and HCAL ener-

gies, as well as the estimated φ and η coordinates of the

incoming particle. The resulting 1D array is passed to a

sequence of dense layers each followed by a ReLU acti-

vation function and dropout layer, as in the DNN model.

The number of hidden layers and the number of neurons

on each layer are considered as hyperparameters to be

optimized. The output layer consists of three numbers,

as for the DNN model. We found that adding additional

convolutional layers to this model beyond the first had

little impact on performance. This may be because a sin-

gle layer is already able to capture important information

about localized shower structure, and reduces the dimen-

sionality of the event enough where a densely connected

net is able to do the rest.

– The third model uses elements of the GoogLeNet [44]

architecture. This network processes the ECAL input

array with a 3D convolutional layer with 192 filters, a

kernel size of 3 in all directions, and a stride size of 1. The

result is batch-normalized and sent through a ReLU acti-

vation function. This is followed by a series of inception

and MaxPool [37] layers of various sizes, with the full

architecture described in Appendix E. The output of this

sequence is concatenated to the total ECAL energy, the

total HCAL energy, the estimated φ and η coordinates,

and passed to a series of dense layers like in the DNN

architecture, to return the final three outputs. The num-

ber of neurons in the final dense hidden layer is the only

architecture-related hyperparameter for the GN model.

Due to practical limitations imposed by memory con-

straints, this model does not take the HCAL 3D array as

input. This limitation has a small impact on the model

performance, since the ECAL array carries the majority

of the relevant information for the problems at hand (see

Appendix F).

On all models, the regression task is facilitated by using

skip connections to directly append the input total ECAL

and HCAL energies to the last layer. The impact of this

architecture choice on regression performance is described in

Appendix G. In addition to using total energies, we also tested

the possibility of using 2D projections of the input energy

arrays, summing along the z dimension (detector depth). This

choice resulted in worse performance (see Appendix H) and

was discarded.

5.2 Hyperparameter scans

In order to determine the best architectures for the end-to-

end reconstruction models, we scanned over a hyperparame-

ter space for each architecture. Learning rate and decay rate

were additional hyperparameters for each architecture. For

simplicity, we used classification accuracy for the γ vs. π0

problem as a metric to determine the overall best hyperpa-

rameter set for each architecture. This is because a model

optimized for this task was found to generate good results

for the other three tasks as well, and because γ vs. π0 clas-

sification was found to be the most difficult problem.

Training was performed at each hyperparameter point ten

times, in order to obtain an estimate of the uncertainty asso-

ciated with each quoted performance value. For each scan

point, the DNN and CNN architectures trained on 400,000

events, using another sample of 400,000 events for testing.

DNN and CNN scan points trained for three epochs each, tak-

ing about seven hours each. GN trained on 100,000 events

and tested on another 100,000. Due to a higher training time,

each GN scan point only trained for a single epoch, taking

about twenty hours.

For CNN and DNN training, we used batches of 1000

events when training. However, due to GPU memory limita-

tions, we could not do the same with GN. Instead, we split

each batch into 100 minibatches of ten events each. A single

minibatch was loaded on the GPU at a time, and gradients

were added up after back-propagation. We waited until after

each batch was fully calculated to update network weights

using the combined gradients.

The best settings were found to be as follows:

– For DNN, 4 hidden layers, 512 neurons per hidden layer,

a learning rate of 0.0002, decay rate of 0, and a dropout

probability of 0.04.
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Fig. 11 Selected hyperparameter scan results for DNN (top), CNN (center), and the GoogLeNet-based architecture (bottom). In each figure, the

classification accuracy is displayed as a function of the hyperparameters reported on the two axes

– For CNN, 4 hidden layers and 512 neurons per hidden

layer, a learning rate of 0.0004, decay rate of 0, a dropout

probability of 0.12, 6 ECAL filters with a kernel size of

6 × 6 × 6.

– For GN, 1024 neurons in the hidden layer, 0.0001 learn-

ing rate, and 0.01 decay rate.

The DNN, CNN, and GN-based models had 9823774

(∼10M), 3003692 (∼3M), and 14956286 (∼15M) trainable

parameters respectively after the hyperparameter scans.

Selected hyperparameter scan slices are shown in Fig. 11.

These 2D scans were obtained setting all values besides the

two under consideration (i.e., those on the axes) to be fixed

at default values: a dropout rate of 0.08, a learning rate of
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Fig. 12 Training curves for best DNN (top), CNN (middle), and

GoogLeNet (bottom) hyperparameters, trained on variable-angle γ /π0

samples. We see that the DNN over-trains quickly and saturates at a

relatively low accuracy, while the CNN takes longer to over-train and

reaches a higher accuracy, and GoogLeNet performs best of all. Each

400 batches corresponds to a single epoch

Fig. 13 ROC curve comparisons for γ vs. π0 (top) and e vs. π± (bot-

tom) classification using DNN, CNN, BDT, and GoogLeNet (GN).

Samples include particle energies from 2 to 500 GeV, and an inclu-

sive η range

0.0004, a decay rate of 0.04, three dense layers for CNN and

DNN, and 512 neurons per hidden layer. For GN, the default

number of ECAL filters was 3, with a kernel size of 4.

After performing the hyperparameter scan, we trained

each architecture using its optimal hyperparameters for a

greater number of epochs. The evolution of the training and

validation accuracy as a function of the batch number for

these extended trainings is shown in Fig. 12.

5.3 Results

We apply the best architectures described in the previous

section separately to our electron vs. charged pion and photon

vs. neutral pion reconstruction problems.
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Fig. 14 Classification accuracy of best performing network for γ vs. π0 (top) and e vs. π± (bottom), in bins of energy (left) and η (right)

5.3.1 Classification performance

Figure 13 shows ROC curve comparisons for the two clas-

sification tasks. As expected, the electron vs. charged pion

classification problem was found to be a simple task, result-

ing in an area under the curve (AUC) close to 100%. For

a baseline comparison, the curve obtained for a BDT (see

Appendix C) is also shown. This BDT was optimized using

the scikit-optimize package [45], and was trained using high-

level features computed from the raw 3D arrays. It repre-

sents the performance of current (non-deep-learning) ML

approaches on these problems.

Our deep learning models outperform the BDT, with the

GN reaching the best classification performance on both

problems. Figure 14 shows the best-model performance as

a function of the energy and η of the incoming particle,

for the photon vs. neutral pion and the electron vs. charged

pion problems. These figures show that classification accu-

racy is maintained over a wide range of particle energies

and angles. The models appear to perform a bit worse at

higher energies for the photon vs. neutral pion case, due to the

fact that the pion to two photon decay becomes increasingly

collimated at higher energies. Similarly, the performance is

slightly worse when particles impact the detector perpen-

dicularly than when they enter at a wide angle, because

the shower cross section on the calorimeter inner surface

is reduced at 90◦, making it harder to distinguish shower

features.

5.3.2 Regression performance

Figure 15 shows the energy regression performance for

each particle type, obtained from the end-to-end reconstruc-

tion architectures. In this case, we compare against a linear

regression algorithm and a BDT (labelled as “XGBoost”)

representing the current state-of-the-art, as described in

Appendix D.

Since the energy regression problem is not as complex

as the classification problem, the three architectures (DNN,

CNN, GN) perform fairly similarly, with the exception of

the GN performance on π±, which is a bit worse. The per-

formance is overall worse for π±, both with the networks

and with the benchmark baselines (linear regression and

XGBoost).

A closer look at the performance boost given by each net-

work can be obtained examining the case of particles enter-
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Fig. 15 Regression bias (left) and resolution (right) as a function of

true energy for energy predictions on the REC dataset with variable-

angle incident angle. From top to bottom: electrons, charged pions,

photons, and neutral pions. Algorithms compared are linear regression,

XGBoost (BDT), DNN, CNN, and GoogLeNet (GN)
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Fig. 16 Example of the resampling procedure used to emulate CLIC

data on a different detector geometry (the example shown here is simply

a larger grid). First, we extrapolate hit information from one geometry

to another (top). Next, we extrapolate back to the original geometry

(bottom). This allows us to emulate the rougher granularity of the second

geometry, while keeping data array sizes constant and enabling us to

use the models we have already developed for the CLIC dataset. Note

that some information is lost at the edges

ing the calorimeter inner surface at 90◦, i.e. with η = 0. 1

In this case, the problem is more constrained and both the

networks and the baseline algorithms are able to perform

accurately. The results for fixed angle samples are shown in

Appendix I.

We have also tested the result of training on one class

of particle and performing regression on another. These

results can be seen in Appendix J. In addition, we have

looked at the effect on energy regression of increasing

the ECAL and HCAL window sizes. This can be seen in

Appendix K.

5.4 Resampling to ATLAS and CMS geometries

In addition to the results presented so far, we show in this

section how the end-to-end reconstruction would perform on

calorimeters with granularity and geometry similar to those

of the ATLAS and CMS calorimeters. Since the REC dataset

(see Sect. 2) is generated using the geometry of the pro-

posed LCD detector, it has a much higher granularity than

the current-generation ATLAS and CMS detectors. To visu-

alize how our calorimeter data would look with a coarser

detector, we linearly extrapolate the contents of each event

to a different calorimeter geometry, using a process we have

termed “resampling”. To keep the resampling procedure sim-

ple, we discard the HCAL information and consider only the

ECAL 3D array.

1 For these additional fixed-angle regression plots, we did not train

GoogLeNet architectures.

Fig. 17 ROC curve comparisons for variable-angle γ /π0 classifica-

tion on data resampled to ATLAS-like (top) and CMS-like (bottom)

geometries. Algorithms compared are DNN, CNN, GoogLeNet (GN),

and BDT

A not-to-scale example of the full procedure is shown in

Fig. 16. In this example, we resample the input to a regu-

lar square grid with lower granularity than the input data.

The operation is simplified in the figure, in order to make

the explanation easy to visualize. The actual ATLAS and

CMS calorimeter geometries are more complex than a regu-

lar array, as described in Table 1.

In the resampling process, we first extrapolate each energy

value from the grid of CLIC cells to a different geometry. To

do so, we scale the content of each CLIC cell to the frac-

tion of overlap area between the CLIC cell and the cell of

the target geometry. When computing the overlap fraction,

we take into account the fact that different materials have

different properties (Moliere radius, interaction length, and

radiation length). For instance, CLIC is more fine-grained

than CMS or ATLAS detectors, but the Moliere radius of the

CLIC ECAL is much smaller than in either of those detec-
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Table 1 Detailed description of

the three detector geometries

used in this study: the baseline

CLIC ECAL [46] and the

ATLAS [12] and CMS [13]

ECALs

Parameter CLIC ATLAS CMS

1st layer 2nd layer 3rd layer

∆η 0.003 0.025/8 0.025 0.5 0.0175

∆φ 0.003 0.1 0.025 0.025 0.0175

Radiation length (cm) 0.3504 14 14 14 0.8903

Moliere radios (cm) 0.9327 9.043 9.043 9.043 1.959

Fig. 18 Bias (left) and resolution (right) as a function of true energy for energy predictions for photons, on variable-angle samples resampled to

ATLAS-like (top) and CMS-like (bottom) geometries

tors. This difference determines an offset in the fine binning.

Thus, when applying our resampling procedure we normal-

ize the cell size by the detector properties. The Moliere radius

is used for x and y re-binning, and radiation length is used for

the z direction. At this point we have a good approximation

for how the event would look in a calorimeter with the target

geometry.

To complete the resampling process, we invert the proce-

dure to go back to our original high-granularity geometry.

This last step allows us to keep using the model architec-

tures that we have already optimized. It adds no additional

information that would not be present in the low-granularity

geometry. This up-sampling also allows us to deal with the

irregular geometry of the ATLAS calorimeter by turning it

into a neat grid. With no up-sampling, it would not be pos-

sible to apply the CNN and GN models. This procedure

was validated by comparing total energies before and after

resampling, and by visually comparing resampled grids. The

energy matches for events were not exact, due to losses at

the edge of the resampling grid, and the shower resolutions

became much less granular after resampling, but overall the

energies and distributions matched before and after the pro-

cedure was applied.
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Fig. 19 Bias (left) and resolution (right) as a function of true energy for energy predictions for π0, on variable-angle samples resampled to

ATLAS-like (top) and CMS-like (bottom) geometries

The resampling procedure comes with a substantial sim-

plification of the underlying physics process. First of all, the

information at the edge of the grid is imperfectly translated

during the resampling process, leading to worse performance

than what could theoretically be achieved in the actual CMS

and ATLAS detectors. Also, this simple geometrical rescal-

ing doesn’t capture many other detector characteristics. For

example, the CMS ECAL detector has no depth information,

but being homogeneous it provides a very precise energy

measurement. Our resampling method only captures geomet-

ric effects, and would not be able to model the improvement

in energy resolution. Furthermore, we are unable to include

second-order effects such as gaps in the detector geometries.

Despite these limitations, one can still extract useful infor-

mation from the resampled datasets, comparing the classifi-

cation and regression performances of the end-to-end models

defined in Sects. 5.3.1 and 5.3.2 on different detector geome-

tries.

Comparisons of classification ROC curves between net-

work architectures and our BDT baseline are shown in Fig. 17

for ATLAS-like and CMS-like geometries. Here we can see

that the previously observed performance ranking still holds

true. The GN model performs best, followed by the CNN,

then the DNN. All three networks outperform the BDT base-

line. The effect is less pronounced after the CMS-like resam-

pling, due to the low granularity and the single detector layer

in the z direction.

Regression results are shown in Figs. 18 and 19 , for pho-

tons and neutral pions (we did not train electrons or charged

pions for this comparison). Here we have included the regres-

sion baselines, DNN networks, and CNN networks, but not

GN (which we did not train on resampled data). The results

obtained for the ATLAS-like resampling match those on the

REC dataset, with DNN and CNN matching the BDT out-

come in terms of bias and surpassing it in resolution. With the

CMS-like resampling the neural networks match but do not

improves over the BDT energy regression resolution. Once

again, this is due to the low spatial resolution in the CMS-like

geometry, especially due to the lack of z segmentation. We

are unable to model the improved energy resolution from the

actual CMS detector, so these energy regression results are

based on geometry only.
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6 Conclusion and future work

This paper shows how deep learning techniques could outper-

form traditional and resource-consuming techniques in tasks

typical of physics experiments at particle colliders, such as

particle shower simulation and reconstruction in a calorime-

ter. We consider several model architectures, notably 3D con-

volutional neural networks, and we show competitive per-

formance, matched to short execution time. In addition, this

strategy comes with a GPU-friendly computing solution and

would fit the current trends in particle physics towards het-

erogeneous computing platforms.

We confirm findings from previous studies of this kind. On

the other hand, we do so utilizing a fully accurate detector

simulation, based on a complete GEANT4 simulation of a

full particle detector, including several detector components,

magnetic field, etc. In addition, we design the network so

that different tasks are performed by a single architecture,

optimized through an hyperparameter scan.

We look forward to the development of similar solutions

for current and future particle detectors, for which this kind

of end-to-end solution could be extremely helpful.
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A Calorimeter window size

The optimal window size to store for ECAL and HCAL is an

important issue, since this impacts not only sample storage

size, but also training speed and the maximum batch sizes

which we could feed to our GPUs.

From examinations of our generated samples, we found

that an ECAL window of 25×25×25 and an HCAL window

of 11 × 11 × 60 looked reasonable. To test this hypothesis,

we performed training using the samples and classification

architectures described in our previous studies [25], but with

different-sized input samples. The architecture was altered

to accommodate larger windows simply by increasing the

number of neurons on the input layer. Results trained using

an ECAL window of size 25 × 25 × 25 and 51 × 51 × 25

are shown in Fig. 20. From the similarity of these curves,
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Fig. 20 Training history for different choices of the input 3D array zise: Accuracy (top) and loss (bottom) as a function of the training batch for

photon/neutral pion classification, using a 25 × 25 × 25 (left) and 51 × 51 × 25 (right) ECAL window size

we have decided that an expanded ECAL window size does

not contain much additional useful information, and is thus

not necessary for our problems.

B End-to-end reconstruction of the ECAL showers

produced by the 3DGAN

In order to further validate the GAN image quality we run

the 3D CNN reconstruction network described in Sect. 5 on

the 3DGAN output and compare the response to the results

obtained by running the tool on Monte Carlo data. Figure 21

shows a comparison of the energy resolution obtained on

GAN and GEANT4 images. The predicted energy shows a

reasonable agreement for the mean while the resolution for

GAN images seems to be broader than for GEANT4 images.

The classification accuracy presented in Fig. 22 is very high

(close to 100%) for both GAN and GEANT4 events.

Fig. 21 Predicted vs. true particle energy for GAN and GEANT

images. Predictions were made using the reconstruction tool described

in Sect. 5. This plot was made using 2213 electron events of each type

(GAN and GEANT)
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Fig. 22 Predicted particle type (electron vs. charge pions) for GAN

and GEANT images. There were 2213 electron events for each type

C Classification baseline

Boosted decision trees were chosen as the baseline of com-

parison for our classification task, due to their popularity

with HEP experiments. Decision trees are effective in pro-

cessing high-level features, performing complex and opti-

mized cut-based classification in the multi-dimensional space

of the input quantities. Boosted trees are further able to

increase classification accuracy and stability by aggregating

the results from multiple trees.

The features we use for our baseline BDT classification

model, introduced in Ref. [25], are commonly used to char-

acterize particle showers. One additional feature we added

is R9, which measures the largest fraction of energy con-

tained within a 3 × 3 window in a (x, y) projection of the

shower. This quantity provides a measure of the “concentra-

tion” of a shower within a small region. For values near 1,

the shower is highly collimated within a single region, as in

electromagnetic showers. Smaller values are typical of more

spread out showers, as for hadronic and multi-prong show-

ers. A comparison of R9 values between photons and neutral

pions can be seen in Fig. 23, with examples of events with

different R9 values being shown in Fig. 24. After training,

the discriminating power of various features can be seen in

Fig. 25.

Fig. 23 Comparison of R9 distributions between photon and neutral

pion events. Photons tend to have more centralized energy deposition

Fig. 24 (Top) (x, y) projection of an event with R9 = 0.42. (Bottom)

(x, y) projection of an event with R9 = 0.75
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Fig. 25 Feature importances for inputs used in BDT training. Values

shown are gini importances [47]

D Energy regression baseline

We use linear regression with ECAL and HCAL total energy

as one of our baseline methods to compare to machine learn-

ing results (seen in Eq. 2).

E = a · EEC AL + b · EHC AL + c (2)

Updated results for each of the particle types are shown

in Fig. 26. Each point in the plot represents the mean bias

or resolution within an energy bin. In all the resolution plots

shown, the points have been fitted with the expected resolu-

tion function of Eq. 3, and the fitted function is plotted as a

line.

σ(∆E)

Etrue
=

a
√

Etrue

⊕ b ⊕
c

Etrue
(3)

It is already typical for basic ML methods like BDTs to be

used for energy regression in the LHC experiments, in cases

where the best resolution is critical (e.g., to study H →
γ γ decays). We tried a BDT with a few summary features

as input to form an improved baseline for comparing more

advanced ML techniques. The XGBoost package was used

in python, with the following hyperparameters.

– maximum 1000 iterations, with early stopping if loss

doesn’t improve on the test set in 10 iterations

– maximum tree depth of 3

– minimum child weight of 1 (default)

– learning rate η = 0.3 (default)

Varying the hyperparameters led to either worse results or

negligible changes.

Fig. 26 Bias (top) and resolution (bottom) as a function of true energy

for linear regression predictions of particle energy for the different par-

ticle types, trained on fixed-angle samples

The following features gave good performance for elec-

trons, photons, and π0:

– total ECAL energy

– total HCAL energy

– mean z coordinate of the ECAL shower

Adding the mean z coordinate to the ECAL and HCAL

total energies improved the energy resolution for all energy

values, but in particular at high energy. This is shown in

Fig. 27 for electrons.

For π±, adding the following variables gave an improved

result:

– RMS in the x direction of the ECAL shower

– RMS in the (x, y) plane of the HCAL shower

– mean z coordinate of the HCAL shower
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Fig. 27 Bias (top) and resolution (bottom) as a function of true energy

for the XGBoost regression predictions of particle energy, using differ-

ent input features for electrons

In addition, for π±, around 0.5% of events were found to

have almost no reconstructed energy in the selected calorime-

ter window. Including these events adversely affected the

algorithm training, so they were removed for all the results

shown in this and the following sections. Specifically, the

raw ECAL+HCAL energy is required to be at least 30% of

the true generated energy.

The results of the XGBoost baseline are shown in Fig. 28,

where they are compared to linear regression results. The per-

formance of XGBoost on electrons, photons, and π0 is simi-

lar, achieving relative resolutions of about 6–8% at the lowest

energies and 1.0–1.1% at the highest energies. Compared to

the baseline linear regression, the resolution improves by a

factor of about two at low energy and three to four at high

energy. For π±, the resolution after XGBoost regression

ranges between 20 and 5.4%, with a relative improvement

over linear regression of up to 40% at high energy.

Fig. 28 Bias (top) and resolution (bottom) as a function of true energy

for linear regression and XGBoost predictions of particle energy for the

different particle types

One drawback of using a BDT algorithm in a real-world

setting is that it can not be used for energy values outside

the range of the training set. That is, most tree algorithms do

not perform extrapolation. This is an inherent disadvantage

of the BDT when compared with the neural networks we

present in this paper.

E GoogLeNet model architecture details

In our GoogLeNet architecture, we use inception modules.

In these modules, inputs go through four separate branches

and are then concatenated together. For an inception layer

denoted as Inception (A, B, C, D, E, F, G) the branches are

defined as follows:
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– Branch 1: A simple 1×1×1 convolution, taking A input

channels to B output channels. This is followed by a batch

normalization and a ReLU activation function.

– Branch 2: A 1×1×1 convolution followed by a 3×3×3

convolution. The first convolution takes A input channels

to C output channels, followed by batch normalization

and ReLU. This then goes to the next convolution layer,

which outputs D channels using a kernel of size 3×3×3.

This is again followed by batch normalization and ReLU.

– Branch 3: A 1×1×1 convolution followed by a 5×5×5

convolution. The details are the same as for the other

branches, but the first convolution takes A input channels

to E output channels, and the next convolution outputs F

channels.

– Branch 4: A max pool of kernel size 3×3×3 is followed

by a convolution of kernel size 1 × 1 × 1 that takes A

input channels to G output channels. This is followed

once again by batch normalization and ReLU.

Here are full details for each layer of the GoogLeNet-

based architecture:

– Apply instance normalization to ECAL input.

– Convolution with 3D kernel of size 3, going from 1 input

channel to 192 channels, with a padding of 1. This is

followed by batch normalization and ReLU.

– Inception (192, 64, 96, 128, 16, 32, 32)

– Inception (256, 128, 128, 192, 32, 96, 64)

– Max pooling with a 3D kernel of size 3, a stride of 2, and

padding of 1.

– Inception (480, 192, 96, 208, 16, 48, 64)

– Inception (512, 160, 112, 224, 24, 64, 64)

– Inception (512, 128, 128, 256, 24, 64, 64)

– Inception (512, 112, 144, 288, 32, 64, 64)

– Inception (528, 256, 160, 320, 32, 128, 128)

– Max pooling with a 3D kernel of size 3, a stride of 2, and

padding of 1.

– Inception (832, 256, 160, 320, 32, 128, 128)

– Inception (832, 384, 192, 384, 48, 128, 128)

– Average pooling with a 3D kernel of size 7 and a stride

of 1.

– The output array is flattened and concatenated with input

φ, η, total ECAL energy, and total HCAL energy.

– A densely connected layer with 1024 outputs, followed

by ReLU.

– The output array is once again concatenated with the

same input values.

– A final densely connected layer outputs 5 values, as in

the architectures of the other two models.

The full architecture is shown in Fig. 29.

Fig. 29 GoogLeNet-based architecture (top) and component inception

architecture (bottom)

F Use of HCAL in classification

Since the GoogLeNet architecture was quite large and

required significant memory usage and computational power,

we decided to investigate the possibility of leaving out HCAL

cell-level information, since most of the particle shower

occurs in the ECAL. Using our best-performing DNN archi-

tecture, we ran ten training sessions with HCAL information,
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Fig. 30 Accuracy and loss curves for electron/charged pion classifica-

tion, with and without HCAL cells, using best DNN architecture

and ten training sessions without HCAL. Averaged training

curves from these runs are shown in Figs. 30 and 31. These

studies demonstrated that including the HCAL caused little

to no improvement in classification accuracy. For memory

purposes, we thus kept HCAL cell-level information out of

our GN architecture. Summed HCAL energy was still fed

as an input to the combined classification-regression net, for

use in energy regression.

We must note here that though HCAL information is use-

ful for particle reconstruction in general, the reason we do

not see much use for it here is because we are mostly look-

ing at events where the majority of energy is deposited in

the ECAL. This is particularly true due to the HCAL/ECAL

ratio we have applied to electron/charged pion events.

Fig. 31 Accuracy and loss curves for photon/neutral pion classifica-

tion, with and without HCAL cells, using best DNN architecture

G Skip connections for regression

A design choice that improved convergence time, and

improved performance for the CNN, is including “skip con-

nections” for the total ECAL and HCAL energies in the net-

work. In addition to the individual cell energy values, the

total ECAL and HCAL energy values are given as inputs to

both the first dense layer and to the last output layer. The

weights for these energy values are initialized to 1, as linear

regression with coefficients near 1 is observed to reasonably

reproduce the true energy values. The impact of adding skip

connections on performance using a CNN architecture for a

fixed number of 5 training epochs is shown in Fig. 32.
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Fig. 32 Bias (top) and resolution (bottom) as a function of true energy

for CNN energy predictions for electrons, with or without skip connec-

tions in the architecture

H Training for regression using energy summed in z

For regression, we tried using only the energy summed in lay-

ers in the z direction, instead of the full array of cell energies,

as the mean z coordinate was seen to be the most important

additional feature in the XGBoost baseline. The performance

is better than the XGBoost baseline at high energies but worse

than using the full cell-level information, as shown in Fig. 33.

Fig. 33 Bias (top) and resolution (bottom) as a function of true energy

for DNN energy predictions for electrons, using as input either the

energy summed in layers of z, or the full cell information

I Energy regression at fixed angles

In Fig. 34 we show energy regression results when particles

impact the calorimeter inner surface at a fixed angle of 90◦.

All neural architectures and baseline algorithms are able to

perform with great accuracy in this regime.

Furthermore, in Fig. 35 we summarize performance

results on fixed-angle samples for all particle types with the

XGBoost baseline and the CNN model.
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Fig. 34 Regression bias (top) and resolution (bottom) as a function of true energy for energy predictions on the REC dataset with fixed incident

angle (90◦). From top to bottom: electrons, charged pions, photons, and neutral pions
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Fig. 35 Regression bias (top) and resolution (bottom) as a function of

true energy for all particles, comparing the XGBoost baseline with the

best CNN model on fixed-angle samples

J Regression performance training on a different

particle type

All the tests so far have assumed that we know exactly what

type of particle led to the reconstructed energy deposits. In a

real world situation, the particle identities are not known with

complete confidence. To see how the algorithms above would

cope with that situation, we tried training each algorithm on

an input sample of electron events, and then we used the

trained algorithm to predict the energies for other particle

types.

The results are shown in Fig. 36 for predicting photon

energies and Fig. 37 for predicting π0 energies, and are

Fig. 36 Bias (top) and resolution (bottom) as a function of true energy,

for electrons and photons. The particles used to train and test each

algorithm are given in the legend

compared to algorithms that are both trained and tested on

the same particle type. In each case, a DNN or CNN trained

on electrons is able to achieve the same resolution as a CNN

trained on photons or π0. The bias is slightly larger in some

cases.

Models trained on electrons, photons, or π0 were found

to not describe π± well at all. This is not surprising given

that π± have a hadronic shower, with a large fraction of

energy deposited in the HCAL, compared to the other parti-

cles depositing almost all of their energy in the ECAL.

We also checked whether the energy regression was differ-

ent for photons that have converted into an e+e− pair through

interaction with the detector material. These conversion pho-
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Fig. 37 Bias (top) and resolution (bottom) as a function of true energy,

for electrons and π0. The particles used to train and test each algorithm

are given in the legend

tons comprise about 9% of the photon sample. We tried

training and/or evaluating regression models separately on

converted photons compared to all photons (which are domi-

nated by unconverted). The results are shown for XGBoost in

Fig. 38 and for CNN/DNN models in Fig. 39. Worse resolu-

tion is seen in each case for converted photons below around

100 GeV, which can be attributed to the subsequent elec-

Fig. 38 Bias (top) and resolution (bottom) as a function of true energy,

for photons using XGBoost regression. We look at the photon sample

when split up by conversions

trons forming two showers instead of one in the calorimeter.

With XGBoost, the resolution remains the same for converted

photons when training on the full sample, while for CNN or

DNN, the resolution is worse below around 100 GeV. The

bias is also worse for converted photons at lower energy when

training on all photons.
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Fig. 39 Bias (top) and resolution (bottom) as a function of true energy,

for photons using CNN or DNN regression. We look at the photon

sample when split up by conversions

K Regression studies with large sample windows

The studies in this section were performed using the full

large window samples, of size 51 × 51 × 25 in ECAL and

11×11×60 in HCAL. The samples consist of approximately

800,000 events for each particle type. 2/3 of the events were

used for training and 1/3 of the events were used for testing.

The most important design choice found for the DNN/CNN

networks is the size of the window used as input. For both

DNN and CNN, to achieve the best performance for energies

above 150 GeV, a minimum (x, y) size of 25 × 25 in the

ECAL and 5 × 5 in the HCAL is needed. For energies below

150 GeV, the optimal performance is observed for a window

size of 51 × 51 in the ECAL and 11 × 11 in the HCAL.

Fig. 40 Bias (top) and resolution (bottom) as a function of true energy

for DNN energy predictions for electrons, with varying input window

sizes

This is presumably due to wider showers at low energy. The

impact of the choice of window size is shown for DNN in

Fig. 40, with the results for CNN being similar. Drawbacks

to the larger window size, however, include larger files, more

memory usage, and that training takes about 5 times longer

per epoch.

Showers for π± were observed to be wider than the other

particle types, especially at low energies, and so we compare

the effect of the calorimeter window size choice for π± in

Fig. 41. The wider window of 51 × 51 in (x, y) in the ECAL

and 11×11 in the HCAL gives better performance, especially

at the lowest energies where the resolution is improved by

a factor of about 2 over the smaller window size (25 × 25

ECAL, 5 × 5 HCAL).
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Fig. 41 Bias (top) and resolution (bottom) as a function of true energy

for energy predictions for π±, comparing calorimeter window sizes for

the CNN and DNN models
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