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CaloriNet: From silhouettes to calorie

estimation in private environments

BMVC 2018 Submission # 383

Abstract

We propose a novel deep fusion architecture, CaloriNet, for the online estimation of

energy expenditure for free living monitoring in private environments, where RGB data is

discarded and replaced by silhouettes. Our fused convolutional neural network architec-

ture is trainable end-to-end, to estimate calorie expenditure, using temporal foreground

silhouettes alongside accelerometer data. The network is trained and cross-validated on

a publicly available dataset, SPHERE_RGBD + Inertial_calorie. Results show state-

of-the-art minimum error on the estimation of energy expenditure (calories per minute),

outperforming alternative, standard and single-modal techniques.

1 Introduction

Physical activity has been linked to general health [22] and has shown positive psycholog-

ical benefits [9] in clinical tests. Further, sedentary behaviour has consequences that may

impose many health risks, for example on musculoskeletal health. This is especially impor-

tant for older adults, for whom physical activity can counteract the detrimental effect on the

cardiovascular system and skeletal muscles associated with age [13]. Monitoring the extent

of physical activity via energy expenditure (EE) is therefore of valuable importance and dif-

ferent approaches have been proposed in the literature, from the use of questionnaires [14],

to metabolic lookup tables (METs) [1], to peak oxygen uptake estimations [5].

With the development of novel technologies, Internet of Things (IoT) is playing an im-

portant role in monitoring well being and health [28]. Accelerometers1 have often been

adopted for the estimation of EE [38], although video monitoring systems have recently

showed superior performances [32], especially when combined with inertial based measure-

ments [34]. However, recent works, such as from Birchley et al. [7], Ziefle et al. [40] and

Jancke et al. [19] have highlighted the important aspect of privacy concern in medical tech-

nologies for smart homes, showing a critical view of such systems from participants. Patients

often fear misuse of their video recordings, data leakage or loss due to technical issues. These

concerns have been addressed in the work from Hall et al. [17] by replacing the RGB video

stream with bounding boxes, skeletons and silhouettes, which not only assess the privacy

issue, but also allow to scale the amount of data recorded to a size which is more suitable for

an IoT platform.

In this paper, we present a fused convolutional architecture, named CaloriNet, for the

online estimation of EE in private environments, where RGB images are discarded after the

generation of silhouettes. Our method uses a data-fusion approach by extracting features

c© 2018. The copyright of this document resides with its authors.

It may be distributed unchanged freely in print or electronic forms.
1The terms accelerometers, inertial and wearable sensors are used indiscriminately throughout this paper.
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from image silhouettes and accelerometer data using a convolutional neural net (CNN), and

combining them using fully connected layers to estimate the calorie expenditure. Our ap-

proach is based on the evaluation of buffers of data collected over a variable interval of

time, allowing an online estimation of calories, rendering the method suitable for energy

expenditure monitoring applications. The method was trained and cross-validated on a pub-

licly available dataset [32]. Our results are compared against the latest and most accurate

accelerometer EE techniques and more traditional METs lookup tables, obtaining state-of-

the-art results.

To stress the importance of our data-fusion approach, we also study the contribution of

each modality when used exclusively, by assessing the sub-architectures or branches of our

CaloriNet. We name these branches SiluCalNet and AccuCalNet, respectively for the video

and the accelerometer modalities alone. While the fusion approach allows a reduction of

the overall error from the previous state-of-the-art of 1.21 to 0.88 calories/min, these two

modalities are independently able to achieve comparable performances with overall error

of 0.98 for AccuCalNet and 0.95 for SiluCalNet. These sub-architectures are available as

standalone alternatives to the fusion approach, making our framework suitable for a vision

only or wearable only solution.

2 Background and Related Works

The estimation of EE is a very complex problem, as it is not only related to the physical

movement of the subject, but also their metabolism, level of fitness, physiology and environ-

mental conditions, e.g. temperature, humidity and barometric pressure [12]. Considerable

effort has been invested in the past for characterizing EE using different types of data, includ-

ing biometric data (i.e. heart rate monitoring), accelerometers, shoe sensors and cameras. In

spite of this variability, EE is strongly correlated with the type of activity which is performed.

In 1993, the Compendium of Physical Activities [1] presented a table with different physi-

cal activities connected to EE, described as the ratio of working to resting metabolic rates,

i.e. METs. These data include detailed description of activities with their corresponding EE

values. While METs tables allow a very quick estimation of EE, the approach is based on

averages and is only reliable in a statistical sense. Precise measurements of EE are very in-

dividual dependent, as different subjects perform activities in distinctive ways and therefore

consume a different amount of energy.

To allow an individual-dependent measurement, the work from Ceesay et al. [11] pro-

posed a heart rate monitoring method that models their EE. A large body of research has

focussed instead on the application of accelerometer data to estimate EE. Some works, such

as [2] and [3], make use of activity-dependent models to predict the EE of patients based on

the knowledge of the activity they are performing. For a complete review of accelerometer

based EE estimation, the reader is referred to Altini et al. [4], which investigates the method-

ologies, sensor numbers and locations to obtain the best EE model. Their work concludes

that one single accelerometer close to the subject’s centre of mass, combined with an activity-

specific estimation model allows for the most accurate and unobtrusive accelerometer-based

EE estimation.

One of the most important steps in the use of accelerometer data is the selection of the

features. The accelerometer signals are split into contiguous windows, for which a number

of frequency and time domain statistics are evaluated, including average, standard deviation,

max/min and correlation coefficients, among others [15]. The selection of such hand-crafted
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features allows the application of standard machine learning algorithms like artificial neural

networks [30], random forests [15] and other regression models [26] - with performances

strongly dependent on those selected features. Zhu et al. [39] proposed the application of

CNNs where the raw accelerometer signal was directly fed into a CNN which automatically

learned the features that then allowed a multilayer perceptron to produce EE estimates with

errors up to 35% lower than methods previous to it. For this reason, Zhu et al. [39]’s method

was selected as the baseline for comparison with our results.

Computer vision has also been deployed to improve digital health monitoring systems.

For example, [20] and [24] attempted to estimate the calories in food by taking single images

or short videos of them, although they needed to interact with the user to allow continuous

monitoring. Closer to the topic of this paper, Tao et al. [34] proposed a vision-based sys-

tem which estimated calorie expenditure using features extracted from RGB-D image data

of humans in action. They showed that RGB-D data can be successfully adopted to estimate

EE instead of accelerometers. This work was later extended by replacing their hand-crafted

features with CNN-generated features [36], showing an overall reduction of the error. How-

ever, as already addressed earlier, it may be critical for healthcare and ambient assisted living

(AAL) systems to respect privacy conditions and only provide video sequences in the form

of silhouettes [37]. Under such conditions, methods such as [34] are not suitable as they

require full RGB-D data to estimate EE.

CNN regression has been successfully applied in computer vision, for example for 3D

pose [21], age estimation [25] and viewpoint evaluation [23]. For medical data, CNNs were

applied for the segmentation of the cardiac left ventricle, parametrised in terms of location

and radius [31]. More recently, a general framework for the analysis of medical images was

proposed by Gibson et al. [16], to provide a pipeline that allows segmentation, regression (i.e.

prediction of attenuation maps in brain scans) and image generation using deep learning.

In this paper, we propose a fused deep architecture which enables the online estimation

of EE in privacy-sensitive settings. The method is described in Section 3, including the

estimation of temporal silhouettes, the network architecture, and the data augmentation. The

dataset, our implementation, and our results are presented in Section 4.

3 Proposed method

We propose CaloriNet for online EE estimation, based on the fusion of image silhouettes

and accelerometers. The proposal builds on the strengths of two modalities for calorie esti-

mation; (1) visual input that can better recognise the action undertaken [33], yet is at times

occluded and associated with privacy concerns, and (2) wearable accelerometers that are

light to carry and increasingly popular for healthcare monitoring, but require subject cooper-

ation in wearing and charging the sensors. Thus, we propose an architecture that fuses both

modalities, and importantly only uses the silhouette (i.e. foreground segmentation) from the

visual input, as this provides improved privacy for monitoring in private environments [17].

3.1 Temporal Silhouettes for Calorie Estimation

To support private environments, we propose to limit the visual input to foreground silhou-

ettes. The method we propose here could use silhouettes extracted from RGB foreground

segmentation, or depth-based segmentation as used in our experiments. We process the

RGB images using OpenPose [10] to detect people and extract the skeletons of the subjects



138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

4 AUTHOR(S): BMVC AUTHOR GUIDELINES

Figure 1: Examples of silhouettes - Colour and depth images were only used to generate

silhouettes and discarded after the process.

and then perform clustering on the RGB-D values within each detected bounding box. Some

generated silhouettes can be found in Figure 1. The reader is reminded that RGB-D values

are only used to generate the silhouettes and are discarded after this process.

The estimation of EE has a strong dependency on monitoring duration, and in particular

on the past activities performed. In order to take this into account, temporal modelling

and dependency must be included in the network architecture. A typical approach for this

problem is to feed a large buffer of images into the network as input, but this would demand a

large amount of memory. Since the silhouettes only contain binary information, we decided

to pursue a different approach and built an average silhouette using a variable number of

images. The idea of transforming a video sequence into a compact representation (to aid our

analysis with CNNs) is not new, and previous examples of similar propositions can be found

in works such as [8] and [6].

As calorie estimation can be better predicted at various temporal scales, we propose to

use a multi-scale temporal template for N time intervals ∆tN of decreasing length, so that:

∆t1 > ∆t2 > ... > ∆tN . (1)

For each ∆tk, the silhouettes in the interval [t −∆tk, t] were selected and averaged:

S̄k =
1

∆tk

t

∑
i=t−∆tk

S (i) . (2)

This process produces N multi-scale temporal silhouettes S̄k (one for each ∆t), which were

then stacked in a 3D tensor S∗, where the 3rd dimension is the stacked multi-scale temporal

silhouette:

S∗t ≡
{

S̄1, S̄2, ..., S̄N

}

. (3)

S∗t is then used for the estimation of the calories at time t. This operation allows us to reduce

any dependency of the network on the choice of the ∆t, facilitating the learning process to

pick the correct channels for the best EE estimation for the various daily actions.
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Figure 2: CaloriNet - our architecture combines silhouette data (upper branch, SiluCalNet)

and accelerometer data (lower branch, AccuCalNet) to produce calorie estimation.

3.2 Network architecture

The CaloriNet architecture is composed of two branches, one for the silhouette data and one

for the accelerometer data, as depicted in Figure 2. The network uses two distinct inputs

at time t to produce the calorie estimation Ct : the multi-channel average silhouette S∗t from

Eq. (3) and a buffer of accelerometer data in the same time interval [t −maxk(∆tk), t].
A shallow architecture composed of two stacks of layers was adopted. The features ex-

tracted from the silhouettes and acceleration were concatenated and fed into one fully con-

nected layer that performs a regression over the calories output. The accelerometer branch

was inspired by the work from Zhu et al. [39], although several modifications were per-

formed to achieve better performances (see Section 4 for the implementation details). The

silhouettes branch also uses two stacks of layers only. In fact, due to the simplistic nature of

the data, being originated from binary foreground images and 6-dimensional accelerometer

data, any deeper architecture is likely to overfit the input. We empirically found this depth to

suffice for the task of the EE estimation.

The network is trained end-to-end using the squared error loss function between the

estimated calories Cp and the ground truth CGT over all times t:

Loss = ∑
t

(

Ct
p −Ct

GT

)2
(4)

3.3 Data augmentation

Due to the limited training data, as well as to remove any bias in the recording location, we

applied the following data augmentation techniques.

Silhouettes: The typical approach for dealing with subjects moving in a frame is to crop

the active area and resize it to a fixed size to use as input for the network [18]. However,

this is not suitable for temporal silhouettes as the size of the averaged image depends on the
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Figure 3: Sample frames from different subjects and for various activities in the dataset.

motion of the person during the buffered time. To avoid learning specific positions where

actions were performed, data augmentation was implemented. During training, images were

randomly flipped (horizontally), tilted, and translated (horizontally/vertically).

The data augmentation parameters adopted were determined empirically (see next sec-

tion). Although the augmented data sometimes resulted in subjects being cropped, this

matched situations when subjects were only partially in view of the camera.

Accelerometers: For the accelerometer sensors, inspired by the work from Um et al. [35],

we randomly changed the magnitude of the sensors by multiplying it with a scalar drawn

from a Gaussian distribution with mean 1 and standard deviation 0.1. In addition, the x-y-z

channels of each accelerometer were swapped with random permutations.

4 Experiment Details

Dataset — We evaluate our method on the publicly available dataset from [32], namely

SPHERE_RGBD + Inertial_calorie. This is the only dataset to include RGB-D and ac-

celerometer input with ground truth calorie measurements obtained from a clinical Calorime-

ter for daily activities. The dataset includes 10 participants, 7 males and 3 females aged

between 27.2 ± 3.8 years, with average weight of 72.3 ± 15.0 kg and average height of

173.6±9.8 cm, resulting in average BMI of 23.7±2.8. Each participant was recorded with

an RGB-D sensor, two accelerometers (mounted on the waist and the arm) and a COSMED

K4b2 portable metabolic measurement system (i.e. a Calorimeter). Eleven activities, as

shown in Figure 3, were performed in a predefined sequence: stand still, sit still, walking,

wiping the table, vacuuming, sweeping floor, lying down, exercising, upper body stretching,

cleaning stain, reading. The dataset presents gaps for some recorded sequences for which we

could not generate any silhouettes. Missing data in the training set was therefore replaced by

randomly sampling input with the same label from the sequences of the same individual.

Figure 4 presents a visual depiction of the calories recorded in the dataset. Each hori-

zontal bar corresponds to one subject performing the same set of activities. Note that while

the calorie measurements present a certain degree of correlation with the activity performed,

each subject has a different response in terms of EE when performing the same activity. This

difference shows the complexity of the EE problem and highlights the strong limitations of

lookup tables when attempting the predict EE for a specific individual.

Implementation details — The network was implemented and trained in Keras using Ten-
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Figure 4: Our visual depiction of the SPHERE_RGBD + Inertial_calorie dataset. The colour

represents the amount of calories/minute, with black areas indicating missing data.

sorflow as backend2.

Silhouettes: The input to the silhouette branch of the network is a 240× 320× 5 tensor,

computed over 5 time intervals ∆t, defined by,

∆tk =
T

3k
, with k = [0, ..., N] , (5)

where N = 4, and T is the maximum buffer size in the multi-scale silhouette image, set to

1000 frames. This choice of value for T is explored in Section 5. Data augmentation was

performed using a rotation range of θ = ±5◦ and a random shift of tx = ty = ±20% range.

The silhouettes branch of the network architecture, depicted in Figure 2, is formed by two

stacks of sequential convolution-activation-pooling layers, followed by a fully connected

layer producing the EE. The activation function adopted was a rectified linear unit (ReLu),

the pooling size was 2 and the stride length for each layer was also 2. Optimal parameters

were found by training each network for 1000 epochs and selecting the model with the

minimum validation loss after at least 30 epochs of training.

Accelerometers: Using the network proposed by Zhu et al. [39] as a baseline for the ac-

celerometer branch of CaloriNet, we adopted their architecture of a multi-channel CNN that

processes each component of the accelerometer independently, with two stacks of convolution-

activation-pooling, using respectively 8 and 4 filters, with a kernel size of 5 and a stride

length of 2. We replaced the tanh activation function with a ReLu, increased the input vector

from 256 to 1000 elements and used both the wrist and waist mounted accelerometers as

input, combining them into a single 6-channel input. This produced a tensor input of size

1000×6, which was fed into the accelerometer branch of the network. In addition to that, we

also estimated the gravity vector using a Wiener filter [29] with a window size of 1 second,

and subtracted its direction from the accelerometer data. The baseline model Zhu et al. [39]

was implemented without the anthropometric feature vector (as we have no heart rate data

available), and using both accelerometers as per AccuCalNet. We show that each of these

modifications allowed a better estimation of the EE in our tests. Our implementation of Zhu

et al. [39] has higher root mean square error (RMSE) than our proposed modified version in

AccuCalNet for 10 out of the 11 actions (excluding Wipe), as well as the overall error.

2Link to code will be available with the publication.
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5 Results

The proposed network CaloriNet was tested using leave-one-subject-out cross-validation.

As baselines, we also show the results obtained from (a) METs lookup tables [1], (b) previ-

ous state-of-the-art on the same dataset from Tao et al. [34] which combined hand-crafted

visual (full RGB-D images) and accelerometer features with an SVM classifier, and (c) the

accelerometer network proposed by Zhu et al. [39]. We also report results on single modal-

ities: AccuCalNet and SiluCalNet. Comparative results are presented in Figure 5, showing

the per-activity RMSE between the calories estimated (per minute) and the ground truth,

obtained by averaging the errors for each activity class first, and then considering the mean

across the subjects. The overall error was instead evaluated by averaging all the RMSEs

regardless of the activity performed, by considering the mean across all the subjects.

The figure shows that the EE estimation of the lookup table (METs) produces the high-

est error, with an overall RMSE of 1.50 cal/min when compared to the Calorimeter device.

As already stated, METs tables are based on statistical measurements and are not suitable

for subject-specific estimations. Tao et al. [34]’s method improves over the the METs ta-

ble, providing an overall average error of 1.30 cal/min. Zhu et al. [39], allows an overall

improvement of the error for most of the classes, using accelerometer data only. When

compared with the rest of the methods, our proposed CaloriNet achieves the best results,

producing an error which is almost 30% lower than the result from Zhu et al. [39], with a

reduction of the RMSE from 1.21 to 0.88 cal/min.

It order to stress the importance of our results, we also provide a comparison of our

proposed method when accelerometers (AccuCalNet) or silhouettes (SiluCalNet) are used

independently. Results for AccuCalNet already show an overall reduction of the error from

1.21 to 0.98 cal/min showing the advantage of our proposed modifications. The error reduc-

tion is particularly pronounced for low-activity classes like Stand and Sit, which we believe

to be due to the high pass gravity filter that we apply to the raw accelerometer signals. A

further reduction of the error is achieved by SiluCalNet, when silhouettes only are used for

the EE, with an overall error of 0.95 cal/min. The RMSE of SiluCalNet is particularly im-

proved compared to AccuCalNet especially for the Exercise and Stretch activity classes, as

these activities are better characterized by the video sensor.

During our experiments, we noticed that all the methodologies tested struggled to esti-

mate the calorie expenditure during the activities Exercise and Stretch. We believe this in-

creased error is due to the high inter- and intra-class variance of these activities, estimated to

be respectively 7.3 and 2.3 calories/min for the Exercise class, and 4.0 and 1.0 calories/min

for Stretch. These values appear to be between 20 and 60 times higher than the variance

shown by other classes like Sitting or Walking, as a consequence of the rather small training

dataset available. A richer dataset including subjects with more different metabolisms and

performing a wider range of activities would benefit the reduction of this error.

Sample qualitative results are presented in Figure 6, which shows the continuous calorie

prediction for a single individual, evaluated with different algorithms and compared with

the ground truth. We observe very good agreement for CaloriNet and SiluCalNet with the

ground truth, while Zhu et al. [39]’s method shows quite erratic behaviour, missing the peak

measurement of calories during the Exercise activity (the red interval in the ground truth).

The METs table only provides a step-wise prediction, as it only takes into account the labels

of the activities performed, with data missing in those segments where no label was available.

We evaluated the sensitivity of CaloriNet when the buffer size parameter T is varied. For

this test, we adjusted T to 250, 500, 1000 and 2000 frames, and evaluated the overall error
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Figure 5: Results in terms of average per-activity RMSE for the calorie estimation.

Figure 6: Comparison of the calories measured for a single subject (Subject 2, Session 2)

and the prediction obtained with different methods. Black lines depict missing data.

for each buffer size. Results are presented in Figure 7, showing that lower T values produce

inferior results while the method is performing consistently for 1000 ≤ T ≤ 2000 frames.

6 Conclusions

The increasing adoption of healthcare monitoring devices in AAL environments demands

the necessity of privacy-aware video systems. Here, we presented a novel, fused deep archi-

tecture for online estimation of energy expenditure using a combination of image silhouettes

and accelerometer data. Systems recording such data are, for example, currently being de-

ployed in one hundred homes [27]. Silhouettes were first combined into a multi-channel

average image, which provides temporal information for different time lengths. We then fed

average silhouettes with accelerometer data in a CNN, that extracted features which were

in turn fed into a fully connected layer that estimated the calories expended. We obtained

state-of-the-art results in comparison to other existing approaches while protecting privacy.

Figure 7: Overall error of CaloriNet for different buffer sizes.
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