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ABSTRACT Microbiome analyses can be challenging because microbial strains are

numerous, and often, confounding factors in the data set are also numerous. Many

tools reduce, summarize, and visualize these high-dimensional data to provide in-

sight at the community level. However, they lose the detailed information about

each taxon and can be misleading (for example, the well-known horseshoe effect in

ordination plots). Thus, multiple methods at different levels of resolution are re-

quired to capture the full range of microbial patterns. Here we present Calour, a

user-friendly data exploration tool for microbiome analyses. Calour provides a study-

centric data model to store and manipulate sample-by-feature tables (with features

typically being operational taxonomic units) and their associated metadata. It gener-

ates an interactive heatmap, allowing visualization of microbial patterns and explora-

tion using microbial knowledge databases. We demonstrate the use of Calour by

exploring publicly available data sets, including the gut and skin microbiota of habitat-

switched fire salamander larvae, gut microbiota of Trichuris muris-infected mice, skin

microbiota of different human body sites, gut microbiota of various ant species, and

a metabolome study of mice exposed to intermittent hypoxia and hypercapnia. In

these cases, Calour reveals novel patterns and potential contaminants of subgroups

of microbes that are otherwise hard to find. Calour is open source under the Berke-

ley Software Distribution (BSD) license and available from https://github.com/biocore/

calour.

IMPORTANCE Calour allows us to identify interesting microbial patterns and gener-

ate novel biological hypotheses by interactively inspecting microbiome studies and

incorporating annotation databases and convenient statistical tools. Calour can be

used as a first-step tool for microbiome data exploration.

KEYWORDS analysis, contamination, heatmap, microbiome, visualization

Recent advances in next-generation sequencing technology have allowed us to

study microbial communities without cultivating individual microbes. There has

been growing interest in microbiome research due to the fact that microorganisms are

ubiquitous and fundamental players in both environmental and human health. Thus, it

is important to profile microbial communities taxonomically and functionally in order

to understand where they are and what they are doing.

Amplicon sequencing of marker genes, such as 16S rRNA, 18S rRNA, and ITS (internal

transcribed spacer), has been successfully applied to identify the taxa present in

microbial communities. Traditionally, amplicon sequences are clustered into opera-

tional taxonomic units (OTUs) at a given sequence identity level. This overcomes
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sequencing errors, but the ability to distinguish closely related taxa is lost. Recently,

methods have been developed to infer the true amplicon sequences (also known as

sub-OTU or sOTU) and their abundances at single-nucleotide resolution (1–3). Thus,

each taxon can be represented by a unique amplicon sequence on defined genomic

regions (such as the V4 region of 16S rRNA genes), making them directly comparable

across studies. In fact, several databases have been developed (spongeEMP [4] and

IJSEM phenotypic database [5]) or are now under development (dbBact [http://dbbact

.org/main] and redbiom [https://github.com/biocore/redbiom]) to annotate amplicon

sequences, enabling accumulation of information from multiple experiments about the

bacterial sequences. Such annotations may include, for example, whether it is a known

contaminant, what samples have been seen to contain it, or what interesting biological

conclusions are associated with it. Combining information from these databases into

the analysis of a given experiment can enhance the biological interpretation of the

results.

In microbiome studies, a two-dimensional sample-by-feature table is typically gen-

erated, where features are often OTUs or sOTUs. Each value in the table is the relative

abundance of a feature for a given sample. There are usually hundreds or thousands of

samples and features in the table. The large number of samples and high dimension-

ality of the data make it difficult to interpret without proper statistical and visualization

tools. Multiple “summary methods” have been developed to summarize the data (alpha

diversity, beta diversity, principal-coordinate analysis [PCoA], etc.). While these methods

are useful for identifying the characteristics of a microbial community as a whole, the

information about each individual taxon is often lost, and interesting behaviors of some

microbial subgroups can be masked. Moreover, these methods can give rise to mis-

leading results in certain cases. For example, the distances between microbial samples

can plateau along a gradient of environmental variables and cause horseshoe effects on

an ordination plot, leading to confusion in data interpretation (6, 7). As a complemen-

tary analysis approach, looking at each taxon individually may facilitate teasing apart

the key players driving interesting community dynamics. However, it is challenging to

observe or visualize large sample-by-feature tables. Doing so naively often obscures

important patterns in the data. Careful data manipulation and convenient data explo-

ration procedures are needed to reveal the dynamic patterns of each microorganism

within a community.

There are existing tools for analyzing and visualizing an entire microbiome data set.

For example, Calypso is a web application allowing nonexpert users to explore and

compare taxonomic profiles from 16S or shotgun data (8). MEGAN provides a rich set

of taxonomic and functional analyses with a graphical user interface (9). STAMP, with

a focus on statistical hypothesis tests, also offers a graphical interface for users to study

taxonomic and functional profiles (10). Nevertheless, no existing tool was able to meet

our workflows’ particular needs for interactively examining specific features, including

rapid filtering and sorting of both taxa and samples by multiple criteria (see Table S1

in the supplemental material). Here we introduce Calour, an interactive data explora-

tion method based on heatmaps, to represent a microbiome data set without data

reduction. This representation provides a first-hand understanding of the microbial

trends in the study. Calour also provides a suite of data manipulation (filtering, sorting,

clustering, and transforming) and statistical (discrete false-discovery rate [FDR] [11],

correlation, and differential abundance) tools to facilitate fast data exploration and to

identify subgroups of interesting microbes. Additionally, Calour can incorporate results

from other statistical methods of choice through the utilization of feature metadata—

which is critical given the rapid development of new differential abundance and

correlation metrics. Visual inspection of the data can reveal interesting behaviors of

microbes in an unsupervised fashion, because human eyes are very sensitive at pattern

recognition. Those observations can lead to hypotheses that can then be rigorously

tested using statistical methods or further experiments. Calour also enables automatic

queries against knowledge databases of amplicon sequences. This feature empowers

users to associate their study within a larger context and build upon what is already
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known about a particular taxon of interest. In this paper, we demonstrate how Calour

can be used in five published data sets to identify microbial and metabolite patterns

and develop novel biological hypotheses: the effect of habitat switching on the skin

and gut microbiome of salamander larvae (12), the gut microbiome in Trichuris muris-

infected mice (13), a cross-sectional study of skin microbiome (14), a low-biomass ant

gut microbiome study (15), and a longitudinal metabolome study on the effects of

intermittent hypoxia and hypercapnia and diet on fecal metabolites in mice (19).

RESULTS AND DISCUSSION

Case study 1: habitat switching in amphibian larvae. In this study (12), fire

salamander larvae originating from ponds (P) or streams (S) were either kept in the

same environment (P¡P, S¡S) or transferred to the other environment (P¡S, S¡P) for

2 weeks, after which the skin and gut microbiome of the larvae was sampled and

sequenced. Additional individuals naturally residing in the ponds (P) and streams (S) at

the end of the 2-week experiment were also sampled and sequenced as controls. The

data set was downloaded from SRA (accession no. PRJNA320968) and processed into an

sOTU table with Deblur (see Materials and Methods for details). This biom table and the

corresponding metadata file were imported into Calour, and all downstream processing

was performed using Calour functions. Data were first normalized to 10,000 reads/

sample using total sum scaling, and the low-abundance sOTU (total normalized reads

over all samples � 10) were filtered away, resulting in skin and gut biom tables

containing 1,650 and 975 sOTUs, respectively. To obtain an overview of the trends in

the data set, we first sorted the samples by their origin and destination environments

and clustered sOTUs based on their abundances across samples. The resulting heat-

maps for gut and skin samples are shown in Fig. 1A and D, respectively. In Fig. 1A, we

see a group of sOTUs enriched in samples that were in contact with the pond at any

time point (P, P¡P, P¡S, S¡P). This becomes more obvious when we interactively

zoom in on the heatmap in Calour (Fig. 1B). This indicates that these pond-specific

microbes are strong colonizers of the larvae’s gut and resistant to environmental

change. In order to rigorously elucidate this pattern, we used a permutation-based

nonparametric differential abundance rank mean test with a discrete false-discovery

rate (dsFDR) (11) multiple-hypothesis correction implemented in Calour and applied

this analysis between pond-only groups (P, P¡P) and stream-only groups (S, S¡S) on

gut samples (Fig. 1C) and skin samples (see Fig. S1A in the supplemental material),

respectively, to identify environment-specific sOTUs. This identified 267 and 113 sOTUs

that have significant differences between pond-only and stream-only samples in gut

and skin samples, respectively. Concurring with the visual inspection in Fig. 1B, 75 out

of the 76 sOTUs present in the pond visual cluster are also among the 267 sOTUs

detected by the differential abundance test. In summary, we can make the following

observations. (i) There are more pond-specific sOTUs than stream-specific sOTUs in

both the gut and skin. (ii) Pond-specific sOTUs have dominating colonization effects in

the gut, as the P¡S gut samples still had abundant pond sOTUs after 2 weeks in stream

habitats (Fig. 1B and C). (iii) The skin microbiome does not have this dominating

colonization property; instead, it reflects the current environment, as P¡S skin samples

are more similar to S and S¡S groups, and S¡P samples are more similar to P and P¡P

samples (Fig. S1A). We note that these findings are complementary to PCoA analyses.

For example, both the weighted UniFrac PCoA (Fig. S1B) and the unweighted UniFrac

(Fig. 4C in reference 12) show P¡S samples lie in the middle between the P¡P and

S¡S samples and lean toward P¡P samples. Exploration with Calour provides direct

visualization of how this pattern occurs and what specific groups of sOTUs are respon-

sible for it.

When interactively exploring the Calour heatmap, we observed a cluster of sOTUs

in the skin samples whose abundances cannot be explained by the sample time

point, origin or destination environment, or other provided sample metadata

(Fig. 1E). After investigating additional sample processing information, we found

that the pattern of this set of sOTUs can be explained very well by extraction plate,
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which becomes obvious after the samples in each group are sorted by extraction

plate (Fig. 1F). These samples were processed in two different DNA extraction plates

by two different individuals. One possible explanation is that these bacteria are

extraction plate-dependent contaminants. Alternatively, since some of these bacteria

are present in both plates but at different frequencies, these microbes could be more

sensitive to the DNA extraction protocol used in the study and their abundance

differences may result from different extraction efficiencies when plates were handled

by two different individuals.

Case study 2: chronic Trichuris muris infection in mice. This study examined the

effect of chronic infection with the helminth parasite Trichuris muris on the murine cecal

microbiome (13). Mice were divided into two groups: one group was infected with

Trichuris muris eggs at day 0, whereas the second group served as controls. At several

time points, fecal samples were collected from each group, and the V4 region of the 16S

rRNA gene was sequenced. The data were downloaded from NCBI SRA (accession no.

PRJEB6560) and analyzed by Deblur to compute the sOTU table. The data were

imported into Calour with sOTUs reordered by clustering (in rows) and samples sorted

by time point and treatment (in columns). The Calour heatmap overview reveals that

differences between infected and uninfected groups occurred mostly at days 27 and 35

postinfection (Fig. S2A), which was also observed in the original paper (13) and in the

weighted UniFrac PCoA plot (Fig. S2B).

FIG 1 Exploration of gut and skin microbiome of the habitat switching experiment with Calour. Larvae originating from a pond (P) or stream (S) were

transferred to a different environment or to the same environment (pond to stream [P�S], pond to pond [P�P], stream to pond [S�P], stream to stream [S�S]).

Gut samples (A to C) and skin samples (D to F) were used. (A) An overview of all gut sOTUs with samples in columns and sOTUs in rows clustered by the similarity

of their abundance profiles. The top color bars indicate the origin environments and the destination environments for each sample, including “Pond,” “Stream,”

and “Ctrl” (control [for individuals staying in the origin environment without transferring]). This is similar for the following figure panels. The color scale is shown

as a percentage. (B) A zoomed-in view of a group of gut sOTUs enriched in samples that were exposed to pond water at any time point (P, P�P, P�S, S�P).

(C) Gut sOTUs significantly different in abundance between stream-only (S, S�S) and pond-only (P, P�P) groups and using permutation-based dsFDR. Note

that the sOTU profiles of the P�S and S�P samples are similar to those of the P�P samples, confirming what we see in panel B. (D) An overview of all skin

sOTUs. (E) A zoomed-in view of a correlated group of skin sOTUs from panel D. Their abundance pattern across samples is not explained by origin or destination

environments. (F) After samples are sorted according to extraction plate, we see that the patterns can be explained by the extraction plate, with these sOTUs

more abundant in plate pa than in plate pb.
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We then did a differential abundance test to filter the sOTUs that differ between

control and infected mice at days 27 and 35. As shown in Fig. 2A, there are a large

number of sOTUs that are not detected at day 35, whereas a smaller number of sOTUs

increase in relative abundance. When we click on a row (i.e., an sOTU) in the heatmap,

the annotations associated with this particular sOTU (as in Fig. 2B) from various

microbial databases will pop up. For this analysis, we focus on dbBact database

annotations, which contain manually curated observations about sOTUs (such as

different abundances in sick versus healthy people in a given study). In order to

generate a hypothesis for this change, we used Calour enrichment analysis to find

biological terms from the dbBact database that are enriched in the group of decreasing

bacteria compared to the other increasing group (see Materials and Methods for

details). Since databases such as dbBact are incomplete (i.e., do not contain all the

known information about each bacterium) and may contain studies of varying quality,

we use Calour to compare two groups of bacteria from the same experiment (i.e.,

decreasing versus increasing), obtaining a list of statistically significant enriched terms

in either of the groups. The top terms associated with the bacteria that decreased in the

infected group include “c57bl/6,” “LOWER IN colotis,” and “rat” (blue bars, Fig. 2C),

whereas the ones associated with increasing bacteria include “skin,” “high fat diet,”

“leaf” and “ocean.” This can lead to a possible biological hypothesis: following the

hatching of Trichuris muris, there is a general stress response in the mouse gut, with

possibly shorter bowel transit time, resulting in diluted colon-inhabiting microbes and

more DNA from bacteria associated with other environments (like the stomach) reach-

ing the feces.

Case study 3: skin bacteria on various body sites. This study measured the skin

microbiome in male individuals from New York City, New York, at two time points (14).

Its raw data were obtained from NCBI SRA (accession no. PRJNA314604). After cluster-

ing sOTUs based on their abundance profiles, several groups of similarly behaving

sOTUs are visible in arm samples (Fig. 3A). When interactively looking at sOTUs from

these clusters, annotations from dbBact indicate some clusters contain microbes often

associated with one of the following annotations: skin, saliva, or feces. We therefore add

a vertical color bar indicating the most common term in dbBact (out of “feces,” “saliva,”

FIG 2 Calour analysis of mouse gut microbiome with chronic Trichuris muris infection. A group of mice was infected with Trichuris muris at time point 0 and

compared to uninfected control mice. The colon samples were taken during a 35-day period. (A) sOTUs that pass the differential abundance test between

uninfected mice and the infected mice on days 27 and 35. (B) An example of database annotations for a single sOTU higher in the uninfected mice than in

the infected mice. (C) Top 10 significantly enriched terms found in the sOTUs higher in the uninfected controls (blue) or higher in the infected mice (orange).
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and “skin,” colored with green, blue, and pink, respectively) for each sOTU in the two

most striking clusters (Fig. 3B and D). The cluster in Fig. 3B contains a large number of

bacteria with dbBact annotations associated with skin, such as Staphylococcus and

Corynebacterium (Fig. 3C), whereas the cluster in Fig. 3D contains bacteria that have

mostly saliva dbBact annotations. We performed dbBact term enrichment analysis in

this cluster compared to the rest of the sOTUs in this experiment. As shown in Fig. 3F,

the cluster is significantly enriched in mouth-associated annotation terms from dbBact,

including saliva, mouth, subgingival plaque, and tongue. This saliva sOTU cluster is

made of sOTUs from a large variety of taxonomies (Fig. 3E) that are correlated across

different individuals, as independently confirmed by cooccurrence analysis shown in

Fig. 3G. A similar saliva cluster is also observed in the skin samples from the American

Gut Project (17) (Fig. S3). Intriguingly, the majority of these saliva sOTUs are also

reported to form organized, complex biofilm structures in dental plaque (16). This leads

us to conjecture that these bacteria may tightly interact with each other (possibly due

to the molecular properties of their membranes) and thus, have the propensity to

assemble to a biofilm in oral cavity and on skin.

FIG 3 Analysis of skin samples from reference 11. (A) All sOTUs in arm samples, with sOTUs clustered by abundance. (B) A zoomed-in view of panel A showing

a cluster with a large number of skin-associated sOTUs. The vertical color bar on the right indicates the most common dbBact annotation out of skin (pink),

saliva (blue), feces (green), or other (orange). (C) Taxonomies of the sOTUs in the cluster shown in panel B and their abundances (collapsed at the genus level).

(D and E) Similar to panels B and C but showing a cluster with a number of saliva-associated bacteria and their taxonomies. (F) Enriched terms for the cluster

shown in panel D compared to the rest of the sOTUs. Blue bars indicate terms significantly enriched in this cluster of bacteria, orange bars show terms enriched

in the rest of the skin bacteria (dsFDR controlled at 0.1). (G) A cooccurrence network confirms the presence of the correlated sOTU cluster that is associated

with saliva annotation term. The darkness and width indicate the correlation strength inferred by local similarity analysis (14, 15, 17). The size of the node

represents the abundance of each sOTU. The sOTUs in the cluster shown in panel D are shown in cyan, and all the other sOTUs are shown in magenta.
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Case study 4: identification of contaminants and host-specific bacteria in

low-biomass ant experiment. This experiment involved sequencing of various ant

species from Peru and studying the relationship between diet, habitat, and bacterial

biomass (15). Using Calour to interactively examine the sOTU abundances (Fig. 4A), we

can see genus- or colony-specific sOTUs as well as some widespread sOTUs. In order to

look for potential contaminants (since these are low-biomass samples), we examine

these widespread sOTUs more specifically. As shown in Fig. 4B, an sOTU (Acinetobacter

johnsonii) shows a plate-dependent distribution, with very high abundances (�90% of

the reads) in almost all plate 4 samples and nonzero abundances in virtually every other

sample. Although samples in plate 4 were taken from ants at a different life stage from

the samples in the other plates, A. johnsonii was not detected in a previous survey of

a subset of these ant species (18), suggesting that it may be a chance (if unusual)

contaminant of this sample set. Another candidate group of contaminants is a cluster

of widespread bacteria with uniform distribution profiles (Fig. 4C). In order to assess

whether these may be derived from reagent contamination, we looked at whether any

of these sequences are known contaminants in other experiments as annotated in

dbBact. It turns out that two of the bacteria in this cluster (indicated in orange in the

vertical color bar in Fig. 4C) have been observed as contaminants in other experiments,

consistent with an origin in reagents rather than biological samples. After removing

these contaminants and renormalizing the samples using Calour, we can see a strong

colony dependence in the bacterial composition within a single genus for both

Camponotus (Fig. 4D) and Dolichonderus (Fig. 4E), where many abundant sOTUs are

either present at a very high level or not present at all, depending on the colony. In

Camponotus, each colony (most of which belong to distinct species) is dominated by its

own type of Blochmannia, a known endosymbiont of this genus. A similar pattern is

observed for Dolichoderus, which appear to host undescribed colony-specific lineages

of Bartonella-related bacteria, consistent with microscopic evidence from the primary

publication (15). Unlike Camponotus, however, the Dolichoderus also appear to host a

complement of other colony-specific bacteria, suggesting that there may be deeper

underlying differences in the relationship between host and bacteria in these two

arboreal ant genera. These discrete sample/sOTU patterns, clearly apparent in the

interactive heatmaps in Calour, are not apparent in distance-based sample ordinations

(Fig. 4F), highlighting the utility of the heatmap-based visualization as a tool for data

exploration.

Case study 5: using Calour for mass-spec data analysis—effect of intermittent

hypoxia and hypercapnia and diet on fecal metabolites (19). Calour can also be

used for mass-spec experiment analysis, combining information from the Global Nat-

ural Products Social Networking (GNPS) metabolomics database (20). We analyzed

longitudinal metabolite data from the feces of mice undergoing intermittent hypoxia

and hypercapnia (IHH) compared to controls. After sorting by time point and treatment

group, we can see the largest effect on the metabolites in this experiment happens

after week 10 (Fig. S4A). This corresponds to the switch from normal mouse chow to a

Western, high-fat diet. Filtering only metabolites with GNPS curations (using the GNPS

database interface module), we keep 653 out of the 1,099 metabolites. We then applied

the dsFDR-corrected differential abundance test (for presence/absence) (11) and found

48 and 164 metabolites associated with mouse chow and Western diet, respectively

(Fig. S4B and Table S2). Examining GNPS-derived curations of these metabolites indi-

cates that as mice are switched to a high-fat diet, there is a large increase in bile acids

in the gut metabolome, derived from both the host (e.g., taurocholic acid and cholic

acid) and microbe (e.g., deoxycholic acid, tauroursodeoxycholic acid, and 12-

ketodeoxycholic acid), as reported by previous studies as well (21, 22).

After removing the samples prior to diet switch and applying the presence/absence

differential abundance test between IHH and control groups, we identified 16 and 22

metabolites associated with the IHH and control groups, respectively (Fig. S4C and

Table S3). These metabolites contain a large number of bile acids (cholic acid, tauro-

cholic acid, chenodeoxycholic acid, tauroursocholic acid, etc.) and hormones (5-
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FIG 4 Analyses of low-biomass ant gut microbiota. (A) Distribution of sOTUs across samples sorted by ant genus and colony. The top color bars indicate the

ant colony of each sample. (B) A zoomed-in view showing the DNA extraction plate-dependent abundance profile of Acinetobacter johnsonii after the samples

were sorted by plate. (C) A zoomed-in view of panel A showing a group of bacteria present in all samples across all ant genera. The color bar to the right

indicates whether each sOTU is a known contaminant (orange) or has other annotations (blue) or no annotations (green) based on dbBact annotations. (D and

(Continued on next page)
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androstene-3�,16�,17�-triol, 5�-pregnane-3�,17-diol-20-one) among other molecules.

Hence, we can hypothesize that the downstream effects of IHH could be linked to

alterations in bile acid pool and endocrine disruption. Note that these are spectral

alignment-based annotations (level 2 annotations) according to metabolomics report-

ing standards (20, 23) and should be confirmed by comparison with pure analytical

standards (level 1 annotations). This difference between the IHH and control groups is

less evident when examining the PCoA of the samples (Fig. S4D).

Conclusion. We introduced Calour as a tool for interactive exploration of micro-

biome data sets. With multiple user interfaces, Calour is intended to be useful to both

experts and nonexperts as part of an overall microbiome analysis workflow. Specifically,

the feature-level analysis of the data in Calour provides complementary insights to

alpha and beta diversity measures and ordination plots, which work at the whole-

community level. The visualizations provided by Calour are a complement to feature-

level statistical and machine learning analyses such as ANCOM or random forests

feature selection, which identify which features are important for separating groups of

samples but do not provide a direct way of visualizing the distribution of those features

across samples and revealing subtle microbial patterns. Calour enables this important

part of the workflow, both early in exploratory analysis and at the end when proper

filtering, clustering, and sorting are required to produce publication-ready figures. Its

integration with microbial annotation databases further empowers users to incorporate

known information about each microbe present in the experiment. These advantages

of Calour allow users to generate novel biological hypotheses, which can then be

validated with further analyses and targeted experiments.

MATERIALS AND METHODS

Calour implementation. Calour can be used either through Python or Jupyter Notebook interface,

or through a GUI (graphical user interface) based on Qt5 (Fig. 5), allowing users without bioinformatics

expertise to explore their data. The software is implemented in Python 3 and runs on Windows, Mac OSX,

and Linux platform. The code is unit tested, with detailed Application Programming Interface (API)

documentation and tutorials (http://biocore.github.io/calour/).

Calour utilizes a study-centric data model integrating the 2D abundance table, sample metadata, and

feature metadata. Every procedure provided by Calour operates on this data model and synchronizes the

abundance table and its metadata. It depends on the widely used packages, including numpy, scipy,

pandas, biom (24) and scikit-bio. Calour includes the following modules (Fig. 5).

(i) IO (input/output) module. The input/output (IO) module handles importing and exporting of

tabulated data and metadata. It currently supports biom tables, tab-delimited text tables, and metabo-

lomics MS1 bucket tables for abundance data, and tab-delimited metadata files.

(ii) Experiment module. The experiment module defines the main Calour object class, which

contains sparse or dense 2D abundance tables and links them to per-feature and per-sample pandas

DataFrame objects of metadata. Additionally, the experiment class stores the history of all the operations

that have been run so that the whole exploratory process is tractable afterwards. Child classes are

defined for specific experiment types (e.g., amplicon experiment and metabolomics experiment).

(iii) Transforming module. The transforming module deals with modifications of the abundance

table via normalization and data transformations. Normalization methods include total sum scaling, total

sum scaling with removal of outliers, and center log ratio transformation. Data transformations include

binarization and log transformation (using a minimal read cutoff to handle zeros in the data).

(iv) Sorting module. The sorting module provides the functions to reorder either samples or features

by any arbitrary functions (e.g., the abundance or prevalence of the features or associated metadata). It

also provides a function for sorting the features by their center of mass across a fixed set of samples. The

sample/feature clustering function is also implemented in the sorting module, with defaults set to single

linkage hierarchical clustering following log transformation and per-feature centering and unit variance

normalization.

(v) Filtering module. The filtering module provides functions for filtering either samples or features

by data or metadata criteria (such as minimal abundance/prevalence, specific metadata values, etc.)

(vi) Analysis module. The analysis module implements statistical tests for finding associations

between data table and metadata. It includes FDR-controlled permutation-based nonparametric tests for

differential abundance and correlation. The differential abundance tests compare a per-feature statistic

between two sample groups after an optional data transformation such as ranking and binarizing. The

FIG 4 Legend (Continued)

E) Colony-specific abundance profiles of sOTUs within ant genera of Camponotus (D) and Dolichonderus (E) following filtering of contaminants and re

normalization of the samples. Only sOTUs present in at least 10% of the samples are shown. (F) Unweighted UniFrac PCoA of all ant samples. Camponotus and

Dolichoderus samples are colored by colony; all the other samples are in small and transparent spheres.
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same statistic is computed many times, each time after a random group label permutation. Then the

original statistic is compared to the distribution of the statistic from random permutations to compute

P values. For correlation analysis, a similar approach is used for correlating a continuous metadata field

to feature prevalence, using Spearman, Pearson, or other user-defined correlation metrics. All tests

include Benjamini-Hochberg (25), Gilbert’s filtered FDR (26), or dsFDR (11) for multiple hypothesis testing

correction. With the convenient data model implemented in the Experiment object, Calour is readily

extensible to incorporate additional statistical methods.

(vii) Database module. The database module defines the API to interact with a database to retrieve

or add additional information about features. Currently, interfaces include the following.

(a) spongeEMP. spongeEMP (4) (http://www.spongeemp.com/main) is an automatically generated

database for sequences found in the Earth Microbiome sea sponge samples. It provides per-sequence

enrichment information about location/host/sample type as well as total prevalence in sponge samples.

(b) IJSEM phenotypic database. The IJSEM phenotypic database (5) is a manually annotated database

containing phenotypes (such as growth temperature, pH, salinity preference, motility, etc.) of cultured

bacteria.

(c) GNPS. GNPS (http://gnps.ucsd.edu) (20) is a metabolomics database that includes crowd-sourced

MS/MS spectrum curation and automated molecular network analysis. Using the GNPS output file for the

metabolomics table, the GNPS Calour interface allows integrating metabolite identification into the

Calour-based mass-spec analysis.

(d) dbBact. dbBact (http://dbbact.org/main) is a manually curated annotation database of ontology-

based observations derived from amplicon experiments. Observations include differential presence

(e.g., bacterial sequence X is high in Homo sapiens with disease Y compared to controls), prevalence

information (e.g., bacterial sequence X is common in habitat Y), as well as candidate contaminants (e.g.,

bacterial sequence X is a candidate contaminant in experiment Y).

Some database interfaces (e.g., dbBact) also enable term enrichment analysis between two feature

groups. This is done by counting the number of times each term appears in both groups (with scoring

based on the annotation type: 2 for “high frequency” or “higher in,” 1 for “common,” and �2 for “lower

in”), and then applying rank mean test with dsFDR correction on all terms tested.

(viii) Machine learning module. The machine learning module contains functions to run classifi-

cation and regression using scikit-learn library. These functions include random forest, linear regression,

supporting vector machine, K nearest neighbors, etc. Users can check the scikit-learn website (https://

scikit-learn.org/stable/) for a comprehensive list of methods available. Calour can also take other

FIG 5 Implementation structure of Calour. Calour can be interfaced with Qt5 GUI, Jupyter Notebook, or

IPython interactive session. All the functionalities in the modules (input/output [IO], sorting, filtering,

data transforming, machine learning, and statistical analyses) operate on the core object, the Experiment

object, which integrates the abundance table, sample metadata, and feature metadata together. A

heatmap can be rendered to interact with databases to add or retrieve annotation. All the operations of

the Experiment object are recorded by Calour so that the process is tractable and reproducible.
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supervised classification or regression methods as long as they follow scikit-learn’s Application Program-

ming Interface (API), including but not limited to XGBoost and Keras. It saves boiler-plate code for users

to set up input and output for model training. The commonly used scoring function and plotting

functions are also implemented. Specifically, visualization is available for confusion matrix and ROC curve

for classification and scatter plot for regression. The notebook tutorial is available (https://biocore.github

.io/calour/notebooks/microbiome_machine_learning.html).

(ix) Heatmap module. The heatmap module contains all the functions and classes to render a

sophisticated heatmap and enable interactivity using a mouse and keyboard. Users can easily navigate

through the whole heatmap by zooming and scrolling. For different user interfaces of Python, Jupyter

notebook, and Qt5, the heatmap is rendered accordingly. In Jupyter Notebook, we take advantage of

IPython Widgets to enhance the interactivity.

Bioinformatic analysis. The raw sequence data for all experiments were processed with Deblur (1)

to generate an sOTU abundance table using default parameters. Taxonomies for the sOTUs were

assigned using QIIME 1.9 (27) assign_taxonomy.py command and the RDP method using default

parameters. Weighted and unweighted UniFrac distances were computed with the QIIME 1.9 pipeline

and visualized in PCoA plots using Emperor (28). The cooccurrence network was inferred by local

similarity analysis (29, 30). The network was rendered with Cytoscape v3.5 (31, 32) using “organic” layout.

Data availability. All data sets used in the paper are available publicly as described in each case

study section. Jupyter Notebooks detailing the operations used for each analysis are available at

https://github.com/knightlab-analyses/calour-manuscript for users to reproduce the results. Calour is

also able to export heatmaps to an interactive html file to visualize the result without installation. The

html files for the figures discussed in this paper are also available in this repository. Additional detailed

Jupyter notebook tutorials are available for using Calour for microbiome and metabolomics analysis

(http://biocore.github.io/calour/). A video tutorial for EZCalour (the full GUI for Calour) is available at

https://www.youtube.com/watch?v�JQATqcgm31I, demonstrating the use of Calour for users without

python knowledge.

Calour can be installed on Mac, Linux, and Windows, run as a VirtualBox image, or run without

installing on a mybinder server (mybinder.org). Installation instructions covering these methods are

detailed at https://github.com/biocore/calour/.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/
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