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Abstract 

A computational model of dendritic growth based on the CALPHAD (the CALculation of 

PHAse Diagrams) thermodynamic model was developed in this study. The dendrite growth 

was simulated using cellular automata (CA) with the equilibrium conditions in interfacial 

cells. The developed novel model (CA-CALPHAD) overcomes the current limitation of 

the published CA models, in which linearized phase diagrams are used, and allows for the 

investigation of some practical alloys such as stainless steels. To reduce the computational 

time, the study proposes a specific data structure to store the thermodynamic information 

and an efficient interpolation scheme to retrieve the information during the simulation. 

The model takes into account the curvature effect of the evolving solid/liquid (S/L) 

interface by incorporating the capillarity undercooling into the thermodynamic information 

during the simulation. Two methods of calculating the S/L interface curvature are 

investigated in the current study: the level-set and cell-count. It was found that the level-

set method is more accurate and less sensitive to the mesh anisotropy. In addition, the level-

set method was optimized to obtain the highest possible accuracy and to mitigate the effect 

of mesh anisotropy. It was demonstrated that the choice of different models for the 

curvature calculation could lead to significantly different simulation results, i.e., the 

dendrite morphology, segregation pattern, and grain size. The finite volume (FV) 

numerical scheme was used to solve the mass and heat diffusion equations. In addition, 
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imposing a temperature profile with a constant cooling rate and temperature gradient 

instead of solving the heat equation was verified. 

The developed CA-CALPHAD model can be used to investigate the free growth, 

constrained growth, and competitive growth of dendrites in response to different 

solidification parameters. The results of modeling include the dendrite morphology, 

dendrite size, solute segregation in the dendrite, dendrite growth rate, dendrite tip radius, 

and the spacing between primary and secondary dendritic arms. In addition, the model can 

be used to investigate the solidification of a duplex steel so that the fractions of ferrite and 

austenite can be estimated in the final microstructure. The investigations of a ternary 

stainless steel alloy (Fe-Cr-C) demonstrate that a higher cooling rate increases the solute 

segregation and the potential of sensitization, and produces a finer grain. 

Finally, a procedure of linking the developed CA-CALPHAD model to a computational 

welding mechanics tool (CWM) was developed producing a holistic multiphysics model 

(CWM-CA-CALPHAD). Therefore, the model can be used to predict the microstructure 

of a weld in response to realistic welding parameters and weld joints design. 
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Chapter-1: Introduction 

 

1.1 The Objective of the Study 

The main contribution of this study is coupling CALPHAD (the CALculation of PHAse 

Diagrams) with a Cellular Automata (CA) based solidification modeling. The developed 

model is integrated into VrWeld® (a FE software developed by Goldaktec©) to predict 

weld microstructure responses to specific weld parameters and weld joint designs. 

Solidification modeling of an alloy involves thermodynamics properties, specifically the 

relationship between equilibrium temperature and composition. The common approach is 

to assume a linear relationship between the two. This assumption excludes using the model 

for a wide range of practical alloys and superalloys. The main advantages of CAPHAD are 

to increase the ability of the CA solidification model to study any alloy. In addition, model 

uncertainty will be reduced, since the relationship between equilibrium temperature and 

composition is calculated rather than approximated. 

The current solidification model is based on many previous models, the first of which was 

proposed by Artemev and Goldak [1]. They studied the dendritic growth of an Al-Si binary 

system in two dimensions. They assumed a constant undercooling temperature and verified 

the results by comparing the computed growth velocity and tip radius with an analytical 

model. In [2], Martinez and Artemev extended the model to study a ternary alloy, Al-Si-

http://www.goldaktec.com/
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Cu, in 3D at a constant undercooling temperature. In [3], Ghazi and Artemev developed 

the model to include a transient temperature field, by imposing a temperature profile and 

cooling rate. They also investigated the effect of the initial solid/liquid interface 

morphology on the evolved microstructure, and the results were compatible with 

constitutional undercooling theory. The model was further developed by Komeil, Goldak, 

and Artemev to allow coupling of the solidification model with a finite element heat 

transient solution of the welding process [4]. In addition, they used an implicit solver to 

solve the diffusion equation of solutes.  

All of the mentioned models were based on the kinetics of the solid/liquid (S/L) interface, 

and the movement of the interface was calculated at each time step. If the kinetics is 

underestimated, the microstructure evolves too slowly taking more computational time. On 

the other hand, the solution becomes unstable if the kinetics is overestimated. 

Computationally, the calculation of the kinetics imposes some constrains on the time step. 

In contrast, coupling CA with CALPHAD (i.e. CA-CALPHAD) does not require interface 

kinetic calculation that imposes less restrictions on the time step, and the mass balance is 

perfectly conserved. 

1.2 Theses Content 

The first chapter introduces into the research topic and summarizes the objectives. The 

state of the art is described in the field of solidification theory, welding metallurgy, 

morphology of the weld pool, the effects of welding parameters (i.e. welding velocity and 
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welding power) on the solidification microstructure, and, finally, multiscale algorithms for 

solidification modeling with emphasis on microscale modeling. The key topic of first 

chapter is to show the importance of using CALPHAD calculation in solidification 

modeling to overcome the limitation of phase diagrams linearization approach. 

Chapter-2 describes the metallurgical thermodynamics, since this is the theoretical 

background of CALPHAD method. It explains the fundamentals of phases stability using 

Gibbs energies and chemical potentials and the construction of phase diagrams. The 

chapter explains CALPHAD models such as ideal solutions, regular solutions, real 

solutions using Redlich-Kister polynomial approximation, and the compound energy 

model with sublattices. In addition, the chapter describes the implementation of the 

thermodynamic optimization code for Fe-Cr-C system. The chapter also outlines the 

equations that are written down to solve the equilibrium problem for the different cases of 

stable phases in this ternary system. The solution procedure is solved using MatLab 

functions. Finally, the predictions of the implemented Fe-Cr-C model are compared to 

ThermoCalc® and MatCalc® predictions.  

The following chapter 3 is related to Cellular Automata (CA) modeling which is subdivided 

into two parts. The first part presents an overview of existing techniques and CA models 

in relation to solidification modeling. In addition, the effect of physical and mesh 

anisotropy on microstructure morphology is explained, as is the impact of the S/L interface 

curvature on the microstructure growth using kinetics and thermodynamics approaches. 
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The second part of the chapter describes the details of the developed CA-CALPHAD 

model. The treatment starts with the computational tool for mass transport, i.e., diffusion 

of atoms through the simulation domain, then the temperature field calculation, curvature 

computation and solid fraction determination. In addition, the chapter describes the 

procedure to pre-evaluate the thermodynamic data of the system and then perform a table 

look-up to interpolate the values for the actual computation without necessity to compute 

thermodynamics in every finite volume.  

Chapter-4 is focused on the result obtained with the present CA-CALPHAD model. First, 

the effect of surface energy anisotropy, undercooling degree, and cooling rate on a dendrite 

free growth are investigated. In addition, the solidification of a duplex microstructure with 

different cooling rate is investigated.  

In the next chapter 5, the present model is applied to welding processes. The first section 

describes the evaluation of solidification parameters at specific points along the weld pool 

perimeter of a Bead-On-Plate weld joint. These data are subsequently used as input 

parameters for the microstructure simulation with CA-CALPHAD model. The dendrite 

morphology and chemical composition are analyzed. Finally, the conclusions are 

summarized and the contribution to knowledge is stated in Chapter-6. 

1.3 Computational Welding Mechanics CWM 

This study is intended to extend the field of computational welding mechanics (CWM) by 

incorporating thermodynamically accurate microstructure modeling. CWM is a tool that 
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applies numerical methods (i.e. finite element FE and finite difference FD) to welding aid 

design, and can be used to calculate of important characteristics such as temperature 

distributions, distortions (i.e. shrinkage and buckling), thermal and residual stresses, and 

metallurgical changes due to the thermal cycle of the welding process. One might ask: why 

do we need CWM when professionally-verified welding design codes are available? This 

question can be addressed by considering three factors. The first is related to the 

conservative nature of design codes that produces conservative designs, which are costly 

and can limit the design due to geometrical considerations. The second factor is that most 

manufacturers must conduct trial-and-error experiments to build their in-house experience. 

CWM tools can reduce the number of such experiments. And the final factor is that new 

materials are frequently introduced into the industry and not included in the current design 

codes, which means that more trial-and-error experiments are required.  

Using CWM can reduce the cost of welding design by minimizing the required number of 

trial-and-error experiments by up to fifty percent [5]. In addition, CWM can enhance our 

understanding of the welding process itself. For example, in [6] Goldak et al used the CWM 

tool, VrWeld®, to compute the transient temperature and evolution of the microstructure 

in a bead-on-plate weld. They demonstrated that characterizing welds only by power per 

unit length, as most researchers do, is not sufficient to specify a unique design. By using 

CWM, they demonstrated that welds should be characterized by either weld speed or weld 

power, as well as the power per unit length. The long-term objective of CWM is to predict 

the quality, reliability, properties, and manufacturing cost of welds and welded structures. 
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Achieving the long-term objective requires a holistic simulation of all relevant welding 

phenomena, from the arc to the micro and macroscopic processes of the welded products. 

The simulation is inherently complex because it involves multi-physics and coupled 

phenomena. Figure-1.1 illustrates how three main groups of processes interact in a welding 

simulation.  

 
 
Figure-1.1: Physical phenomena of the fusion welding process. 

Thermal analysis is at the top of the diagram because all aspects of welding simulation are 

driven by the transient temperature field. The bold arrows indicate strong coupling between 

processes, and the dashed arrows signify weak coupling. The thermal field during welding 

causes mechanical deformation and thermal stress, as indecated by the fifth arrow, and 

microstructural changes, as shown by the first arrow. Phase transformation processes 

release or absorb latent heat, which affects the thermal field by acting as a heat sink when 

heating and a heat source when cooling, as depicted by the second arrow. In addition, phase 

transformation processes cause volume changes which affect plastic and elastic material 

behavior, as shown by the third arrow. The sixth arrow shows the minor effect of 

mechanical elastic-plastic deformation on thermal analysis.   
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1.4 Welding Metallurgy 

A weld joint microstructure evolution is driven primarily by the thermal distribution 

created by the welding arc. Once the arc is applied the heat transfers to the weld joint and 

then diffuses into the weld joint and the material around it. The distribution of heat and 

temperature is mainly determined by the welding parameters, the weld joint material, the 

weld joint thickness and the design. For example, as the thermal conductivity of aluminum 

is high, heat diffuses rapidly in aluminum weld joints, corner fillet weld joints diffuse more 

heat than ordinary fillet joints, and thick weld joints can absorb more heat than thinner 

joints.  

 
Figure-1.2: The microstructure of a weld joint of Fe-C alloy in response to a thermal 
cycle. [7], page-102. 

The distribution of temperature in a weld joint forms two distinct zones: the fusion zone 

(FZ) and the heat-affected zone (HAZ), while the rest of the weld joint microstructure is 

not significantly affected by the welding process. Each zone has different thermal cycles, 
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peak temperatures, and cooling rates. Thus, the evolutions of microstructure and 

composition are different in FZ and HAZ. In HAZ, the base material endures solid-state 

transformations, grain growth, and grain refinement, as shown in Figure-1.2. The 

temperature is high enough in the FZ to melt the material, and the molten material solidifies 

as the FZ cools down. Due to the solidification process, the FZ acquires an entirely different 

microstructure than the base material and different composition if filler metal is used.  

The quality of a weld is determined by its mechanical properties which in turn depend on 

the weld microstructure. For example, the grain size strongly affects the mechanical 

strength and fatigue resistance, as small grains have more grain boundary area that impedes 

the dislocation movement and increases the low temperature strength. Similarly, small 

grains increase the fracture toughness and, consequently, fatigue life. Thus, grain 

refinement is the only strengthening mechanism that increases both the strength and the 

fracture toughness of alloys [8]. During welding, grain size can be tailored by controlling 

the solidification process and adjusting the welding parameters (i.e. welding speed and 

welding power). As well as grain size, grain composition also determines weld quality. 

Ideally, the composition should be homogenous to ensure the weld also has homogenous 

properties. Solidification processes can be controlled to create microstructures that are as 

highly homogenous as possible. Non-homogenous composition can produce a cored 

microstructure in which alloying components with low melting temperatures segregate at 

the grain boundaries, and this segregation can cause hot cracks and in-service cracks. The 

prediction of microstructure responses to welding parameters requires a holistic 
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multiphysics model that links welding parameters with microstructure evolution. This can 

be achieved by CWM and is the main goal of this study.  

1.5 Fusion Zone Microstructure 

The microstructure of the fusion zone in a weld is a solidified microstructure in which 

columnar grains, dendritic grains, and in some cases equiaxed grains are formed. The 

nucleation of a solid phase in the weld is mainly heterogeneous, which has a low energy 

barrier due to the presence of an existing solid interface at a fusion boundary. However, 

equiaxed grains can form with high undercoolings. The growth of grains (away from the 

fusion boundary) is governed by a competitive growth mechanism, as shown in Figure-1.3. 

With competitive growth, the dendrites that grow quickly will impede the growth of others. 

If a dendrite is growing in its easy growth direction (i.e. < 100 >for both 𝐹𝐹𝐹𝐹𝐹𝐹 and 𝐵𝐵𝐵𝐵𝐵𝐵 

materials) and/or in the direction of the maximum temperature gradient, the growth will be 

relatively fast [9]. The final microstructure of a weld is typically composed of many 

columnar/dendritic grains in the fusion zone [10]. 

 

Figure-1.3: Grains competitive growth. [9], page-176. 
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The resulting microstructure of welds always has nonhomogeneous compositions. 

Microsegregation is a chemical inhomogeneity that decreases weld quality by causing hot 

cracking and cold cracking. It occurs due to the redistribution of atoms during the 

solidification process, which depends on both thermodynamics and kinetics, or thermal 

fluctuations during the welding process, known as banding. Solidification parameters, 

growth rate (𝑉𝑉) and temperature gradient (𝑇𝑇𝐺𝐺), as well as the phase diagram of a material, 

determine both the microsegregation and the morphology of a solidified structure.  

1.5.1 The Morphology of the Solidification Microstructure 

The shape of a S/L interface during the solidification of a melt determines the morphology 

of the final microstructure. Typically, an S/L interface can be planar, columnar, dendritic, 

equiaxed, or a combination of these. In the case of welding, the mode of solidification is 

usually cellular, dendritic or a combination of the two, depending on the solidification 

parameters [10]. Chalmer et al [9] proposed the constitutional supercooling theory, an 

experimentally validated theory, that describes the effect of solidification parameters on 

microstructure morphology. The theory mathematically defines when a planar S/L 

interface becomes unstable and develops a more complex morphology, and it also 

qualitatively describes when the solid phase morphology is cellular, dendritic, or equiaxed. 

Essentially, the constitutional supercooling theory proposes that the S/L interface could be 

flat if the initial solute concentration of the alloy and the growth rate are small and the 

thermal gradient is high. Mathematically, constitutional supercooling proposes that the 𝑆𝑆 𝐿𝐿⁄  
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interface will be flat if  𝑇𝑇𝐺𝐺
𝑉𝑉
≥ ∆𝑇𝑇0

𝐷𝐷𝐿𝐿
  [9], where 𝑇𝑇𝐺𝐺 is the thermal gradient, 𝑉𝑉 is the growth rate, 

∆𝑇𝑇0 is the equilibrium freezing range, and 𝐷𝐷𝐿𝐿 is the diffusion coefficient of solute atoms in 

liquid. The main predictions of the constitutional supercooling theory are that 𝑇𝑇𝐺𝐺 𝑉𝑉⁄  

determines the morphology of the solidification structure, and 𝑇𝑇𝐺𝐺 × 𝑉𝑉 (i.e. cooling rate) 

determines grain size, as shown in Figure-1.4. 

 
Figure-1.4: The microstructure-process parameters map as predicted by the 
constitutional supercooling theory. [9], page-166. 

1.5.2 Weld Pool Microstructure 

Solidification parameters vary in a single weld pool from the weld fusion line boundary 

(FL) to the weld fusion centerline (CL), as shown in Figure-1.5. These variations, and the 

shape of the weld pool, determine the macrostructure of the weld fusion zone. Figure-1.5a 

indicates how solidification parameters vary around a weld pool, and Figure-1.5b depicts 

the resulting microstructure. 



12 
 

 
 

Figure-1.5: The variation of solidification parameters according to the shape of the weld 
pool. Figure-b is from [9], page-202.  

According to the presented description in [9] and illustrated in Figure-1.5a, the temperature 

gradient at point P1 is maximum, since the distance 𝑦𝑦1 is the shortest distance between the 

source of heat and the fusion line boundary. Since the thermal gradient is the steepest along 

𝑦𝑦1, the growth rate is minimum at P1. In contrast, the temperature gradient at point P2 is 

minimum since the distance 𝑥𝑥1is the longest, and the growth rate is the maximum. 

Therefore, the ratio of 𝑇𝑇𝑇𝑇 𝑉𝑉⁄  at P2 is the minimum, and the ratio 𝑇𝑇𝑇𝑇 𝑉𝑉⁄  at P1 is the 

maximum. Mathematically, (𝑇𝑇𝑇𝑇 𝑉𝑉⁄ )𝐶𝐶𝐶𝐶 ≪ (𝑇𝑇𝑇𝑇 𝑉𝑉⁄ )𝐹𝐹𝐹𝐹 which suggests that the solidification 

mode at P2 could be dendritic or equiaxed, and the solidification mode at P1 could be 

cellular or flat, according to the constitutional supercooling theory. Moreover, the ratio 

(𝑇𝑇𝑇𝑇 × 𝑉𝑉) at P2 is the maximum since it is located where the cooling rate is maximum, and 

the ratio (𝑇𝑇𝑇𝑇 × 𝑉𝑉) at P1 is the minimum. Mathematically, (𝑇𝑇𝑇𝑇 × 𝑉𝑉)𝐶𝐶𝐶𝐶 > (𝑇𝑇𝑇𝑇 × 𝑉𝑉)𝐹𝐹𝐹𝐹, 

suggesting that the grain size at P2 is finer than that at P1.  

As a welding speed increases, the weld pool becomes longer and narrower (teardrop shape), 

and in contrast, the weld pool becomes elliptical as the welding speed decreases [9]. A 
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teardrop weld pool geometry produces smaller (𝑇𝑇𝑇𝑇 𝑉𝑉⁄ )𝐶𝐶𝐶𝐶 and (𝑇𝑇𝑇𝑇 × 𝑉𝑉)𝐶𝐶𝐶𝐶 than an 

elliptical weld pool. Therefore, the microstructure of the teardrop weld pool is more 

dendritic/equiaxed and finer at the fusion line than the microstructure of the elliptical weld 

pool.  

1.6 Welding Parameters 

The welding power density distribution and the welding speed (welding parameters), as 

well as the configuration of the weld joint and the thermal properties of the material, 

determine the shape of a weld pool. The weld joint configuration and material can be 

controlled during the design stage, and the welding power and speed can be controlled 

during the welding process. However, in practice solidification parameters cannot be 

controlled directly, though they can be indirectly controlled by the welding parameters. 

Controlling welding parameters influences the shape of the weld pool and determines the 

solidification parameters. Finally, the solidification parameters control the microstructure 

chemical composition and grain size and shape.   

The cooling rate is critical to controlling weld microstructure. Mathematically, the cooling 

rate is the thermal gradient multiplied by the growth rate in differential form (i.e.  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
∙

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

). As the cooling rate increases, the microstructure becomes finer and more dendritic for 

the particular welding job. In practice, the cooling rate can be controlled by the welding 

speed, heat input, preheating, and weldment transverse thickness (heat sink).  
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1.7 Solidification Microstructure 

Many industrial products are the result of the solidification process, directly or indirectly. 

As the properties of the products are determined by their microstructure, controlling the 

microstructure controls the products properties. The simulation of microstructure evolution 

in solidification is a key factor to understanding, controlling, and improving solidification 

microstructures. The most common solidification morphologies in practical alloys are 

dendrites and equiaxed. Important solidification microstructure features include the tip 

radius of the dendrites (𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡), the arm spacing of the dendrites (𝜆𝜆1), the equiaxed grain size, 

and the secondary arm spacing (𝜆𝜆2), as depicted in Figure-1.6a. The size and component 

segregation of these microstructure features determine the properties.  

 
Figure-1.6: (a) The main microstructure features, displaying the model of the dendrite 
envelope as an ellipsoid. [11], page-323. (b) the size of equiaxed grain. 

The dendritic arm spacing is related to the mechanical properties of the alloy; for example, 

smaller arm spacing increases mechanical properties. The primary spacing depends on the 
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solidification velocity and temperature gradient, 𝜆𝜆1 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∙ (𝑉𝑉 ∙ 𝑇𝑇𝐺𝐺)−𝑛𝑛 [12]. Since the 

product 𝑉𝑉 ∙ 𝑇𝑇𝐺𝐺 is the cooling rate, an increased cooling rate results in finer microstructure. 

In addition, the secondary arm spacing (𝜆𝜆2) depends on the solidification time (𝑡𝑡𝑓𝑓), and 

𝜆𝜆2 = �𝜇𝜇𝑜𝑜 ∙ 𝑡𝑡𝑓𝑓�
𝑛𝑛

, where 𝑛𝑛 = 0.33 𝑡𝑡𝑡𝑡 0.5, 𝜇𝜇𝑜𝑜 is a function of alloy constituents and 𝑡𝑡𝑓𝑓 is the 

solidification time [12]. As the solidification proceeds, some dendrites grow, and others 

stop to grow because of the competitive growth. In addition, the larger arms grow at the 

expense of the smaller ones, and this is known as the dynamic coarsening or ripening of 

dendrites. Consequently, solidification time, 𝜆𝜆1, and 𝜆𝜆2 determine the grain structure that, 

in return, establishes the mechanical properties of the solidified microstructure or weld.  

1.7.1 Solidification Driving Force 

Thermodynamically, the driving force of the solidification process is the change in free 

energy. During solidification, free energy change can be achieved by cooling a liquid phase 

and introducing some degree of undercooling, ∆𝑇𝑇. Thus, the undercooling is the driving 

force of microstructure evolution. The total undercooling of a solidifying cell can be split 

into four parts [14]: solutal undercooling ∆𝑇𝑇𝑐𝑐, thermal undercooling ∆𝑇𝑇𝑡𝑡ℎ, capillarity 

undercooling ∆𝑇𝑇𝑟𝑟, and attachment kinetics undercooling ∆𝑇𝑇𝑘𝑘  (see Figure-1.7). Kinetic 

undercooling can be neglected under normal solidification conditions for metals and alloys. 

∆𝑇𝑇 = ∆𝑇𝑇𝑡𝑡ℎ + ∆𝑇𝑇𝑐𝑐 + ∆𝑇𝑇𝑟𝑟 + ∆𝑇𝑇𝑘𝑘 𝐸𝐸𝐸𝐸1.1 
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Figure-1.7: The components of undercooling. 

In Figure-1.7, 𝑇𝑇𝑚𝑚 is the melting temperature of the host component at a flat interface, 𝑇𝑇𝑚𝑚𝑅𝑅 

is the melting temperature at a curved interface, 𝑇𝑇𝑚𝑚𝐾𝐾 is the melting temperature because of 

the kinetics,  𝑇𝑇∗ is the interface temperature, 𝑇𝑇∞ is the temperatures of the far field liquid, 

𝐶𝐶𝑜𝑜 is the nominal alloy composition, and ∆𝐶𝐶0 is the supersaturation. During the 

solidification of an alloy, the heat and solute atoms are rejected at the S/L interface and 

form thermal and solute layers. The extent and gradient of the two layers determine the 

morphology and the segregation of the microstructure. In addition, due to the capillarity 

effect the curvature of the S/L interface affects the microstructure evolution. Therefore, the 

interplay of thermal, solute, and capillary is the solidification mechanism that controls the 

final microstructure. While, the capillarity effect tends to flatten the S/L interface (stabilize 

the interface) to reduce the total interfacial energy, the solutal layer tends to amplify any 

perturbation on the interface (destabilize the interface), thereby producing a complex 



17 
 

structure. The thermal layer can stabilize the interface (flatten it) if its gradient is positive 

and destabilizes the interface if its gradient is negative. 

1.7.2 The Capillarity Effect 

The curvature of an S/L interface has a significant effect on solidified microstructure 

morphology, since the curvature increases or decreases the melting temperature of the 

interface locally. These changes in the equilibrium melting temperature affect the total 

undercooling which, in subsequently, affects the driving force of the solidification. This 

curvature effect can be quantified using the Gibbs-Thomson relation, which states that the 

melting temperature of a curved interface is equal to the equilibrium melting temperature 

minus the Gibb-Thomson coefficient, multiplied by the curvature of the interface, as in: 

𝑇𝑇𝑚𝑚𝑘𝑘 = 𝑇𝑇𝑚𝑚𝑒𝑒 − 𝛤𝛤 ∙ 𝐾𝐾 𝐸𝐸𝐸𝐸1.2 

where the Gibb-Thomson coefficient (𝛤𝛤) is approximately equal to surface energy
entropy of fusion

≈ 10−7 

for most metals [12]. Conventionally, a convex interface (i.e. a bump of solid phase) has a 

positive curvature, and a concave interface has a negative one. Therefore, the melting 

temperature is suppressed at the tip of any perturbation (convex curvature), and the 

equilibrium melting temperature is increased at any valley (concave curvature), as shown 

in Figure-1.8a. The effect of curvature on equilibrium melting temperatures can be 

explained by thermodynamics. As Gibbs free energy is proportional to the interfacial 

energy, if an interface area increases (e.g. the area of a convex perturbation), the Gibbs free 

energy curve moves up as shown in Figure-1.8b. This shift in the Gibbs energy of solid 
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decreases the equilibrium melting temperature, and the opposite occurs in the case of 

concave curvature. The change in curvature values is complex when a curved interface 

advances during solidification. Sharp curvatures tend to flatten the S/L interface because 

perturbations tend to melt, and depressions tend to solidify and flatten. 

 
 

Figure-1.8: The effect of curvature on the melting temperature. 𝑇𝑇𝑒𝑒𝑒𝑒 is the equilibrium 
melting temperature of a flat interface, 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the melting temperature of a convex 
interface, and 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the melting temperature of a concaved interface. 

1.7.3 Analytical Dendrite Growth Models 

A full-scale dendrite is a complex structure with a non-steady state evolution and 

developing analytical models for this problem is unlikely. However, some proposed 

analytical models attempt to describe the tip growth kinetics and the tip size, as determined 

by the thermal and solutal fields as well as capillarity. Most of the analytical models 

investigate the growth of only the dendrite tip which is considered to be spherical or 

paraboloid, see Figure-1.9. 

One of the first models regards a dendrite as needle-like crystal with a hemispherical cap 

(hemispherical approximation), as shown in Figure-1.11a. This model solves the steady 
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state diffusion equation in radial coordinates and the solution yields the following 

relationship [12]: 

𝑉𝑉 ∙ 𝑟𝑟
2𝐷𝐷

=
𝐶𝐶𝑙𝑙 − 𝐶𝐶𝑜𝑜
𝐶𝐶𝑙𝑙 − 𝐶𝐶𝑠𝑠 𝑜𝑜𝑜𝑜 𝑃𝑃𝐶𝐶 = Ω𝐶𝐶 𝐸𝐸𝐸𝐸1.3 

where, 𝑃𝑃𝐶𝐶 is the solutal Peclet number, Ω𝐶𝐶 is the solutal dimensionless supersaturation, 𝑉𝑉 

is the tip growth velocity, 𝑟𝑟 is the tip radius, 𝐶𝐶𝑜𝑜 is the initial alloy composition, 𝐶𝐶𝑙𝑙 is the 

solute concentration in liquid, 𝐶𝐶𝑠𝑠 is the solute concentration in solid, and 𝐷𝐷 is the diffusivity 

coefficient. Similar relationship can also be obtained for a thermal dendrite. Equation-1.3 

indicates that the growth velocity depends on the tip radius and supersaturation. 

Hemispherical model assumes spherical symmetry of the concentration field around the 

dendrite tip. This assumption leads to the equal radial growth rate at all points at the 

hemispherical tip and should produce continuously increasing tip radius during the dendrite 

growth. This makes a steady state growth with constant tip radius impossible contrary to 

experimental observation [12].  

 
Figure-1.9: (a) hemispherical model and (b) paraboloid of revolution model. 
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The growth of a dendrite (see Figure-1.9b) produces dendrite tip region with a steady-state 

shape. In contrast, the remainder of the dendritic interface grows in an unstable and time-

dependent manner, producing quasi-periodic waves that become side arms, or branches. 

Papapetrou [15] studied the solidification of salt crystals experimentally. The main 

outcomes of his theses include: dendrites evolve from small spherical crystals, a dendrite 

tip has the form of a paraboloid of revolution, and surface tension plays an important role 

in determining the tip size and arm spacing. Motivated by Papapetrou’s results, Ivantsov 

[15] assumed the dendrite tip has the shape of a paraboloid of revolution, which is self-

preserving shape. Ivantsov’s solution of the steady state diffusion equation considering a 

parabolic shape is given by: 

𝐼𝐼𝐼𝐼(𝑃𝑃𝐶𝐶) = Ω𝐶𝐶 𝐼𝐼𝐼𝐼(𝑃𝑃𝐶𝐶) = 𝑃𝑃𝐶𝐶 ∙ exp (𝑃𝑃𝐶𝐶)�
exp (−𝑥𝑥)

𝑥𝑥

∞

𝑃𝑃

𝑑𝑑𝑑𝑑 𝐸𝐸𝐸𝐸1.4 

Ivantsov’s solution is valid for both the solutal diffusion (𝑃𝑃𝐶𝐶  and Ω𝐶𝐶 ) and the thermal 

diffusion (𝑃𝑃𝑇𝑇  and  Ω𝑇𝑇 ) in which 𝑃𝑃𝑇𝑇 = 𝑉𝑉∙𝑟𝑟
2𝛼𝛼

 and Ω𝑇𝑇 = ∆𝑇𝑇𝑇𝑇
𝐻𝐻𝑓𝑓 𝐶𝐶𝐶𝐶⁄ . 

Both the hemispherical model and Ivantsov’s solution conclude that a steady state predicts 

the tip kinetics will follow a simple scaling law 𝑉𝑉 ∙ 𝑟𝑟 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. This states that the tip 

radius is inversely proportional to its growth velocity. Thus, a dendrite with a small tip 

radius has higher growth velocity than one with a larger tip radius. However, this prediction 

has two problems. First, as the tip radius approaches zero the growth velocity increases to 

infinity. Second, there is no unique solution for  𝑉𝑉 and 𝑟𝑟, because, mathematically, there 
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are two unknowns and one equation. Temkin [15] solved the first problem by including the 

capillarity effect in Ivantsov’s model, so the tip radius cannot reach zero because the 

capillarity will blunt a too sharp tip. The most common solution to the second problem is 

the marginal stability assumption.  

The marginal stability hypothesis was introduced in [16] by performing a linear stability 

analysis of a parabolic dendrite tip region. If a smooth S/L interface is distributed by 

periodic solid bumps with a certain wavenumber λ𝑊𝑊, the interface will become smooth if 

its wavenumber is less than the critical wavenumber λ𝑐𝑐𝑐𝑐: λ𝑊𝑊 < λ𝑐𝑐𝑐𝑐. In contrast, the solid 

bumps will grow forming side branches if its wave number is greater than the critical 

wavenumber: λ𝑊𝑊 > λ𝑐𝑐𝑐𝑐. However, the interface will be marginally stable if λ𝑊𝑊 = λ𝑐𝑐𝑐𝑐. The 

marginal stability hypothesis assumes that the tip radius is equal to λ𝑐𝑐𝑐𝑐, and this condition 

can be applied to Ivantsov’s solution to predict a unique solution for the tip radius 𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡 and 

velocity 𝑉𝑉. Lipton–Glicksman–Kurz model (LGK model) [17] used the marginal stability 

hypothesis and produced two equations that can be solved simultaneously to estimate 

𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑉𝑉. The application of marginal stability predicts that a growing dendrite with 

𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡 < λ𝑐𝑐𝑐𝑐 will become slower and blunt its tip. On the other hand, a growing dendrite with 

𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡 > λ𝑐𝑐𝑐𝑐 will grow faster and sharpen/split its tip.  

1.7.4 Nucleation 

Solidification consists of two stages: nucleation and growth. Nucleation involves small 

nuclei of the solid phase that grow or melt depending on its volume and surface energy. 
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The volume free energy change ∆𝐺𝐺𝑣𝑣 is the difference between the Gibbs energy of the solid 

phase and the liquid phase, and the value of ∆𝐺𝐺𝑣𝑣 is negative when the temperature is below 

the equilibrium melting temperature. The surface energy contribution 𝐺𝐺γ is associated with 

the forming solid surface, and it is always positive. The two energy contributions, ∆𝐺𝐺𝑣𝑣 and 

𝐺𝐺γ, compete with each other as follows: 

∆𝐺𝐺 = 𝑁𝑁𝑣𝑣 ∙ ∆𝐺𝐺𝑣𝑣 + 𝑁𝑁𝑠𝑠 ∙ 𝐺𝐺γ 𝐸𝐸𝐸𝐸1.5 

where, 𝑁𝑁𝑣𝑣 is the volume of the forming nucleus and 𝑁𝑁𝑠𝑠 is its surface. Thus, if ∆𝐺𝐺 is 

negative, the negative contribution of 𝑁𝑁𝑣𝑣 ∙ ∆𝐺𝐺𝑣𝑣 is greater than 𝑁𝑁𝑠𝑠 ∙ 𝐺𝐺γ, and the forming solid 

nucleus will grow. In contrast, if �𝑁𝑁𝑠𝑠 ∙ 𝐺𝐺γ� > |𝑁𝑁𝑣𝑣 ∙ ∆𝐺𝐺𝑣𝑣|, the forming solid nucleus will melt. 

Therefore, there is a critical nucleus size above which the forming nucleus will grow. The 

competition between ∆𝐺𝐺𝑣𝑣 and 𝐺𝐺γ can be illustrated graphically in Figure-1.10.  

 
Figure-1.10: Critical size for nucleation. 

There are two types of nucleation mechanisms: homogeneous and heterogeneous. With 

heterogeneous nucleation, the nuclei form at a pre-existing solid surface such as the weld 



23 
 

substrate. Conversely, with homogeneous nucleation the nuclei of the new phase form in 

its melt bulk. Both these nucleation mechanisms depend on the degree of undercooling. 

Heterogeneous nucleation requires less undercooling than homogeneous, because the 

contribution of surface energy is smaller. Therefore, heterogeneous nucleation is the major 

nucleation mechanism in welding. However, some weld center line grains (i.e. 

homogenously nucleated grains) can form under certain welding conditions, including low 

welding speed and an elliptical weld pool. The degree of undercooling determines the 

nucleation rate and grain size. Although stable nuclei form at a higher undercooling, the 

diffusivity of atoms in liquid decreases, resulting in low growth rate. Consequently, the 

solidification microstructure is finer at a higher undercooling since the nucleation rate is 

high and the growth rate is low.  

1.7.5 Surface Energy Anisotropy 

The propagation of an S/L interface requires a net flow of atoms attached to the interface, 

and in metals, this attachment produces a rough S/L interface. This atomistic interface 

roughness produces a high surface energy which is orientation dependant, 𝛾𝛾(𝑛𝑛�), and causes 

a variation in the growth rate of the dendrite according to the crystallographic direction. 

For BCC and FCC crystals, the higher surface energy is associated with <100> directions 

[9]. On the other hand, if the surface energy is equal in all crystallographic directions (i.e. 

isotropy), the resulting dendrites will resemble coral-like structures, see Figure-1.11b.  
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Figure-1.11: Crystal growth with (a) anisotropic Surface energy (dendrite), and (b) 
isotropic Surface energy (coral-like). [11], page-317.  

Since anisotropy influences crystal morphology during solidification, its effect should be 

included in the microstructure modeling, and the capillarity undercooling should be 

modified to incorporate the anisotropy effect. Including the effect of anisotropy in the the 

capillarity undercooling calculation is given by Gibbs-Thomson-Herring relationships 

[18]: 

∆𝑇𝑇𝑟𝑟 = Γ ∙ (1 − 15𝜖𝜖4 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐4𝜃𝜃) ∙ 𝐾𝐾 [Gibbs− Thomson− Herring] 𝐸𝐸𝐸𝐸1.6 

where Γ is the Gibbs-Thomson coefficient, 𝐾𝐾 is the S/L curvature, 𝐴𝐴(𝑛𝑛�) =

(1 − 15𝜖𝜖4 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐4𝜃𝜃) is the anisotropy function, 𝜖𝜖4 is the four fold anisotropy coefficient, 𝑛𝑛� 

is the local surface normal vector, and 𝜃𝜃 is the angle between 𝑛𝑛� and the direction of 

maximum surface energy. Regarding to Equation-1.6, if the anisotropy is weak (𝜖𝜖4 <

1/15), the growth is dendritic. In contrast, if the anisotropy is strong (𝜖𝜖4 > 1/15), the 

growth is facet [11]. Therefore, 𝜖𝜖4 can be any value between zero and 1/15 for metals. 

During the solidification simulation, if an interfacial cell is located along an easy growth 
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direction, it will accumulate more solid fraction in a time step. Therefore, the growth will 

be faster along the easy growth directions.  

In the case of 3D, the anisotropy of surface energy is described using two angles as shown 

in Figure-1.12. Therefore, Gibbs-Thomson-Herring relationship is more complicated, and 

according to [18] the capillarity undercooling is: 

∆𝑇𝑇𝑟𝑟 = Γ ∙ ��𝛾𝛾(𝑛𝑛�) +
𝛾𝛾2(𝑛𝑛�)
𝜕𝜕𝜃𝜃𝑧𝑧2

� ∙ 𝐾𝐾 + �𝛾𝛾(𝑛𝑛�) +
𝛾𝛾2(𝑛𝑛�)
𝜕𝜕𝜃𝜃𝑥𝑥𝑥𝑥2

� ∙ 𝐾𝐾� 𝐸𝐸𝐸𝐸1.7  

where, the anisotropy function is: 

𝛾𝛾(𝑛𝑛�) = (1 − 3𝜀𝜀) ∙ �1 +
4𝜀𝜀

1 − 3𝜀𝜀 �𝑐𝑐𝑐𝑐𝑐𝑐
4𝜃𝜃𝑧𝑧 + 𝑠𝑠𝑠𝑠𝑠𝑠4𝜃𝜃𝑧𝑧 ∙ �1 − 2𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃𝑥𝑥𝑥𝑥 ∙ 2𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃𝑥𝑥𝑥𝑥��� 𝐸𝐸𝐸𝐸1.8  

 
Figure-1.12: The angles that describe the anisotropy in 3D. 

1.8 Solidification Modeling  

Physical solidification problems occur when phase changes transform a liquid phase into a 

solid phase. Mathematically, this is known as a moving boundary or Stefan problem, after 

the pioneer work of Stefan. Phase change problems are nonlinear and difficult to solve due 
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to discontinuity at the interface between phases. Considering mathematics, the 

discontinuity indicates that the solution of the underlying partial differential equation 

(PDE) is not continuous through the entire computational domain. Physically, the interface 

indicates that the material properties (e.g. density) behind the interface is different than 

those ahead of interface. Moreover, as the interface is moving with time, its position is not 

known a priori and depends on the solution. Stefan worked with the solidification of ice 

[19], and he solved the heat transfer equation in both phases (ice and water) separately, 

then combined the two solutions by the heat balance condition at the interface, or Stefan 

condition. Stefan condition assumes that the temperature at the interface is constant and 

equal to the equilibrium freezing temperature. Thus, the difference of heat flux from the 

solid phase and the liquid phase does not change the temperature of the interface; rather, it 

moves the interface with a certain velocity.  

Solidification of a material depends on whether it is pure metal or an alloy. In both cases 

the latent heat is generated at the S/L interface and alter the thermal field around the 

interface. With alloy solidification, there is a compositional field or a compositional 

difference in solid and liquid phases due to solute rejection or absorption. The 

compositional difference is indicated in the alloy phase diagram. Both fields (thermal and 

compositional) drive the kinetics advance of the S/L interface, and ultimately determine 

the interface morphology and hence the entire microstructure. Mathematically, the 

composition difference should be applied as a boundary condition at the moving interface. 

Since the concentration field at the boundary influences the boundary movement, the 
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problem becomes complex. In addition, more complexity exists because the thermal 

properties such as thermal conductivity, density, and specific heat are temperature 

dependant. Thus, due to these complexities, solidification problems are nonlinear and 

difficult to solve. However, some analytical solutions for one-dimensional pure metals 

solidification problems have been proposed [11]. All analytical solutions assume a definite 

shape of the S/L interface such as flat, spherical, or paraboloid. For practical solidification 

modeling, i.e. modeling 3D alloys solidification, numerical schemes should be applied. 

The modeling can be conducted on different length scales as shown in Figure-1.12. 

Referring to Figure-1.13, on a macroscopic scale, the grain structures and 

macrosegregation can be predicted for a scale of cm to m.  On a mesoscopic scale, grain 

structures, cellular-to-equiaxed (CET) structure transition can be predicted for a length 

scale of mm. The dendritic growth morphology and microsegregation can be predicted on 

a microscopic scale. Finally, the S/L interface kinetics and morphology can be predicted 

on a nanoscopic scale. 

 
Figure-1.13: Solidification modeling length scales. [12], page-2. 
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1.8.1 Macroscopic Solidification Modeling 

On a macroscopic scale the solidification of a material can be computed by the enthalpy 

method, in which the phase change and the evolution of the latent heat is accounted for by 

solving the enthalpy form of heat transfer equation: 

𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= ∇ ∙ (𝑘𝑘𝑡𝑡ℎ ∙ ∇𝑇𝑇) [enthalpy formulation] 𝐸𝐸𝐸𝐸1.9 

where, 𝜌𝜌 and 𝑘𝑘𝑡𝑡ℎ are the density and thermal conductivity. With the enthalpy method, the 

relationship between the enthalpy and temperature (H-T) should be determined a priori 

(Figure-1.14). The main advantage of this method is that the solution is valid for the entire 

computational domain (i.e. both the solid and the liquid phases, and the mushy region). 

Therefore, the discontinuity at the S/L interface is resolved mathematically. 

 
Figure-1.14: (a) enthalpy function for pure materials, (b) alloys, (c) real alloys. [13] 

Initially, temperature 𝑇𝑇𝑡𝑡 and enthalpy 𝐻𝐻𝑡𝑡 are assigned to the entire computational domain 

at the first time step. By applying cooling boundary conditions, at the next time step 𝑡𝑡 +
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∆𝑡𝑡, the new enthalpy 𝐻𝐻𝑡𝑡+∆𝑡𝑡 is calculated using Equation-1.9 for the entire domain. Thus, 

the values of the new temperature 𝑇𝑇𝑡𝑡+∆𝑡𝑡 can be determined by using the relationship 

between enthalpy-temperature, as shown in Figure-1.14. The enthalpy functions for the 

solidification of alloys can be obtained using several models describing fraction of solid as 

function of temperature, as listed in Table-1. 

Table-1: Solidification models [13],  where, 𝑓𝑓𝑠𝑠 is the fraction of solid, 𝑇𝑇𝑙𝑙 is the equilibrium 
liquidus temperature, 𝑇𝑇𝑚𝑚 is the melting temperature of the host alloy, 𝐾𝐾𝑜𝑜 is the distribution 
coefficient, 𝑇𝑇𝑠𝑠 is the equilibrium solidus temperature, and 𝑇𝑇 is the local temperature. 

Solidification model Description 

𝑓𝑓𝑠𝑠 =
𝑇𝑇𝑙𝑙 − 𝑇𝑇

(1 − 𝐾𝐾𝑜𝑜)(𝑇𝑇𝑚𝑚 − 𝑇𝑇) 

Equilibrium solidification model considering the lever 

rule in with complete mixing of solute in both liquid 

and solid.  

𝑓𝑓𝑠𝑠 = 1 − �
𝑇𝑇𝑚𝑚 − 𝑇𝑇
𝑇𝑇𝑚𝑚 − 𝑇𝑇𝑙𝑙

�
1

𝐾𝐾𝑜𝑜−1
 

Scheil solidification model in which a complete mixing 

of solute in liquid and no mixing in solid are assumed.  

𝑓𝑓𝑠𝑠 =
𝑇𝑇𝑙𝑙 − 𝑇𝑇
𝑇𝑇𝑙𝑙 − 𝑇𝑇𝑠𝑠 

Linear distribution of latent heat of freezing. This 

model is assumed if 𝑓𝑓𝑠𝑠 cannot easily be evaluated as a 

function of temperature.  

The models in Table-1 consider two approximations that are a constant distribution 

coefficient (𝐾𝐾0) and a linear liquidus line. The linearization approach increases the 

uncertainty in solidification modeling, particularly for higher component alloys. To avoid 

such simplifications, more accurate thermodynamics model is necessary. This study 

suggests that more accurate model can be achieved by coupling CALPHAD with 

solidification modeling. In this case CALPHAD is used to obtain the equilibrium 
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information for the S/L interface. The main advantage of this is the ability to model alloys 

with non-linearized phase diagrams, since the data of the phase diagram can be obtained 

for any temperature and composition from the CALPHAD calculations. In addition, multi-

components alloys can be modeled in the same manner as binary alloys, and the benefits 

of coupling CALPHAD can be achieved at any scale of solidification modeling. 

1.8.2 Mesoscopic Solidification Modeling  

At the mesoscale, a boundary envelope is considered for each grain in the computational 

domain, and the growth kinetics of each grain envelope is computed for the envelope, 

regardless of the internal features of the grain, as shown in Figure-1.15.  

 
Figure-1.15: Grain envelope geometry used in the mesoscale solidification modeling. 

The model in Figure-1.15 has two steps: nucleation and growth. In the nucleation step, the 

number of grains is determined by a nucleation model that relates the grain density and the 

undercooling, 𝑛̇𝑛 ∝ ∆𝑇𝑇, with a specific distribution. Once grains are nucleated, they grow 

according to the growth kinetics model. The kinetics describes the movement of the 

envelope tips, and the cellular-to-equiaxed transition can be predicted, which is very 

important for solidification microstructure properties. Figure-1.16 shows the prediction 
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ability of the mesoscale CA for microstructure. Typically, if a parallel computation is used 

the size of the computational domain in mesoscale modeling can be from millimeters up to 

a few centimeters [20]. Some references describe using CA at this scale as classical CA 

modeling [13]. 

 
Figure-1.16: An experimental and mesoscale CA simulated macrostructures of an Al-
4.5%Cu alloy in casting with various pouring temperatures: (a) 710 °𝐶𝐶, (b) 760 °𝐶𝐶 and 
(c) 810 °𝐶𝐶. [13], page-231. 

Originally, the cellular automaton (CA) algorithm was developed by John von Neumann 

to model complex physical phenomena using simple laws [21]. The first numerical 

modeling of a dendritic structure evolution was performed by Umantsev et al in 1986 [15]. 

In the nineties, Rappaz et al applied the CA algorithm to simulate the solidification of a 

cast microstructure [22]. The general procedure of the CA algorithm consists of four steps: 

(1) subdivide the computational domain into cells and predetermine the initial state; (2) 
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specify the state variables to be calculated for each cell (e.g. temperature, crystallographic 

orientation, solid, liquid); (3) specify the definition of the neighborhood cells; and (4) 

specify the transition or capturing rules that determine whether a cell will change its state 

or not.  

1.8.3 Microscopic Solidification Modeling (Cellular Automata Modeling) 

Microscopic CA modeling has the same four basic steps as mesoscale modeling. Unlike 

mesoscale CA, the main interest with microscopic modeling is the internal microstructure 

features such as side branching and microsegregation. Therefore, the effect of curvature 

should be included into the microscopic model. In this case, the values of the curvature of 

every interfacial cell are considered to be state variables, which means, the effect of 

capillarity undercooling should be incorporated in the CA model. In addition, the 

microsegregation within every cell can be computed, which is helpful when studying the 

microstructure quality as a homogenous microstructure is advantageous. The location of 

the S/L interface is not explicitly defined in CA modeling, but it is implicitly defined by 

the solid fraction values in all cells. Using today’s computational capabilities, the size 

domain of the microscopic CA modeling has been defined as between 0.1 to 1mm3.  

In microscopic CA modeling, changes in the solid fraction of an interfacial cell can be 

estimated using the kinetics of the S/L interface. The kinetics of the interface, or the 

velocity of the advanced solid (𝑉𝑉𝑠𝑠/𝑙𝑙), can be calculated using the Stefan condition [23] or 

kinetics equation [3]. 
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𝑉𝑉𝑠𝑠/𝑙𝑙 ∙ 𝐶𝐶𝑙𝑙∗(𝑘𝑘𝑜𝑜 − 1) = �−𝐷𝐷𝑙𝑙 �
𝜕𝜕𝐶𝐶𝑙𝑙
𝜕𝜕𝜕𝜕 +

𝜕𝜕𝐶𝐶𝑙𝑙
𝜕𝜕𝜕𝜕 +

𝜕𝜕𝐶𝐶𝑙𝑙
𝜕𝜕𝜕𝜕

� + 𝐷𝐷𝑠𝑠 �
𝜕𝜕𝐶𝐶𝑠𝑠
𝜕𝜕𝜕𝜕 +

𝜕𝜕𝐶𝐶𝑠𝑠
𝜕𝜕𝜕𝜕 +

𝜕𝜕𝐶𝐶𝑠𝑠
𝜕𝜕𝜕𝜕

�� ∙ 𝑛𝑛� 𝐸𝐸𝐸𝐸1.10𝑎𝑎

[solute conservation at the interface]
 

𝑉𝑉𝑥𝑥
𝑠𝑠/𝑙𝑙 =

𝑘𝑘𝑠𝑠 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕�𝑠𝑠

− 𝑘𝑘𝑙𝑙 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕�𝑙𝑙

𝐿𝐿ℎ
[heat balance at the interface] 𝐸𝐸𝐸𝐸1.10𝑏𝑏 

𝑉𝑉𝑠𝑠/𝑙𝑙 = 𝜇𝜇𝑘𝑘 ∙ ∆𝑇𝑇𝑘𝑘 [Kinetics equation] 𝐸𝐸𝐸𝐸1.11 

Both models are applied by maintaining the equilibrium at the interfacial cells and using 

the linearized approach of the phase diagrams. This study uses CALPHAD calculation to 

impose the equilibrium on the interfacial cells, without computing the kinetics of the S/L 

interface. Thus, for any alloy (binary or 𝑛𝑛-order) CALPHAD can estimate the solid fraction 

as a function of cell temperature and compositions: 𝑓𝑓𝑠𝑠 = 𝐹𝐹(𝑇𝑇𝑠𝑠/𝑙𝑙 ,𝐶𝐶1
𝑠𝑠/𝑙𝑙 ,𝐶𝐶2

𝑠𝑠/𝑙𝑙,⋯𝐶𝐶𝑛𝑛
𝑠𝑠/𝑙𝑙). 

1.8.4 Nanoscopic Solidification Modeling (Phase Field Modeling) 

At this small length scale, the resolution should be small enough to capture the thickness 

of S/L interfaces 1-10nm. Although phase-field modeling of the S/L interface can produce 

more accurate microstructure predictions, it is computationally expensive. The phase-field 

method is used to model solidification and evolving microstructures in materials. The 

approach is based on the Gibbs free energy minimization principle. The first component of 

the phase field modeling is to describe the state of a system by the order parameter ∅(𝑥𝑥, 𝑡𝑡), 

which is a function of position and time. The value of the order parameter defines the state 

of any point in the system. For example, if a system has two states (i.e. solid and liquid in 
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the case of solidification), any point with an order parameter of -1 is in the solid phase, and 

any point with an order parameter of +1 is in the liquid phase. The next component is to 

define a free energy density function  (𝑓𝑓) for the system. Free energy density is a local 

variable that represents the free energy of a phase under current thermodynamic conditions, 

and it is dependent on the state of the system at each point, 𝑓𝑓[∅(𝑥𝑥, 𝑡𝑡)]. The free energy of 

a two-phase system is comprised of three energy terms that represent the energy that 

corresponds to the volume of the first phase, the second phase, and the interface. If we 

ignore the free energy of the interface, the total free energy of a system is the sum of the 

volume of each phase multiplied by the free energy density of the phase. The final 

component in phase field modeling is to define the total free energy functional (𝐺𝐺) for the 

entire system domain (Ω) as follows: 

𝐺𝐺 = � 𝑓𝑓[∅(𝑥𝑥, 𝑡𝑡)]𝑑𝑑𝑥𝑥
Ω

𝐸𝐸𝐸𝐸1.12 

In fact, the free energy density depends on the values of its order parameter (∅) and gradient 

(∇∅), and the width and energy of an interface depends on the gradient of the order 

parameter. Every point has an order parameter value between -1 and +1 (−1 < ∅ < +1), 

that corresponds to the interface. Thus, the interface can be included in Equation-1.12 as 

shown in Equation-1.13. 

𝐺𝐺 = � 𝑓𝑓[∅(𝑥𝑥, 𝑡𝑡),∇∅(𝑥𝑥, 𝑡𝑡)]𝑑𝑑𝑥𝑥
Ω

𝐸𝐸𝐸𝐸1.13 
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Considering that the free energy decreases as ∅ changes with time, and expanding 

Equation-1.13 by Taylor series with a second order truncation yields the functional free 

energy as: 

𝐺𝐺 = � �𝑓𝑓(∅) + 
∈
2

|∇∅|2� 𝑑𝑑𝑥𝑥
Ω

𝐸𝐸𝐸𝐸1.14 

where ∈ is a function of the interface orientation. If we consider a variation of the functional 

free energy, a partial differential equation for the evolution of ∅ can be obtained as: 

𝜕𝜕∅
𝜕𝜕𝜕𝜕 = −𝑀𝑀

𝛿𝛿𝐺𝐺
𝛿𝛿∅ 𝐸𝐸𝐸𝐸1.15 

where 𝑀𝑀 is a kinetics coefficient. The free energy density should be defined as ∅ = +1 for 

liquids and ∅ = −1 for solids. Caginalp [24] proposed the following expression for the 

free energy density function: 

𝑓𝑓(∅) =
1
8

(∅2 − 1)2 − 2𝑇𝑇∅ 𝐸𝐸𝐸𝐸1.16 

where ∅ of the solid is equal to -1 and ∅ of the liquid is equal to +1 at 𝑇𝑇 = 0. Another 

model of the free energy density function suggested by Karma and Rappel [25] has the 

following form: 

𝑓𝑓(∅) =
∅4

4 −
∅2

2 + 𝜆𝜆 ∙ 𝑇𝑇 ∙ ∅ �1 − 2
∅2

3 +
∅4

5 � 𝐸𝐸𝐸𝐸1.17 
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Kobayashi [26] introduced another form of the free energy density function, and many 

other researchers also proposed models of the function. Although these models were 

attempts to mimic the behavior of actual thermodynamic systems, more accurate free 

energy expressions can be determined using CALPHAD.  

Unlike cellular automata, using phase field method precisely defines the interface between 

solid- and liquid phases and its finite thickness, which resolves the discontinuity problem 

of the diffusion equation at a sharp interface, as shown in Figure-1.17. However, since the 

interface is finite and thin, the mesh size must be too small in order to represent the 

interface. If too fine mesh is used, a costly computationally solution or complex mesh-

adaptive technique is required. 

 
Figure-1.17: (a) continuous interface, (b) sharp interface. 

To summarize, phase field modeling is a successful tool to reproduce dendritic growth 

features including tip growth behavior, coarsening, crystallographic orientations, and the 

motion of grain boundaries during impingement. The method describes the S/L interface 

as a continuous function, thereby avoiding the discontinuity and tracking of the interface. 
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The PF method requires a very fine grid definition to smoothly define the S/L interface, 

leading to very high computational cost. This limits the simulation to a single dendrite or 

a very small computational domain. In contrast CA model can use a coarser grid which is 

more efficient computationally than the phase field model. In [27] a comparison study was 

conducted to compare 2D CA and PF, using the same simulation parameters to predict a 

2D dendrite growth with a single nucleus and multiple arbitrary-oriented nuclei. The study 

found that both PF and CA were capable to predict the growth with good agreement. A. 

Choudhury et al [28] evaluated the performance of PF and CA, and concluded that a hybrid 

method of CA and PF could be developed that combines the efficiency of CA and the 

accuracy of PF. This method is expected to be useful for the investigation of remelting and 

fragmentation in the late stages of solidification. 

1.9 CALPHAD vs. The Linearization Approach of Phase Diagram 

According to the literature, cellular automata-based solidification models apply linearized 

approximation to describe the solidus and liquidus lines of an alloy [23, 13, 29]. This means 

that a linear equation can be used to determine the relationship between the equilibrium 

temperature and the concentration. The linearization approach is accepted for any alloy 

that exhibits slightly curved S/L boundaries. Figure-1.18 shows the aluminum rich corner 

of Al-Cu and Al-Si binary phase diagrams. As both these systems have a near-linear 

liquidus line, knowing the concentration of the alloy and slope of liquidus line, allows the 

temperature to be calculated by the linear relation. The resulting temperature is used to 
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calculate the kinetics of a moving S/L interface. If a system has more than two chemical 

components, such as a Al-Cu-Si ternary system, we assume that the liquidus slope of Al-

Cu in the binary system is equal to the liquidus of Al-Cu in the ternary system, and that the 

liquidus slope of Al-Si in the binary system is equal to the liquidus slope of Al-Si in the 

ternary system.  

  
Figure-1.18: Linearization approach of (a) Al-Cu binary system and (b) Al-Si binary 
system. [30], pages-286, 316. 

This linearization approach involves two uncertainties. The first is approximating the S/L 

as straight lines, even if they are slightly curved. The second uncertainty is considering the 

behavior of a ternary system (e.g. Al-Cu-Si ternary) as two independent binary systems Al-

Cu and Al-Si, which does not consider any interaction between Cu and Si. With higher 

order alloys we consider the equilibrium temperatures and compositions of any two of the 

components equivalent to those of their binary systems. This adds uncertainty to the 

solidification model, since the behavior of a single component in a binary system is 
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different than its behavior in a higher order alloy. Consequently, as the number of 

components in an alloy increases the uncertainty of the solidification model also increases.  

Linearization approximation of some important binary systems is invalid, because of the 

high curvature of the S/L lines. For example, in the Fe-Cr binary system shown in Figure-

1.19, both solidus and liquidus curves cannot be approximated by straight lines. Therefore, 

the solidification of this binary alloy cannot be investigated using the linearization 

approach. Using CALPHAD overcomes this limitation and increases the accuracy of the 

microstructure prediction, and it also has the potential to study any practical alloy. This 

study couples CALPHAD with CA to study Fe-Cr-C stainless steel alloy. 

 
Figure-1.19: Fe-Cr binary phase diagram. 
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Chapter-2: The Computation of Phase Diagram (CALPHAD) 

 

2.1 Thermodynamics Potentials  

In thermodynamics, the term ‘system’ is used to identify the subject of the analysis. The 

system is distinguished from its surroundings by a fixed or moving boundary, and it 

interacts with its surrounding through the boundary by exchanging energy and/or matter. 

If the system can exchange both energy and matter with its surroundings, it is known as an 

open system. The system is called a closed system if it can only exchange energy, and it is 

known as an isolated system if it cannot exchange energy or matter. The properties of a 

given system can be extensive, intensive, or partial [31]. Extensive properties depend on 

system size such as volume (V) or composition (n), intensive properties do not depend on 

system size such as temperature (T) and pressure (P), and partial properties, such as 

chemical potentials (𝜇𝜇), are molar properties. Natural variables, or independent variables, 

are selected to describe the macrostate of a system, and a given macrostate can be 

represented by a number of different microstates. Essentially, the microstate of a system is 

the specific arrangement of the energy of each constituent in the system. 

The thermodynamic state of a system can be described by thermodynamic potentials or 

fundamental functions. Internal energy (U), Gibbs energy (G), Enthalpy (H), and 

Helmholtz energy (F) are four different potential energies. Each of which is defined by its 

own natural variables.  For example, temperature, pressure, and composition are the natural 
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variables for Gibbs energy, 𝐺𝐺(𝑇𝑇,𝑃𝑃, 𝑛𝑛). All thermodynamic properties of a system can be 

calculated if its energy potential is expressed as a function of its natural variables, which 

can be done by taking partial derivatives of the energy potential with respect to one of its 

natural variables. Chemical potentials, for example, can be calculated from Gibbs energy 

as 𝜇𝜇 = �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑇𝑇,𝑃𝑃

. 

2.2 Internal Energy (U) and Gibbs Energy (G) 

The internal energy of a system defined in respect to some reference state is equal to the 

sum of energy added or removed by heat, work, and matter. 

𝑈𝑈 = 𝑄𝑄 −𝑊𝑊 + 𝐺𝐺 [internal energy] 𝐸𝐸𝐸𝐸2.1 

where, Q, W, and G are the energy added or removed by heat, mechanical work, and matter. 

Each energy term can be described by a conjugate pair (i.e. 𝑄𝑄 = 𝑇𝑇 ∙ 𝑆𝑆, 𝑊𝑊 = 𝑃𝑃 ∙ 𝑉𝑉, 𝐺𝐺 = 𝜇𝜇 ∙

𝑛𝑛) as in Eq-2.2.  

𝑈𝑈 = 𝑇𝑇 ∙ 𝑆𝑆 − 𝑃𝑃 ∙ 𝑉𝑉 + �𝜇𝜇𝑖𝑖 ∙ 𝑛𝑛𝑖𝑖

𝑛𝑛𝑜𝑜.𝐶𝐶

𝑖𝑖

[internal energy with conjugate pairs] 𝐸𝐸𝐸𝐸2.2 

where, 𝑆𝑆 is the system entropy, 𝑉𝑉 is the system volume, 𝑛𝑛𝑛𝑛.𝐶𝐶 is the number of components 

in the system, 𝜇𝜇𝑖𝑖 is the chemical potential of a component 𝑖𝑖, 𝑛𝑛𝑖𝑖 is the quantity of moles of 

component 𝑖𝑖. By taking the total derivative of U and eliminating the zero terms, the 

differential form of Eq-2.2 is as follows: 
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𝑑𝑑𝑑𝑑 = 𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑃𝑃𝑃𝑃𝑃𝑃 + �𝜇𝜇𝑖𝑖 ∙ 𝑑𝑑𝑛𝑛𝑖𝑖
𝑖𝑖

[the differential form of internal energy] 𝐸𝐸𝐸𝐸2.3 

Eq-2.3 is the energy scheme of the combined law of the first and second laws of 

thermodynamics, with 𝑆𝑆,𝑉𝑉, 𝑛𝑛𝑖𝑖 the natural variables for U.  

Thermodynamics potentials can be mathematically deduced from each other using the 

Legendre transformation. For example, using the transformation, allows the internal energy 

function to be reformulated by replacing S and V with T and P to introduce Gibbs energy. 

Mathematically, the terms d(TS) and d(-PV) are subtracted from both sides of Eq-2.3. 

𝑑𝑑𝑑𝑑 = 𝑑𝑑(𝑈𝑈 − 𝑇𝑇𝑇𝑇 + 𝑃𝑃𝑃𝑃) = −𝑆𝑆𝑆𝑆𝑆𝑆 + 𝑉𝑉𝑉𝑉𝑉𝑉 + �𝜇𝜇𝑖𝑖 ∙ 𝑑𝑑𝑛𝑛𝑖𝑖
𝑖𝑖

[Legendre transformation] 𝐸𝐸𝐸𝐸2.4 

This transformation is useful since the variables T and P are readily controlled 

experimentally. According to Eq-2.4, under a constant temperature and pressure, the 

differential Gibbs energy is equal to 

𝑑𝑑𝑑𝑑 = �𝜇𝜇𝑖𝑖 ∙ 𝑑𝑑𝑛𝑛𝑖𝑖
𝑖𝑖

[Gibbs energy ] 𝐸𝐸𝐸𝐸2.5 

From Eq-2.5, the chemical potential of component 𝑖𝑖 is equal to 

𝜇𝜇𝑖𝑖 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑛𝑛𝑖𝑖

[the chemical potential of component 𝑖𝑖] 𝐸𝐸𝐸𝐸2.6 

A thermodynamics system is typically comprised of many subsystems, and if all the 

subsystems are under the same potential values, the energy potentials of the system are 
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subject to the law of additivity. For example, the internal energy of a composite system is 

equal to the sum of all subsystems’ internal energy, if the the subsystems have the same 

values of potentials P and T.  

2.3 Metallurgical Thermodynamics  

Metallurgical thermodynamics studies the equilibrium states of materials and maps them 

in phase diagrams; a piece of material or alloy can be considered to be a closed 

thermodynamics system. An alloy is a heterogeneous system comprised of several open 

homogenous subsystems, such as phases or grains, and in this context, grain boundaries 

and phase boundaries are the system boundaries. According to the law of additivity, 

extensive properties of an alloy are equal to the sum of the properties in all phases. For 

example, if a material is composed of many phases (∅ = 1,2,⋯) with many components 

(𝑖𝑖 = 1,2,⋯), and each phase has its own internal energy 𝑈𝑈∅, entropy 𝑆𝑆∅, and composition 

𝑛𝑛∅, the properties of the alloy can be described as 

𝑈𝑈𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = �𝑈𝑈∅

∅

𝑆𝑆𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = �𝑆𝑆∅
∅

𝑛𝑛𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = ��𝑛𝑛𝑖𝑖
∅

𝑖𝑖∅

𝐸𝐸𝐸𝐸2.7 

The change in any phase internal energy can be described by Eq-2.3 as: 

𝑑𝑑𝑑𝑑∅ = 𝑇𝑇∅ ∙ 𝑑𝑑𝑑𝑑∅ − 𝑃𝑃∅ ∙ 𝑑𝑑𝑑𝑑∅ + �𝜇𝜇𝑖𝑖
∅ ∙ 𝑑𝑑𝑑𝑑𝑖𝑖

∅

𝑖𝑖

[the combined law for any phase] 𝐸𝐸𝐸𝐸2.8 
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The Gibbs energy of a phase is described as 

𝐺𝐺∅ = �𝜇𝜇𝑖𝑖
∅ ∙ 𝑛𝑛𝑖𝑖

∅

𝑖𝑖

𝐸𝐸𝐸𝐸2.9 

Accordingly, the Gibbs energy of the system is 

𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = ��𝜇𝜇𝑖𝑖
∅ ∙ 𝑛𝑛𝑖𝑖

∅

𝑖𝑖∅

𝐸𝐸𝐸𝐸2.10 

2.4 General Thermodynamics Equilibrium  

Equilibrium indicates that the properties of a system are time independent, and the system 

will revert to the equilibrium state if it is disturbed. The thermodynamics extremum 

principle states that for an isolated system, the entropy has a maximum value at 

equilibrium, because the entropy can only increase. Alternatively, the equilibrium criteria 

can be obtained by minimizing any energy function (U, H, F, or G). For example, if a 

system has constant entropy, volume, and number of moles, the internal energy is minimum 

at equilibrium. If a two-phase system with α-phase and β-phase is considered, and the 

combined statement of the first and second law of thermodynamics for the two phases are 

𝑑𝑑𝑑𝑑𝛼𝛼 = 𝑇𝑇𝛼𝛼𝑑𝑑𝑑𝑑𝛼𝛼 − 𝑃𝑃𝛼𝛼𝑑𝑑𝑑𝑑𝛼𝛼 + 𝜇𝜇𝛼𝛼𝑑𝑑𝑑𝑑𝛼𝛼 𝐸𝐸𝐸𝐸2.11𝑎𝑎 

𝑑𝑑𝑑𝑑𝛽𝛽 = 𝑇𝑇𝛽𝛽𝑑𝑑𝑑𝑑𝛽𝛽 − 𝑃𝑃𝛽𝛽𝑑𝑑𝑑𝑑𝛽𝛽 + 𝜇𝜇𝛽𝛽𝑑𝑑𝑑𝑑𝛽𝛽 𝐸𝐸𝐸𝐸2.11𝑏𝑏 

The change in internal energy of the entire system can be obtained by using the law of 

additivity: 
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𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑇𝑇𝛼𝛼𝑑𝑑𝑑𝑑𝛼𝛼 − 𝑃𝑃𝛼𝛼𝑑𝑑𝑑𝑑𝛼𝛼 + 𝜇𝜇𝛼𝛼𝑑𝑑𝑑𝑑𝛼𝛼 + 𝑇𝑇𝛽𝛽𝑑𝑑𝑑𝑑𝛽𝛽 − 𝑃𝑃𝛽𝛽𝑑𝑑𝑑𝑑𝛽𝛽 + 𝜇𝜇𝛽𝛽𝑑𝑑𝑑𝑑𝛽𝛽 𝐸𝐸𝐸𝐸2.12 

Substituting the constrains 𝑑𝑑𝑑𝑑𝛼𝛼 = 𝑑𝑑𝑑𝑑𝛽𝛽,  𝑑𝑑𝑑𝑑𝛼𝛼 = 𝑑𝑑𝑑𝑑𝛽𝛽, and 𝑑𝑑𝑑𝑑𝛼𝛼 = 𝑑𝑑𝑑𝑑𝛽𝛽 into Equation-2.12 

gives: 

𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 = �𝑇𝑇𝛼𝛼 − 𝑇𝑇𝛽𝛽�𝑑𝑑𝑑𝑑𝛼𝛼 − �𝑃𝑃𝛼𝛼 − 𝑃𝑃𝛽𝛽�𝑑𝑑𝑑𝑑𝛼𝛼 + �𝜇𝜇𝛼𝛼 − 𝜇𝜇𝛽𝛽�𝑑𝑑𝑑𝑑𝛼𝛼 𝐸𝐸𝐸𝐸2.13 

The minimum internal energy (Equation-2.13) is achieved when all coefficients are equal 

to zero. This yields to the thermodynamics equilibrium criteria: 𝑇𝑇𝛼𝛼 = 𝑇𝑇𝛽𝛽, 𝑃𝑃𝛼𝛼 = 𝑃𝑃𝛽𝛽, and 

𝜇𝜇𝛼𝛼 = 𝜇𝜇𝛽𝛽. Therefore, a thermodynamics system is at equilibrium when the temperature, 

pressure-, and chemical potentials among the system parts are equal.  

As constraining entropy and volume is not experimentally practical, using internal energy 

in developing phase diagrams is difficult, so in this case, Gibbs free energy, in which 

temperature and pressure are controlled parameters, is used instead. Gibbs energy can be 

applied as a tool to recognize if a thermodynamics process can occur spontaneously. For 

spontaneous change between two states, the difference in Gibbs energy should be negative, 

∆𝐺𝐺 < 0. The Gibbs energy function can also determine the equilibrium, because its value 

is minimum at equilibrium. In Gibbs energy formulation, equilibrium is reached if the 

chemical potentials of all parts in the system are equal, since the temperature and the 

pressure are constants.  
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2.5 Phase Equilibria and Gibbs Energy 

Metallurgical thermodynamics is a powerful tool for predicting whether an alloy is in 

equilibrium or not. Phase transformation occurs because the initial state of the alloy is 

unstable relative to the final state, and phase stability is measured by Gibbs free energy of 

the alloy. The definition of Gibbs free energy of a system is: 

𝐺𝐺 = 𝑈𝑈 + 𝑃𝑃𝑃𝑃 − 𝑇𝑇𝑇𝑇 → 𝐺𝐺 = 𝐻𝐻 − 𝑇𝑇𝑇𝑇 [Gibbs free energy] 𝐸𝐸𝐸𝐸2.14  

where H is the enthalpy, T is the temperature, and S is the entropy of the system. The term 

PV in Equation-2.14 can be dropped, as the change in volume is very small when dealing 

with condensed phases. A system is in equilibrium when it has no need to change, or 

mathematically when 𝑑𝑑𝑑𝑑 = 0.  Therefore, solid phases are stable at low temperatures 

because the term H is higher than the term TS. In contrast, liquids become more stable at 

high temperatures because the term TS dominates. 

The relationship between equilibrium and Gibbs energy is shown in Figure-2.1, which 

shows a schematic variation of Gibbs free energy with atoms arrangement. At 

configurations A and B the system is in equilibrium, since the change in Gibbs energy is 

zero. Configuration B is a metastable equilibrium (local minimum) and configuration A is 

the stable phase (global minimum). However, at any intermediate configuration, in which 

𝑑𝑑𝑑𝑑 ≠ 0, the state is unstable, and the system will move toward configuration A or B 

depending on the available driving force. The necessary criterion for any phase 
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transformation is ∆𝐺𝐺 = 𝐺𝐺2 − 𝐺𝐺1 < 0, because the transformation should result in 

decreased Gibbs energy.  

 
Figure-2.1: The variation of Gibbs free energy with the arrangement of atoms. 

 
2.5.1 Phase Stability of Metallic Alloys 

A pure material is a single component system consisting of one element or molecule that 

does not dissociate. Stable phases can be predicted by plotting the variation of Gibbs energy 

with temperature (G-T). Enthalpy and thermal entropy, the components of Gibbs energy, 

can be calculated from the specific heat at a constant pressure (Cp), as described in 

Equation-2.15 and 2.16.  

𝐻𝐻 = 𝐻𝐻0 + �𝐶𝐶𝑝𝑝𝑑𝑑𝑑𝑑
𝑇𝑇

298

𝐸𝐸𝐸𝐸2.15 

𝑆𝑆 = 𝑆𝑆0 + �
𝐶𝐶𝑝𝑝
𝑇𝑇
𝑑𝑑𝑑𝑑

𝑇𝑇

0

𝐸𝐸𝐸𝐸2.16 
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where, 𝑆𝑆0 is the entropy reference state and 𝐻𝐻0is the enthalpy reference state. The variation 

of Gibbs energy with temperature can be illustrated by substituting Equation-2.15 and 

Equation-2.16 into Equation-2.14.  

In alloys, equilibrium involves variables of pressure, temperature-, and composition, and 

depends on how the Gibbs energy varies according to these variables. In a two-component 

(binary) alloy at a constant pressure, phase stability can be determined from the variations 

in Gibbs free energy of the all possible phases, as well as temperature and composition. 

Gibbs energy variations with composition at a constant temperature can be depicted in 

energy-composition diagrams. 

Figure-2.2d shows a pseudo-isomorphous binary system with liquid and solid phases. If 

the Gibbs energy of the liquid phase is lower than that of the solid phase for all variations 

of B, the liquid phase is stable, as illustrated in Figure-2.2a. In reverse, the solid phase will 

be stable if it has a lower Gibbs energy, as shown in Figure-2.2b. However, when two 

Gibbs energy curves intersect, the liquid and solid phases coexist in equilibrium with one 

another and produce a ‘mushy zone’, as shown in Figure-2.2c. For two phases in 

equilibrium, there is a common tangent line that touches the two Gibbs curves at two points. 

These points present the liquidus and the solidus equilibrium composition as in Figure-

2.2d. Another example is the stability of eutectic systems is shown in Figure-2.3a. At the 

eutectic temperature (TE), there are three phases in equilibrium: the liquid phase 𝑙𝑙 and two 

solid phases 𝛼𝛼 and β. Thus, there is a common tangent line that touches the three curves at 
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three distinct points, as in Figure-2.3b. These points represent the equilibrium composition 

of each phase.   

 
Figure-2.2: Gibbs energy and the stability of a binary system. [35], page-33. 

Another example is the stability of eutectic systems is shown in Figure-2.3a. At the eutectic 

temperature (TE), there are three phases in equilibrium: the liquid phase 𝑙𝑙 and two solid 

phases 𝛼𝛼 and β. Thus, there is a common tangent line that touches the three curves at three 

distinct points, as in Figure-2.3b. These points represent the equilibrium composition of 

each phase.  

 
Figure-2.3: The Gibbs energy curves at eutectic reaction. [35], page-37. 
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2.6 Phases Stability and Chemical Potentials 

Chemical potential determines the inclination of a chemical component to diffuse from one 

phase to another. If the chemical potential is equal in both phases there is equilibrium and 

no tendency for the diffusion. For a metallurgical system with two components (A and B), 

and three phases (𝑙𝑙, 𝛼𝛼-, and 𝛽𝛽), there is chemical potential for each component in each 

phase, denoted as 𝜇𝜇𝐴𝐴𝑙𝑙 , 𝜇𝜇𝐵𝐵𝑙𝑙 , 𝜇𝜇𝐴𝐴𝛼𝛼, 𝜇𝜇𝐵𝐵𝛼𝛼, 𝜇𝜇𝐴𝐴
𝛽𝛽, 𝜇𝜇𝐵𝐵

𝛽𝛽.  For equilibrium, under constant pressure and 

temperature, all atoms in the system must not tend to move. Figure-2.4, shows that if the 

equilibrium state is not achicved, the chemical potentials of atoms A and B in the α-phase 

are not equal to those of the atoms in the β-phase, as in Figure-2.4a. In this case, atoms A 

and B will transfer from one phase to another until the equilibrium state is reached, as 

shown in Figure-2.4b.  

 
Figure-2.4: Chemical potentials at constant temperature and pressure for (a) non-
equilibrium state and (b) Equilibrium state. 
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If the temperature or pressure changes, the equilibrium state is altered, and the atoms will 

transfer between the two phases leading to a new equilibrium state that could produce a 

different phase. 

Chemical potentials can be calculated mathematically from the Gibbs free energy curves. 

Since Gibbs energy changes when atoms are added or removed, its value is proportional to 

the amount of the added/removed atoms (𝐺𝐺 ∝ 𝑛𝑛). For instant, if a small quantity of A-

atoms (𝑑𝑑𝑛𝑛𝐴𝐴) is added at a constant temperature, pressure, and constant number of B-atoms 

to the system, the proportionality constant is equal to the chemical potential, 𝑑𝑑𝑑𝑑 = 𝜇𝜇𝐴𝐴 ∙

𝑑𝑑𝑛𝑛𝐴𝐴. Thus, the value of chemical potential can be calculated as: 

𝜇𝜇𝐴𝐴 = �
𝜕𝜕𝐺𝐺
𝑑𝑑𝑛𝑛𝐴𝐴

�
𝑇𝑇,𝑃𝑃,𝑛𝑛𝐵𝐵

𝐸𝐸𝐸𝐸2.17 

In Equation-2.17, the chemical potential is known as the partial molar free energy. The 

same procedure is valid if we add B-atoms to the system, and the next expression for the 

differential Gibbs energy can be written as: 

𝑑𝑑𝐺𝐺 = 𝜇𝜇𝐴𝐴 ∙ 𝑑𝑑𝑛𝑛𝐴𝐴 + 𝜇𝜇𝐵𝐵 ∙ 𝑑𝑑𝑛𝑛𝐵𝐵 𝐸𝐸𝐸𝐸2.18 

If molar fractions (𝑋𝑋𝐴𝐴, 𝑋𝑋𝐵𝐵) are used instead of the quantity of components (𝑛𝑛𝐴𝐴, 𝑛𝑛𝐵𝐵), the 

value of Gibbs energy per mol can be written as: 

𝐺𝐺 = 𝜇𝜇𝐴𝐴 ∙ 𝑋𝑋𝐴𝐴 + 𝜇𝜇𝐵𝐵 ∙ 𝑋𝑋𝐵𝐵 𝐸𝐸𝐸𝐸2.19 
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Therefore, the relationship between Gibbs energy and chemical potentials yields to a 

relationship illustrated in Figure-2.5. The chemical potential of 𝛼𝛼 solution of a multi-

components system can be expressed as follows [32]: 

𝜇𝜇𝑖𝑖𝛼𝛼 = 𝐺𝐺𝛼𝛼 +
𝜕𝜕𝜕𝜕𝛼𝛼

𝜕𝜕𝜕𝜕𝑖𝑖
−�

𝜕𝜕𝜕𝜕𝛼𝛼

𝜕𝜕𝜕𝜕𝑖𝑖

𝑛𝑛

𝑖𝑖

[general chemical potential] 𝐸𝐸𝐸𝐸2.20 

where, 𝑖𝑖 is the number of the component, 𝑋𝑋 is the molar fraction of the component, 𝐺𝐺𝛼𝛼 is 

the molar Gibbs energy of the phase. 

 
Figure-2.5: The graphical interpretation of chemical potentials in a binary system. 

As depicted by the figure, the values of the chemical potentials of elements A and B in 

solution with composition 𝑥𝑥𝐵𝐵 are the intersect points of a tangent line, with the Gibbs 

energy vertical axis at pure A and pure B compositions.  

Common tangent lines can be used to predict phases stability, as well as to construct phase 

diagrams. Figure-2.6 shows two Gibbs energy curves intersecting with. Common tangent 

intersects of the molar Gibbs energy vertical axis at pure A and pure B atoms at two points, 

𝑃𝑃1 and 𝑃𝑃2. These intersection points are the values of the chemical potential of each 
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component in each phase. The equilibrium is satisfied when the chemical potentials of each 

component are equal in all phases, 𝜇𝜇𝐴𝐴𝑙𝑙 = 𝜇𝜇𝐴𝐴𝑠𝑠  and 𝜇𝜇𝐵𝐵𝑙𝑙 = 𝜇𝜇𝐵𝐵𝑠𝑠 . Figure-2.7 shows the 

relationships between the common tangent line and stability.  At temperature 𝑇𝑇2, the solidus 

and liquidus lines are defined by points a, b, c, and d. As there are two phases and two 

Gibbs energy curves, two common tangent lines are required. Since each line touches the 

energy curves at two points, the four points on the solidus and liquidus lines can be 

calculated. 

 
Figure-2.6: The common tangent line and stability. 

- 

 
Figure-2.7: Phase stability with two common tangent lines. 
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2.7 Ternary Phase Diagram and Gibbs Energy 

The Gibbs phase rule states that 

𝐷𝐷𝑓𝑓 = 𝑖𝑖 − ∅ + 2 [Gibbs phase rule] 𝐸𝐸𝐸𝐸2.21 

where 𝐷𝐷𝑓𝑓 is the degree of freedom or number of independent variables that can be 

arbitrarily specified to fix a system at equilibrium, 𝑖𝑖 is the number of components, and ∅ is 

the number of phases at equilibrium.  

Ternary systems are comprised of three components, so they have four independent 

variables according to the Gibbs phase rule: pressure, temperature-, and two components. 

The third component is a dependent variable that conserves the mass. Under constant 

pressure, a ternary phase diagram stores the metallurgical equilibrium information of any 

alloy that is composed of a given three components and given temperature. The phase 

diagram information that should be stored in a database are stable phases, the fraction of 

all phases, and the amount of each component in all phases. The ternary phase diagram can 

be constructed using the Gibbs triangle or the compositional triangle. By stacking many 

Gibbs triangles, the entire ternary phase diagram resembles a triangular prism, as shown in 

Figure-2.8. Each Gibbs triangle (i.e. a “slice” of the prism) is known as isotherm because 

it stores the information at a specific temperature. The vertices of a given Gibbs triangle 

represent three pure component metals. In addition, the edges represent binary metals, and 

each point inside the triangle represents a ternary metal comprised of a mixture of all three 

components. 
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Figure-2.8: The construction of a ternary phase diagram. 

Isotherms can be used to read the equilibrium information of any specific alloy composition 

and temperature, and the two-phase regions appear as a collection of tie lines on the 

isotherms. For example, Figure-2.9a shows an isotherm with two three distinct zones: 

liquid single phase (𝐿𝐿), solid single phase (𝑆𝑆), and two-phase zone (𝐿𝐿 + 𝑆𝑆). Any alloy 

composition located within a single-phase zone has thermodynamic properties of this 

single phase. In Figure-2.9, for example, the alloy with composition 𝐶𝐶1 is completely liquid 

as it has a liquid fraction equal to one, and the alloy with composition 𝐶𝐶2 is completely 

solid as it has a solid fraction equal to one. In the two-phase zone (mushy zone), any alloy 

composition is described by a tieline belongs to the zone. For example, the alloy 

composition 𝐶𝐶0 is partially liquid and partially solid and the fraction of solid 𝑓𝑓𝑠𝑠 can be 

obtained by the lever rule. The corresponding liquid fraction 𝑓𝑓𝑙𝑙 and solid fraction 𝑓𝑓𝑠𝑠 of 

alloy with composition 𝐶𝐶0 can be calculated as shown in the figure. In addition, the 
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intersection point (𝐶𝐶1𝑙𝑙, 𝐶𝐶2𝑙𝑙) of the tieline with the liquidus curve describes the concentration 

of component one and component two in liquid. Similarly, the intersection point (𝐶𝐶1𝑠𝑠, 𝐶𝐶2𝑠𝑠) 

describes the concentration of component one and component two in solid. Thus, any alloy 

inside the two-phase zone can be described by a different tieline. Unlike binary systems, 

the equilibrium of three-phase in ternary systems occur over a range of temperatures. The 

equilibrium of the three phases can be considered a tie triangle, as shown in Figure-2.9b. 

Each side of the tie triangle is a tie line for a different two-phase region; thus, two-phase 

regions branch out from the tie triangles. 

 
Figure-2.9: Reading equilibrium information from isotherms with (a) tie lines and (b) 
tie triangles. 

For example, side TL1 is the first tie line of the L+S1 two-phase region. As shown in the 

figure, the lever rule can be extended to calculate the equilibrium fraction of each phase. 

In practice, a full 3D presentation of a ternary system is very complicated to conceive and 

construct. However, the tie lines and tie triangles together are the basic building blocks 

from which equilibrium information can be obtained.  
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2.8 Thermodynamics Models for CALPHAD 

The phase diagram of a given alloy system is based on the minimization of its total Gibbs 

energy (𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠), which is equal to the summation of the Gibbs energy of each phase: 

𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠 = � 𝑛𝑛∅ ∙ 𝐺𝐺∅
𝑛𝑛𝑛𝑛.  ∅

∅=1

[the total Gibbs energy] 𝐸𝐸𝐸𝐸2.22 

where, 𝐺𝐺∅ is the molar Gibbs energy of the phase ∅ and 𝑛𝑛∅ is the number of moles. 

The Gibbs energy of each phase can be assessed experimentally. The thermodynamic 

assignment describes the temperature, pressure, magnetic influence, and any other 

contributions to the Gibbs energy of the assessed phase. Mathematically, the Gibbs energy 

of any phase ∅ is described as 

𝐺𝐺𝑇𝑇
∅ = 𝐺𝐺0(𝑇𝑇,𝑃𝑃) + 𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐺𝐺𝑒𝑒𝑒𝑒 + 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚∅ [𝑡𝑡ℎ𝑒𝑒 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑦𝑦 𝑜𝑜𝑜𝑜 ∅ 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎 ] 𝐸𝐸𝐸𝐸2.23 

where, 𝐺𝐺0 describes the Gibbs energy of the mechanical mixture of the phase components, 

𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 describes the entropy of mixing, 𝐺𝐺𝑒𝑒𝑒𝑒 (the excess Gibbs energy) describes the energy 

due to the chemical interaction of the components, and 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚∅  is the contribution of the 

magnetic effect.  

Figure-2.10 illustrates the terms in Equation-2.23 for Al-Mg binary system [33]. The first 

term 𝐺𝐺0 describes the Gibbs energy of the mechanical mixture of the phase components, 

the second term 𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 describes the entropy of mixing, and the last term 𝐺𝐺𝑒𝑒𝑒𝑒, or the excess 
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Gibbs energy, describes the energy due to the chemical interaction of the components. The 

entropy of mixing ∆𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 is equal to 𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐺𝐺𝑒𝑒𝑒𝑒.  

 
Figure-2.10: The terms in Equation-2.23 for Al-Mg alloy. 

For metals, the types of thermodynamics models depend on 𝐺𝐺𝑒𝑒𝑒𝑒, and in ideal models, 

𝐺𝐺𝑒𝑒𝑒𝑒 is equal to zero. Ideal models can be used to describe gaseous phases. Conversely, for 

real solution models,  𝐺𝐺𝑒𝑒𝑒𝑒 can be described by interaction parameters. A real solution 

model yields to a regular model if 𝐺𝐺𝑒𝑒𝑒𝑒  is described by one interaction parameters. Regular 

models can be used to describe liquid metal phases, as well as some solid metal phases. 

Finally, for complex alloys, the excess Gibbs energy 𝐺𝐺𝑒𝑒𝑒𝑒 needs more sophisticated 

descriptions such as the Redlich and Kister polynomial (RK-polynomial) [34]. 

2.8.1 Ideal Solution Model 

The ideal solution is the simplest mixing model in which no chemical interaction between 

atoms is considered, so ∆𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 = 0. Therefore, the Gibbs energy of ideal mixing is due to 

entropy and mechanical mixing, as follows: 
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𝐺𝐺 = �𝑋𝑋𝑖𝑖 ∙ 𝐺𝐺𝑖𝑖𝑜𝑜 + 𝑅𝑅𝑅𝑅�𝑋𝑋𝑖𝑖 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖
𝑖𝑖

∙
𝑖𝑖

[Gibbs energy of ideal solution] 𝐸𝐸𝐸𝐸2.24 

where 𝑖𝑖 is the number of components, 𝑋𝑋𝑖𝑖 is the molar quantity of component 𝑖𝑖, and 𝐺𝐺𝑖𝑖𝑜𝑜 is 

the Gibbs energy of pure component 𝑖𝑖. The term (𝑅𝑅∑ 𝑋𝑋𝑖𝑖 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖 ) is the entropy of mixing 

or ∆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚, and it introduces the effect of configurational entropy in equilibrium. For a binary 

alloy system with two components, A and B, Equation-2.24 reduced to 

𝐺𝐺 = 𝑋𝑋𝐴𝐴 ∙ 𝐺𝐺𝐴𝐴𝑜𝑜 + 𝑋𝑋𝐵𝐵 ∙ 𝐺𝐺𝐵𝐵𝑜𝑜 + 𝑅𝑅𝑅𝑅(𝑋𝑋𝐴𝐴 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙𝐴𝐴 + 𝑋𝑋𝐵𝐵 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙𝐵𝐵) [ideal binary system] 𝐸𝐸𝐸𝐸2.25 

And the chemical potential of components A and B in the ideal solution can be calculated 

using the next equation [35]. 

𝜇𝜇𝐴𝐴 = 𝐺𝐺𝐴𝐴𝑜𝑜 + 𝑅𝑅𝑅𝑅 ∙ 𝑙𝑙𝑙𝑙𝑋𝑋𝐴𝐴

𝜇𝜇𝐵𝐵 = 𝐺𝐺𝐵𝐵𝑜𝑜 + 𝑅𝑅𝑅𝑅 ∙ 𝑙𝑙𝑙𝑙𝑋𝑋𝐵𝐵
[chemical potentials of ideal solution] 𝐸𝐸𝐸𝐸2.26 

As the main assumption of the ideal solution model is that there is no chemical interaction 

between atoms, it can be used to efficiently model gaseous phases. And, with some 

modification, introducing activity (𝑎𝑎), into the ideal solution model can model dilute solid 

solutions, since the activities can account for some chemical interactions among atoms. 

Activities quantify the tendency of atoms to leave solutions, and measure how the solutions 

deviate from the ideal behavior. They define the activity coefficient 𝛾𝛾 as the activity 

divided by the amount of the component, as in 𝛾𝛾𝑖𝑖 = 𝑎𝑎𝑖𝑖 𝑋𝑋𝑖𝑖⁄ , where 𝑎𝑎𝑖𝑖 and 𝑋𝑋𝑖𝑖 are the activity 

and the molar fraction of component 𝑖𝑖, respectively. Thus, the chemical potentials can be 

defined using activities as: 
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𝜇𝜇𝐴𝐴 = 𝐺𝐺𝐴𝐴𝑜𝑜 + 𝑅𝑅𝑅𝑅 ∙ 𝑙𝑙𝑙𝑙𝑎𝑎𝐴𝐴

𝜇𝜇𝐵𝐵 = 𝐺𝐺𝐵𝐵𝑜𝑜 + 𝑅𝑅𝑅𝑅 ∙ 𝑙𝑙𝑙𝑙𝑎𝑎𝐵𝐵
[chemical potentials of ideal solution with activities] 𝐸𝐸𝐸𝐸2.27 

With suitable dilute solutions Henry’s law (𝛾𝛾𝐵𝐵 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) and Raoult’s law (𝛾𝛾𝐵𝐵 = 1) can be 

used to relate the activity to the amount of the component, though regular solution model 

is more efficient for modeling solid and liquid solutions. 

2.8.2 Regular Solution Model 

An ideal solution model assumes there is no chemical interaction (bonding) between atoms, 

and the mixing is due to the entropy. As this is unrealistic for liquids and solids, a regular 

solution model based on quasi-chemical assumptions was introduced. Quasi-chemical 

model accounts for the bonding energy of the adjacent atoms only so that bond energy is 

independent of composition. A quasi-chemical assumption can be applied to liquid phases 

of metals more than solid phases, since the interatomic distances are relatively larger in 

liquid phases. The enthalpy of mixing (∆𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚) in a regular solution model can be described 

using bonding energy as: 

∆𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑍𝑍𝐴𝐴𝐴𝐴 ∙ 𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚 𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚 = 𝜖𝜖𝐴𝐴𝐴𝐴 − 0.5(𝜖𝜖𝐴𝐴𝐴𝐴 + 𝜖𝜖𝐵𝐵𝐵𝐵) [enthalpy of mixing ] 𝐸𝐸𝐸𝐸2.28 

where, 𝑍𝑍𝐴𝐴𝐴𝐴 is the number of A-B bonds in the mixture, 𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚 is the total bonding energy of 

mixing, 𝜖𝜖𝐴𝐴𝐴𝐴 is the energy of A-B bonds, 𝜖𝜖𝐴𝐴𝐴𝐴 is the energy of A-A bonds, and 𝜖𝜖𝐵𝐵𝐵𝐵 is the 

energy of B-B bonds. If 𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚 is equal to zero, the regular solution becomes an ideal 

solution. In the case of a negative ∆𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 (i.e. endothermic reaction), the bonding energy 

of unlike atoms (A-B bonds) is less than the bonding energy of similar atoms (A-A and B-
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B), so 𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚 < 0. Thus, A-B bonding is more favorable and abundant in the solution. In 

contrast, for a positive  ∆𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 (i.e. exothermic reaction), 𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚 > 0 and similar bonding 

types are more abundant in the solution. The effect of ∆𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 on the ∆𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 at high and low 

temperature is shown in Figure-2.11. At a negative ∆𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 and a high temperature (Figure-

2.11a), there is more mixing between unlike atoms in the solution and so more A-B 

bonding. In contrast, at a lower temperature (Figure-2.11b) the mixing of A-B atoms is less 

than the mixing at a higher temperature. On the other hand, at a positive ∆𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 and a high 

temperature (Figure-2.11c), the mixing of different atoms is less favorable than the bonding 

of similar atoms A-A and B-B. In addition, a positive ∆𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 at a low temperature could 

lead to spinodal decomposition, as shown in Figure-2.11d.  

 
Figure-2.11: The effect of ∆𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 on the ∆𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 at different temperatures 𝑇𝑇. [35], page-

21. 
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For practical purpose, enthalpy of mixing ∆𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 is described by an interaction parameter 

(𝐿𝐿). For an alloy with multicomponents, the excess Gibbs energy is described by: 

𝐺𝐺𝑒𝑒𝑒𝑒 = ∆𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 = �𝑋𝑋𝑖𝑖 ∙ 𝑋𝑋𝑗𝑗 ∙ 𝐿𝐿𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛.𝐶𝐶

𝑖𝑖=1
𝑖𝑖≠𝑗𝑗

[regular solution′s excess Gibbs energy ] 𝐸𝐸𝐸𝐸2.29 

The interaction parameter is a function of temperature which often has the following form: 

𝐿𝐿(𝑇𝑇) = 𝑎𝑎 + 𝑏𝑏 ∙ 𝑇𝑇 + 𝑐𝑐 ∙ 𝑇𝑇 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑑𝑑 ∙ 𝑇𝑇2 + ⋯ 𝐸𝐸𝐸𝐸2.30 

The Gibbs energy of mixing of a regular solution model is defined as: 

∆𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐿𝐿𝐴𝐴𝐴𝐴 ∙ 𝑋𝑋𝐴𝐴 ∙ 𝑋𝑋𝐵𝐵���������
∆𝐻𝐻𝑚𝑚𝑖𝑖𝑥𝑥

+ 𝑅𝑅𝑅𝑅(𝑋𝑋𝐴𝐴 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙𝐴𝐴 + 𝑋𝑋𝐵𝐵 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙𝐵𝐵)�����������������
𝑇𝑇∆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚

[𝑓𝑓𝑓𝑓𝑓𝑓 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ] 𝐸𝐸𝐸𝐸2.31 

The chemical potentials of a binary regular solution can be obtained using Equation-2.17 

as follows: 

𝜇𝜇𝐴𝐴 = 𝐺𝐺𝐴𝐴𝑜𝑜 + 𝐿𝐿𝐴𝐴𝐴𝐴(1 − 𝑋𝑋𝐴𝐴)2 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑋𝑋𝐴𝐴

𝜇𝜇𝐵𝐵 = 𝐺𝐺𝐵𝐵𝑜𝑜 + 𝐿𝐿𝐴𝐴𝐴𝐴(1 − 𝑋𝑋𝐵𝐵)2 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑋𝑋𝐵𝐵
[regular solution′s chemical potentials] 𝐸𝐸𝐸𝐸2.32 

2.8.3 Real Solution Model 

The regular model considers chemical interactions between all atoms and their neighboring 

atoms only. This assumption does not predict the dependence of 𝐺𝐺𝑒𝑒𝑒𝑒 on the composition 

correctly, which limits the feasibility of this model for many practical alloys. To overcome 

this limitation, Redlich and Kister proposed a polynomial expression to describe the 

composition dependence of 𝐺𝐺𝑒𝑒𝑒𝑒 as follows: 
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𝐺𝐺𝑒𝑒𝑒𝑒 = �𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗 ∙ ��𝐿𝐿𝑖𝑖𝑖𝑖(𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑗𝑗)𝑛𝑛
2

𝑛𝑛=1

�
𝑛𝑛𝑛𝑛.𝐶𝐶

𝑖𝑖=1
𝑗𝑗>𝑖𝑖

𝐸𝐸𝐸𝐸2.33 

Equation-2.32 suggests that the excess Gibbs energy of a higher order alloy, e.g. A-B-C 

atoms, can be described as a set of binary alloys (A-B, A-C, B-C), and an interaction 

parameter for the effect of the three components  𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴 can be added to the RK-polynomial 

if it is assessed experimentally. For a binary system, Equation-2.33 yields to: 

𝐺𝐺𝑒𝑒𝑒𝑒 = 𝑋𝑋𝐴𝐴𝑋𝑋𝐵𝐵�𝐿𝐿𝐴𝐴𝐴𝐴(𝑋𝑋𝐴𝐴 − 𝑋𝑋𝐵𝐵)𝑛𝑛
2

𝑛𝑛=1

[ 𝐺𝐺𝑒𝑒𝑒𝑒 for a b𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎] 𝐸𝐸𝐸𝐸2.34 

Clearly, if 𝑛𝑛 equals to 1, the real model yields a regular model, and describing the Gibbs 

energy of a phase (as in Equation-2.23) using a real solution model requires a complex 

mathematical expression. For example, for a ternary system with A, B, and C types of 

atoms, Equation-2.23 yields to: 

𝐺𝐺∅(𝑇𝑇,𝑋𝑋)

= 𝑋𝑋𝐴𝐴 ∙ 𝐺𝐺𝐴𝐴𝑜𝑜 + 𝑋𝑋𝐵𝐵 ∙ 𝐺𝐺𝐵𝐵𝑜𝑜 + 𝑋𝑋𝐶𝐶 ∙ 𝐺𝐺𝐶𝐶𝑜𝑜�����������������
= 𝐺𝐺0

+ 𝑅𝑅𝑅𝑅(𝑋𝑋𝐴𝐴 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙𝐴𝐴 + 𝑋𝑋𝐵𝐵 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙𝐵𝐵 + 𝑋𝑋𝐶𝐶 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙𝐶𝐶)�������������������������
= 𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

+ 𝑋𝑋𝐴𝐴𝑋𝑋𝐵𝐵�𝐿𝐿𝐴𝐴𝐴𝐴(𝑋𝑋𝐴𝐴 − 𝑋𝑋𝐵𝐵)𝑛𝑛
2

𝑛𝑛=1

+ 𝑋𝑋𝐴𝐴𝑋𝑋𝐶𝐶�𝐿𝐿𝐴𝐴𝐴𝐴(𝑋𝑋𝐴𝐴 − 𝑋𝑋𝐶𝐶)𝑛𝑛
2

𝑛𝑛=1

+ 𝑋𝑋𝐵𝐵𝑋𝑋𝐶𝐶�𝐿𝐿𝐵𝐵𝐵𝐵(𝑋𝑋𝐵𝐵 − 𝑋𝑋𝐶𝐶)𝑛𝑛
2

𝑛𝑛=1�����������������������������������������������������
= 𝐺𝐺𝑒𝑒𝑒𝑒

𝐸𝐸𝐸𝐸2.35  

However, Equation-2.35 can simply be considered as a mathematical function that depends 

on temperature (𝑇𝑇) and composition (𝑋𝑋𝐴𝐴,𝑋𝑋𝐵𝐵 ,𝑋𝑋𝐶𝐶). 
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2.8.4 Sublattice Thermodynamics Model  

The real solution model is efficient to describe high order alloys in substitutional solutions. 

In substitutional solution, all atoms occupy the main lattice sites interchangeably. This 

would be accurate in systems with small differences in atom size, but if there are larger 

size differences in atoms, the interstitial solid solutions are energetically favorable. As the 

real solution does not account for the interstitial and intermetallic bonds accurately, 

sublattice modeling was developed.  

In sublattice models, the lattice of a phase crystal is composed of many sublattices, and the 

number of sublattices used depends on the crystal complexity and the thermodynamics 

assessment. Each sublattice has a specific number of sites that can be occupied by specific 

atom types. This allows the interaction parameters between different atoms in different 

sublattices to be evaluated and assigned to the Gibbs energy model. The following 

assumptions are made of sublattice modeling: (1) the amount of components is described 

by site fractions; (2) there is  random mixing on each sublattice, (and no mixing across 

sublattices); and (3) the total site fractions on each sublattice is equal to one. An illustrative 

example of sublattice modeling follows. 

2.8.4.1 An Example of a Sublattice Model  

Assume a ternary alloy with A, B, and C atoms and a vacancy Va, and all constituents 

distributed over two sublattices 𝑠𝑠1 and 𝑠𝑠2, as shown in Figure-2.12. The number of sites 

available in the first sublattice is nine for atoms A and B. Similarly, the sites available in 
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the second sublattice is three for atoms C and the vacancies. This information can be 

lumped in the notation: (𝐴𝐴,𝐵𝐵)9𝑠𝑠1(𝐶𝐶,𝑉𝑉𝑉𝑉)3𝑠𝑠2 or equivalently (𝐴𝐴,𝐵𝐵)3𝑠𝑠1(𝐶𝐶,𝑉𝑉𝑉𝑉)1𝑠𝑠2. 

 
Figure-2.12: An example of a sublattice model. 

The site fraction is defined as 𝑦𝑦𝑖𝑖𝑠𝑠 = 𝑛𝑛𝑖𝑖
𝑠𝑠

𝑁𝑁𝑠𝑠, where 𝑦𝑦𝑖𝑖𝑠𝑠 is the site fraction of component 𝑖𝑖 on 

sublattice 𝑠𝑠,  𝑛𝑛𝑖𝑖𝑠𝑠 is the number of components 𝑖𝑖 in sublattice 𝑠𝑠, and 𝑁𝑁𝑠𝑠 is the total number 

of sites on the sublattice 𝑠𝑠. In Figure-2.12, for example, 𝑦𝑦𝐴𝐴𝑠𝑠1 = 4
9
, 𝑦𝑦𝐵𝐵𝑠𝑠1 = 5

9
, 𝑦𝑦𝐴𝐴𝑠𝑠 = 0 and 

𝑦𝑦𝐵𝐵𝑠𝑠2 = 0. In this case if the sublattice has a vacancy such as s2 in Figure-2.12, the site 

fraction is defined as: 

𝑦𝑦𝑖𝑖𝑠𝑠 =
𝑛𝑛𝑖𝑖𝑠𝑠

𝑛𝑛𝑉𝑉𝑉𝑉𝑠𝑠 + ∑ 𝑛𝑛𝑖𝑖𝑠𝑠𝑖𝑖
𝐸𝐸𝐸𝐸2.36 

And for atoms C the site fraction is 𝑦𝑦𝐶𝐶𝑠𝑠2 = 2
1+2

= 2
3
, 𝑦𝑦𝐶𝐶𝑠𝑠1 = 0, 𝑦𝑦𝑉𝑉𝑉𝑉𝑠𝑠2 = 1

1+2
= 1

3
. The total site 

fraction in each sublattice should equal 1 to ensure mass conservation. For example, the 

total site fractions on s1 is ∑𝑦𝑦 = 4
9

+ 5
9

= 1 and on s2 is ∑𝑦𝑦 = 2
3

+ 1
3

= 1. The relationship 

between mole fractions and site fractions follows [36]: 

𝑥𝑥𝑖𝑖 =
∑ 𝑁𝑁𝑠𝑠𝑦𝑦𝑖𝑖𝑠𝑠𝑠𝑠

∑ 𝑁𝑁𝑠𝑠(1 − 𝑦𝑦𝑉𝑉𝑉𝑉𝑠𝑠 )𝑠𝑠
[the relation btween mole  and site fractions] 𝐸𝐸𝐸𝐸2.37 
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2.8.4.2 The Gibbs Energy in the Sublattice Model   

The Gibbs energy model of an interstitial solution phase with the sublattice model is similar 

to the model of substitutional model, except the mole fractions are replaced by the site 

fraction. For example, the Gibbs energy of the sublattice model mentioned in 8.4.1 is as 

follows [37]: 

𝐺𝐺∅ = 𝑦𝑦𝐴𝐴𝑠𝑠1𝑦𝑦𝐶𝐶𝑠𝑠2°𝐺𝐺𝐴𝐴:𝐶𝐶 + 𝑦𝑦𝐴𝐴𝑠𝑠1𝑦𝑦𝑉𝑉𝑉𝑉𝑠𝑠2°𝐺𝐺𝐴𝐴:𝑉𝑉𝑉𝑉 + 𝑦𝑦𝐵𝐵𝑠𝑠1𝑦𝑦𝑉𝑉𝑉𝑉𝑠𝑠2°𝐺𝐺𝐵𝐵:𝑉𝑉𝑉𝑉 + 𝑦𝑦𝐵𝐵𝑠𝑠1𝑦𝑦𝐶𝐶𝑠𝑠2°𝐺𝐺𝐵𝐵:𝐶𝐶

+ 𝑅𝑅𝑅𝑅[𝑎𝑎(𝑦𝑦𝐴𝐴𝑠𝑠1 ∙ 𝑙𝑙𝑙𝑙𝑦𝑦𝐴𝐴𝑠𝑠1 + 𝑦𝑦𝐵𝐵𝑠𝑠1 ∙ 𝑙𝑙𝑙𝑙𝑦𝑦𝐵𝐵𝑠𝑠1) + 𝑏𝑏(𝑦𝑦𝐶𝐶𝑠𝑠2 ∙ 𝑙𝑙𝑙𝑙𝑦𝑦𝐶𝐶𝑠𝑠2 + 𝑦𝑦𝑉𝑉𝑉𝑉𝑠𝑠2 ∙ 𝑙𝑙𝑙𝑙𝑦𝑦𝑉𝑉𝑉𝑉𝑠𝑠2)] + 𝐺𝐺𝑒𝑒𝑒𝑒 

where, 

𝐺𝐺𝑒𝑒𝑒𝑒 = ���𝑦𝑦𝑖𝑖𝑠𝑠𝑦𝑦𝑗𝑗𝑠𝑠
𝑗𝑗

∙��𝑦𝑦𝑘𝑘𝑟𝑟𝐿𝐿𝑖𝑖,𝑗𝑗,⋯𝑘𝑘
𝑘𝑘𝑟𝑟≠𝑠𝑠𝑖𝑖𝑠𝑠

[Gibbs energy of a Sublattice model] 𝐸𝐸𝐸𝐸2.38 

2.9 Phase Diagram as an Optimization Problem 

Once the thermodynamics assessment is complete for a particular alloy, the construction 

of its phase diagram can be formulated as a mathematical optimization problem. 

Specifically, the assessments include the Gibbs energies of all possible phases, the 

interaction parameters between different components, the definition of sublattices, and the 

equilibrium range of different phases. The solution of the optimization problem defines the 

phases boundaries. However, the optimization problem is a non-convex and multi-

objective function with linear constraints minimization problem. This is a complex 

problem especially for multicomponents systems with sublattice modeling. The difficulty 

of solving these minimization problems arises from the uncertainty in choosing feasible 
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initial guesses, as well as from the wide range of decision variables. It is commonly 

assumed that the correct phases at equilibrium is known a priori, otherwise, the 

optimization problem would be more difficult. A comprehensive discussion and 

mathematical formulation of the CALPHAD optimization is in [38, 39].  

2.9.1 Global Optimization Formulation of Gibbs Energy Minimization 

Consider a metallurgical system with three components and two phases. The first phase is 

liquid 𝑙𝑙 with a phase fraction 𝑓𝑓𝑙𝑙, and the second phase is solid 𝑠𝑠 with a phase fraction 𝑓𝑓𝑠𝑠. 

The total Gibbs energy of this system is: 

𝐺𝐺sys = �𝑓𝑓∅ ∙ 𝐺𝐺∅ → 𝑓𝑓𝑙𝑙 ∙ 𝐺𝐺𝑙𝑙 + 𝑓𝑓𝑠𝑠 ∙ 𝐺𝐺𝑠𝑠

𝑙𝑙,𝑠𝑠

∅

[the total Gibbs energy] Eq2.39 

The Gibbs energy of phases can be described by molar fractions 𝑥𝑥 or site fraction 𝑦𝑦, 

depending on the thermodynamics assessment. The lever rule and the mass balance impose 

the following constrain on all components in the system: 

�𝑥𝑥𝑖𝑖
∅ ∙ 𝑓𝑓∅ = 𝑥𝑥𝑖𝑖𝑜𝑜 →

𝑙𝑙,𝑠𝑠

∅

𝑥𝑥1𝑙𝑙 ∙ 𝑓𝑓𝑙𝑙 + 𝑥𝑥1𝑠𝑠 ∙ 𝑓𝑓𝑠𝑠 − 𝑥𝑥1𝑜𝑜 = 0
𝑥𝑥2𝑙𝑙 ∙ 𝑓𝑓𝑙𝑙 + 𝑥𝑥2𝑠𝑠 ∙ 𝑓𝑓𝑠𝑠 − 𝑥𝑥2𝑜𝑜 = 0
𝑥𝑥3𝑙𝑙 ∙ 𝑓𝑓𝑙𝑙 + 𝑥𝑥3𝑠𝑠 ∙ 𝑓𝑓𝑠𝑠 − 𝑥𝑥3𝑜𝑜 = 0

Eq2.40 

where, 𝑥𝑥𝑖𝑖𝑜𝑜 is the nominal concentration of the component 𝑖𝑖. In addition, the global 

conservation of phase fractions imposes a constrain: 

�𝑓𝑓∅ = 1 →
𝑙𝑙,𝑠𝑠

∅

𝑓𝑓𝑙𝑙 + 𝑓𝑓𝑠𝑠 − 1 = 0 Eq2.41 
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With regard to the sublattice model, the site fractions balance imposes the next constrain 

on each sublattice 𝑠𝑠𝑠𝑠: 

�𝑦𝑦𝑖𝑖𝑠𝑠𝑠𝑠 = 1
𝑖𝑖

Eq2.42 

Finally, all system variables 𝑦𝑦𝑖𝑖𝑠𝑠𝑠𝑠 and 𝑓𝑓∅ are in the range between 0 and 1: 

0 ≤ 𝑓𝑓∅ ≤ 1
0 ≤ 𝑦𝑦𝑖𝑖

∅ ≤ 1
Eq2.43 

This mathematical formulation can be solved by applying the Lagrange multiplier method, 

and thereby transforming the minimization problem of a constraint multivariable function 

into an unconstrained one objective function optimization problem as follows: 

𝐿𝐿�𝑥𝑥𝑖𝑖
∅, 𝑦𝑦𝑖𝑖𝑠𝑠𝑠𝑠,𝑓𝑓∅, 𝐿𝐿1, 𝐿𝐿2, 𝐿𝐿3� = ∑ 𝑓𝑓∅ ∙ 𝐺𝐺∅𝑙𝑙,𝑠𝑠

∅ + 𝐿𝐿1�∑ 𝑥𝑥𝑖𝑖
∅ ∙ 𝑓𝑓∅ − 𝑥𝑥𝑖𝑖𝑜𝑜𝑛𝑛𝑛𝑛.𝐶𝐶

𝑖𝑖 � + 𝐿𝐿2�∑ 𝑓𝑓∅ − 1𝑙𝑙,𝑠𝑠
∅ � +

𝐿𝐿3�∑ 𝑦𝑦𝑖𝑖𝑠𝑠𝑠𝑠 − 1𝑖𝑖 � [Lagrangian function] Eq2.44 

where, 𝐿𝐿1, 𝐿𝐿2, 𝐿𝐿3 are the Lagrangian multipliers. A set of nonlinear equations is determined 

by differentiating the Lagrangian function with respect to its variables: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦𝑖𝑖

𝑠𝑠𝑠𝑠 , 𝜕𝜕𝜕𝜕
𝜕𝜕𝑓𝑓∅

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝐿𝐿1

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝐿𝐿2

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝐿𝐿3

. Finally, this system of nonlinear equations can be solved by the 

Newton-Raphson method. Note that the previous procedure should be solved at every 

temperature value. 
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2.9.2 Phase Diagram from Chemical Potentials Equalities 

Consider two metallurgical systems with two phases (liquid and solid), as shown in Figure-

2.13. The liquid phase has Gibbs energy diminished by 𝑑𝑑𝑑𝑑𝑙𝑙, and the solid phase has Gibbs 

energy diminished by 𝑑𝑑𝑑𝑑𝑠𝑠. Both systems are composed of components 𝑖𝑖.  

 

 

𝑑𝑑𝑑𝑑𝑙𝑙 = 𝜇𝜇1𝑙𝑙 𝑑𝑑𝑑𝑑1𝑙𝑙 + 𝜇𝜇2𝑙𝑙 𝑑𝑑𝑑𝑑2𝑙𝑙  

 

 

𝑑𝑑𝑑𝑑𝑠𝑠 = 𝜇𝜇1𝑠𝑠𝑑𝑑𝑑𝑑1𝑠𝑠 + 𝜇𝜇2𝑠𝑠𝑑𝑑𝑛𝑛2𝑠𝑠 

 

𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑑𝑑𝑑𝑑𝑙𝑙 + 𝑑𝑑𝑑𝑑𝑠𝑠 

Figure-2.13: The total Gibbs energy of two phases in contact. 

If both systems are brought into contact at constant pressure and temperature, the 

components will transfer between them to reach a new equilibrium state. Since the total 

system (liquid + solid) is closed, the total amounts of components will remain constant. 

Thus, an increase of any component in one system is compensated by an equivalent 

decrease of the component amount in the other phase. Mathematically, this is equal to 

𝑑𝑑𝑛𝑛𝐴𝐴
𝑙𝑙 = −𝑑𝑑𝑛𝑛𝐴𝐴

𝑠𝑠   and 𝑑𝑑𝑛𝑛𝐵𝐵
𝑙𝑙 = −𝑑𝑑𝑛𝑛𝐵𝐵

𝑠𝑠 . By substituting these two equations in 𝑑𝑑𝑑𝑑𝑙𝑙 and 𝑑𝑑𝑑𝑑𝑠𝑠, the 

total Gibbs energy at equilibrium is equal to: 

𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑑𝑑𝑑𝑑𝑙𝑙 + 𝑑𝑑𝑑𝑑𝑠𝑠 = �𝜇𝜇1𝑙𝑙 − 𝜇𝜇1𝑠𝑠�𝑑𝑑𝑑𝑑1𝑙𝑙 + �𝜇𝜇2𝑙𝑙 − 𝜇𝜇2𝑠𝑠�𝑑𝑑𝑑𝑑2𝑙𝑙 𝐸𝐸𝐸𝐸2.45 
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Since at equilibrium 𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 = 0, each term �𝜇𝜇1𝑙𝑙 − 𝜇𝜇1𝑠𝑠� and �𝜇𝜇2𝑙𝑙 − 𝜇𝜇2𝑠𝑠� must also be equal to 

zero. Eventually, this leads to equality of the chemical potentials at equilibrium: 𝜇𝜇1𝑙𝑙 = 𝜇𝜇1𝑠𝑠 

and 𝜇𝜇2𝑙𝑙 = 𝜇𝜇2𝑠𝑠. 

This procedure can be tailored for many phases with many components. An array of 

chemical potential equalities can be constructed as following: 

𝜇𝜇11 = 𝜇𝜇12 = 𝜇𝜇13 = ⋯ = 𝜇𝜇1
∅

𝜇𝜇21 = 𝜇𝜇22 = 𝜇𝜇23 = ⋯ = 𝜇𝜇2
∅

𝜇𝜇31 = 𝜇𝜇32 = 𝜇𝜇33 = ⋯ = 𝜇𝜇3
∅

⋮
𝜇𝜇𝑖𝑖1 = 𝜇𝜇𝑖𝑖2 = 𝜇𝜇𝑖𝑖3 = ⋯ = 𝜇𝜇𝑖𝑖

∅

[chemical potential equality equations] 𝐸𝐸𝐸𝐸2.46 

Each row has (∅ − 1) equations and since there are 𝑖𝑖 rows, the total numbers of equations 

is equal to 𝑖𝑖 ∙ (∅ − 1). Due to mass conservation, not all of the equations are independent. 

In each column, there are (𝑖𝑖 − 1) independent equations, and ∅ ∙ (𝑖𝑖 − 1) independent 

equations in the entire array. Therefore, the number of chemical potential equality 

equations that describe the equilibrium are equal to 

𝐹𝐹 = ∅ ∙ (𝑖𝑖 − 1) − 𝑖𝑖 ∙ (∅ − 1) = 𝑖𝑖 − ∅ 𝐸𝐸𝐸𝐸2.47 

If 𝐹𝐹 is the degree of freedom and the temperature is another variable, Equation-2.21 yields 

𝐹𝐹 = 𝑖𝑖 − ∅ + 1, which is the reduced Gibbs phase rule. In addition, there are ∅ number of 

equations from the mass conservation in each phase. For example, if a system has of two 

phases (𝑠𝑠, 𝑙𝑙) and two components (𝑖𝑖 = 2, ∅ = 2), the number of chemical potential equality 
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equations is two, 2 ∙ (2 − 1), and the number of mass conservation equations is also two, 

since ∅ = 2. The equations are: 

𝜇𝜇1𝑙𝑙 = 𝜇𝜇1𝑠𝑠 𝜇𝜇2𝑙𝑙 = 𝜇𝜇2𝑠𝑠

𝑥𝑥1𝑙𝑙 + 𝑥𝑥2𝑙𝑙 = 1 𝑥𝑥1𝑠𝑠 + 𝑥𝑥2𝑠𝑠 = 1
[Equilibrium equations for a binary system] 𝐸𝐸𝐸𝐸2.48 

Solving these equilibrium equations defines the boundary between the two phases, and by 

calculating all the boundaries between the phases, the entire phase diagram can be 

constructed. 

2.10 Fe-Cr-C Thermodynamics Modeling 

The thermodynamics assessment of the Fe-Cr-C alloy describes phase relations and 

equilibrium compositions over a wide temperature and composition ranges, and the Fe-Cr-

C system is comprised of many phases according to temperature and composition. The 

phases are liquid, BCC ferrite, FCC austenite, and some carbide phases such as Cr7C3 and 

Cr3C2. An assessment of the Fe-Cr-C system was given by Andersson [40], and it 

determined that the liquid phase is treated as a substitutional real solution, since it does not 

have any regular lattices. 

 

Eq2.49 
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With respect to Equation-2.49, yfe, ycr, yc are the molar fractions of iron, chromium, and 

carbon atoms, where R is the gas constant, T is the temperature, and 𝐿𝐿 is an interaction 

parameter of the corresponding elements. For example, 𝐿𝐿𝐶𝐶𝐶𝐶,𝐶𝐶 is the interaction parameter 

of chromium and carbon atoms. It is worth mentioning here that there is no difference 

between the 𝐿𝐿𝐶𝐶𝐶𝐶,𝐶𝐶 and 𝐿𝐿𝐶𝐶,𝐶𝐶𝐶𝐶 notations. Moreover, all interaction parameters, including 

𝐿𝐿𝐶𝐶,𝐹𝐹𝐹𝐹, 𝐿𝐿𝐶𝐶,𝐶𝐶𝐶𝐶,𝐹𝐹𝐹𝐹
1  are given as functions of temperature. The first line in Equation-2.49 

describes the molar Gibbs energy of the mechanical mix, the second line describes the 

molar Gibbs energy contribution from the configurational entropy, and the third and the 

fourth lines describe the excess molar Gibbs energy. 

Both solid phases (BCC ferrite and FCC austenite) are modeled using sublattice models, 

since Fe and Cr atoms are substitutional elements and carbon atoms are interstitial. 

Therefore, the notation of y addresses the site fractions rather than the molar fractions. The 

Gibbs energy of BCC and FCC is given by Equation-2.50. 

 

Eq2.50 

where, Va represents the vacancies, and a and c denote the number of sites on each 

sublattice in a formula unit: (𝐹𝐹𝐹𝐹,𝐶𝐶𝐶𝐶)𝑎𝑎(𝑉𝑉𝑉𝑉,𝐶𝐶)𝑏𝑏. The parameters 𝑎𝑎 = 1, 𝑐𝑐 = 3   are for the 

BCC phase, and 𝑎𝑎 = 𝑐𝑐 = 1 are for FCC phase. With respect to Equation-2.50, the first and 
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second lines describe the Gibbs energy of the mechanical mix, the third and fourth lines 

describe the configurational entropy, 𝐺𝐺𝑚𝑚𝐸𝐸  describes the excess Gibbs energy, and 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 

describes the Gibbs energy of the magnetic effect. There is no magnetic term of Gibbs 

energy for the FCC phase. With the BCC phase, the free energy due to the magnatic effect 

(𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚) is a function of temperature and compositon, and defined as: 

𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝛽𝛽 + 1)𝑓𝑓(𝜏𝜏) [Gibbs energy of magnetic] Eq2.51 

The excess molar free energy (𝐺𝐺𝑚𝑚𝑒𝑒𝑒𝑒) for both BCC and FCC is: 

 

Eq2.52 

where, the interaction parameters (𝐿𝐿) are denoted by ‘:’ to indicate that the corresponding 

atoms are in different sublattices. For example, 𝐿𝐿𝐹𝐹𝐹𝐹:𝑉𝑉𝑉𝑉,𝐶𝐶 indicates the interaction parameter 

between iron atoms (which are in the first sublattice 𝑠𝑠) and vacancies, and the carbon atoms 

are in the second sublattice 𝑡𝑡. Equations 2.49 and 2.50 define the thermodynamics model 

of the three phases of Fe-Cr-C alloy in a temperature range of 25 − 1538℃. In our 

solidification model we consider only ferrite 𝛼𝛼 and austenite 𝛾𝛾 phases and do not include 

carbides. 

Another thermodynamics assessment of Fe-Cr-C was proposed by Alexandra et al [41], 

and they used the same Gibbs energy models for the liquid, BCC, and FCC phases. 

However, some interaction parameters were modified. For example, a comparison of the 
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interaction parameters of the liquid phase of Andersson and Alexandra assessments 

follows: 

Table-2: Interaction parameters of two differnrt Fe-Cr-C thermodynamic model. 

Andersson’s assessment Alexandra’s assessment 

𝐿𝐿𝐶𝐶𝐶𝐶,𝐶𝐶
0 = −90526 − 25.9116𝑇𝑇 𝐿𝐿𝐶𝐶𝐶𝐶,𝐶𝐶

0 = −69245 − 35𝑇𝑇 

𝐿𝐿𝐶𝐶𝐶𝐶,𝐶𝐶
1 = 80000 𝐿𝐿𝐶𝐶𝐶𝐶,𝐶𝐶

1 = 83242 

𝐿𝐿𝐶𝐶𝐶𝐶,𝐶𝐶
2 = 80000 𝐿𝐿𝐶𝐶𝐶𝐶,𝐶𝐶

2 = 88000 

 
The important point here is that the difference between two thermodynamics assessments 

is the definition of interaction parameters as functions of temperature. A thermodynamics 

computational code is developed in this study to calculate the phase diagram of Fe-Cr-C, 

as described in the next section. The developed code is used to compare Andersson and 

Alexandra’s thermodynamic assessments, as shown in Figure-2.14.  

 
Figure-2.14: A comparesion between Andersson and Alexandra’s thermodynamic 
assessments. 
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Figure-2.14 shows that the tie-triangle calculated by Andersson’s assessment is shifted to 

the right that means the stability range of L-FCC zone is extended compared to Alexandra’s 

assessment. The leftmost points (the ones surrounded by the dashed circles) of both 

assessments are equal that indicates the assessment of the binary Fe-C are equal in both 

models. Finally, the liquidus curve of Andersson’s assessment are shifted down which will 

predict less solid fractions for any thermodynamic state.  

Total Gibbs energy comprises all interaction terms that affect phase equilibrium, and the 

magnetic effect in BCC is one of the important reaction terms. Though the value of 

magnetic Gibbs 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 energy is small at high temperatures, it does affect the stability of 

the phases. For example, at T=1436℃, the total Gibbs energy of the BCC phase is equal to 

−102,587  𝐽𝐽 𝑚𝑚𝑚𝑚𝑚𝑚⁄  and its 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 = −68 𝐽𝐽 𝑚𝑚𝑚𝑚𝑚𝑚⁄ . However, even though, the contribution 

of 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 is 0.06% of the total Gibbs energy of the BCC phase, it affects the phase stability. 

2.11 The Implementation of Fe-Cr-C Thermodynamics Model 

Andersson’s thermodynamics assessment is used in this work to compute the data of the 

Fe-Cr-C phase diagram. In current computations, the range of chromium concentration in 

alloy is limited so that carbide phases cannot be formed. In addition, the range of 

temperature at which the liquid phase is in equilibrium with solid phases is 1330 to 1538 

℃. According to the thermodynamics model used, liquid and BCC are in equilibrium in a 

temperature range of 1494 to 1538 ℃, and L-BCC-FCC exists in equilibrum within a 

temperature range of 1330 to 1494 ℃. To calculate the phase diagram within these 
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temperature ranges, the corresponding system of equations must be solved, and three 

computational codes have been developed to do this: L_BCC solver, L_FCC solver, and 

L_BCC_FCC solver. The solvers use the fsolve Matlab command [42].  

The first solver resolves the 2.53 set of equations in which liquid and BCC are in 

equilibrum. This set of equations has the following eight unknowns: 

�𝑥𝑥𝐹𝐹𝐹𝐹𝑙𝑙 , 𝑥𝑥𝐶𝐶𝐶𝐶𝑙𝑙 , 𝑥𝑥𝐶𝐶𝑙𝑙 , 𝑥𝑥𝐹𝐹𝐹𝐹𝐵𝐵𝐵𝐵𝐵𝐵 , 𝑥𝑥𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵 , 𝑥𝑥𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵 ,𝑓𝑓𝑙𝑙, 𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵�, where 𝑥𝑥𝐹𝐹𝐹𝐹𝑙𝑙 , 𝑥𝑥𝐶𝐶𝐶𝐶𝑙𝑙 , 𝑥𝑥𝐶𝐶𝑙𝑙  are the molar fraction of iron, 

chromium, and carbon in liquid phase, and 𝑥𝑥𝐹𝐹𝐹𝐹𝐵𝐵𝐵𝐵𝐵𝐵, 𝑥𝑥𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵, 𝑥𝑥𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵 are the molar fractions of 

iron, chromium, and carbon in BCC phase. Finally, 𝑓𝑓𝑙𝑙 ,𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵 are the fraction of liquid and 

BCC phases. 

𝜇𝜇𝑓𝑓𝑓𝑓𝑙𝑙 = 𝜇𝜇𝐹𝐹𝐹𝐹𝐵𝐵𝐵𝐵𝐵𝐵

𝜇𝜇𝐶𝐶𝐶𝐶𝑙𝑙 = 𝜇𝜇𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵

𝜇𝜇𝐶𝐶𝑙𝑙 = 𝜇𝜇𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵
[𝐿𝐿_𝐵𝐵𝐵𝐵𝐵𝐵  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠]

𝑥𝑥𝐹𝐹𝐹𝐹𝑙𝑙 + 𝑥𝑥𝐶𝐶𝐶𝐶𝑙𝑙 + 𝑥𝑥𝐶𝐶𝑙𝑙 = 1
𝑥𝑥𝑓𝑓𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵 + 𝑥𝑥𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵 + 𝑥𝑥𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵 = 1 [𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝐸𝐸𝐸𝐸2.53)

𝑥𝑥𝐹𝐹𝐹𝐹𝑙𝑙 ∙ 𝑓𝑓𝑙𝑙 + 𝑥𝑥𝐹𝐹𝐹𝐹𝐵𝐵𝐵𝐵𝐵𝐵 ∙ 𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑥𝑥𝐹𝐹𝐹𝐹0

𝑥𝑥𝐶𝐶𝐶𝐶𝑙𝑙 ∙ 𝑓𝑓𝑙𝑙 + 𝑥𝑥𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵 ∙ 𝑓𝑓𝐵𝐵𝐶𝐶𝐶𝐶 = 𝑥𝑥𝐶𝐶𝐶𝐶0

𝑓𝑓𝑙𝑙 + 𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵 = 1

[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐]

 

The second solver resolves the 2.54 set of equations, in which liquid and FCC are in 

equilibrum. 



77 
 

𝜇𝜇𝐹𝐹𝐹𝐹𝑙𝑙 = 𝜇𝜇𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

𝜇𝜇𝐶𝐶𝐶𝐶𝑙𝑙 = 𝜇𝜇𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹

𝜇𝜇𝐶𝐶𝑙𝑙 = 𝜇𝜇𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹
[𝐿𝐿_𝐹𝐹𝐹𝐹𝐹𝐹  𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠]

𝑥𝑥𝐹𝐹𝐹𝐹𝑙𝑙 + 𝑥𝑥𝐶𝐶𝐶𝐶𝑙𝑙 + 𝑥𝑥𝐶𝐶𝑙𝑙 = 1
𝑥𝑥𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑥𝑥𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑥𝑥𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹 = 1

[𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝐸𝐸𝐸𝐸2.54)

𝑥𝑥𝐹𝐹𝐹𝐹𝑙𝑙 ∙ 𝑓𝑓𝑙𝑙 + 𝑥𝑥𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ∙ 𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑥𝑥𝑓𝑓𝑓𝑓0

𝑥𝑥𝐶𝐶𝐶𝐶𝑙𝑙 ∙ 𝑓𝑓𝑙𝑙 + 𝑥𝑥𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹 ∙ 𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑥𝑥𝐶𝐶𝐶𝐶0

𝑓𝑓𝑙𝑙 + 𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹 = 1

[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐]

 

This set of equations has eight unknowns as follows: {𝑥𝑥𝐹𝐹𝐹𝐹𝑙𝑙 , 𝑥𝑥𝐶𝐶𝐶𝐶𝑙𝑙 , 𝑥𝑥𝐶𝐶𝑙𝑙 , 𝑥𝑥𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹, 𝑥𝑥𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹, 𝑥𝑥𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹, 𝑓𝑓𝑙𝑙, 

𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹}. The third solver resolves 2.55 set of equations, in which liquid, BCC, and FCC are 

in equilibrum. This set of equations has twelve unknowns:  

�𝑥𝑥𝐹𝐹𝐹𝐹𝑙𝑙 , 𝑥𝑥𝐶𝐶𝐶𝐶𝑙𝑙 , 𝑥𝑥𝐶𝐶𝑙𝑙 , 𝑥𝑥𝐹𝐹𝐹𝐹𝐵𝐵𝐵𝐵𝐵𝐵 , 𝑥𝑥𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵 , 𝑥𝑥𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵 , 𝑥𝑥𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 , 𝑥𝑥𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹 , 𝑥𝑥𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹 ,𝑓𝑓𝑙𝑙, 𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵 ,𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹�. 

The results of each solver define the boundry between the coressponding phases. For 

example, Figure-2.15 shows the calculated isotherm at T=1514 ℃, and the boundary of the 

mushy zone is calculated based on the L_BCC solver. 

𝜇𝜇𝐹𝐹𝐹𝐹𝑙𝑙 = 𝜇𝜇𝐹𝐹𝐹𝐹𝐵𝐵𝐵𝐵𝐵𝐵

𝜇𝜇𝐶𝐶𝐶𝐶𝑙𝑙 = 𝜇𝜇𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵

𝜇𝜇𝐶𝐶𝑙𝑙 = 𝜇𝜇𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵

𝜇𝜇𝐹𝐹𝐹𝐹𝑙𝑙 = 𝜇𝜇𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

𝜇𝜇𝐶𝐶𝐶𝐶𝑙𝑙 = 𝜇𝜇𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹

𝜇𝜇𝐶𝐶𝑙𝑙 = 𝜇𝜇𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹

𝑥𝑥𝐹𝐹𝐹𝐹𝑙𝑙 + 𝑥𝑥𝐶𝐶𝐶𝐶𝑙𝑙 + 𝑥𝑥𝐶𝐶𝑙𝑙 = 1
𝑥𝑥𝐹𝐹𝐹𝐹𝐵𝐵𝐵𝐵𝐵𝐵 + 𝑥𝑥𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵 + 𝑥𝑥𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵 = 1
𝑥𝑥𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑥𝑥𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑥𝑥𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹 = 1

[𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐] (𝐸𝐸𝐸𝐸2.55)

𝑥𝑥𝐹𝐹𝐹𝐹𝑙𝑙 ∙ 𝑓𝑓𝑙𝑙 + 𝑥𝑥𝐹𝐹𝐹𝐹𝐵𝐵𝐵𝐵𝐵𝐵 ∙ 𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵 + 𝑥𝑥𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ∙ 𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑥𝑥𝐹𝐹𝐹𝐹0

𝑥𝑥𝐶𝐶𝐶𝐶𝑙𝑙 ∙ 𝑓𝑓𝑙𝑙 + 𝑥𝑥𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵 ∙ 𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵 + 𝑥𝑥𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 ∙ 𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹 = 𝑥𝑥𝐶𝐶𝐶𝐶0

𝑓𝑓𝑙𝑙 + 𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵 + 𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹 = 1

[𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐]

 



78 
 

  
Figure-2.15: The mushy zone of L-BCC as calculated by the L-BCC solver. 

Figure-2.16 shows a calculated isotherm at 1437 ℃ with three distinct mushy zones and 

their boundaries. The first mushy zone consists of L-BCC, the second of L-FCC, and the 

third of L-BCC-FCC. A two phases region consist of BCC-FCC is shown in the figure too. 

Each zone boundary is calculated by the corresponding solver.    

 
Figure-2.16: Different mushy zones in temperature range two. 
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2.12 Calculation Algorithm and Initial Guess 

For a temperature range of 1330 to 1494 ℃ in which L-BCC-FCC is in equilibrum, tie-

triangles can be calculted as follows. First, the L_FCC_BCC_Solver is provided with an 

appropriate initial guess and the initial alloy composition 𝑥𝑥0 to find the L-BCC-FCC tie-

triangle zone. The value of the initial guess is determined by trial and error. It is important 

that the value of 𝑥𝑥0 is inside or close to the tie-triangle. Once, the triangle is constructed, 

all other zones can be calculated automatically, as shown in Figure-2.17.  

 
Figure-2.17: The algorithm of the solution. 

In Figure-2.17, the midpoint of the left side of the triangle is used as an initial alloy 

composition to find the first tie line in the L-FCC region. In addition, the tie-triangle 

vertices at the left are also used as initial guesses. Feeding L_FCC _Solver with a new 

initial guess and 𝑥𝑥0, yields the first tie line of the L-FCC zone. The second tie line of the 
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L-FCC zone is determined in the same way, except that the first tie line is used rather than 

the triangle side. Every tie line is constructed according to the previous one until the entire 

L-FCC mushy zone is calculated. The process is repeated for the other two faces of the 

triangle to calculate the L-BCC and BCC-FCC zones. As stated previously, for this 

algorithm to work, it needs a suitable initial guess to solve for the tie-triangle in which L-

FCC-BCC are in equilibrium. Table-3 shows the initial guesses used for different 

temperature ranges. 

Table-3: The used initial guess to calculate the phase diagram. 
Temperature Range Initial Guess 

1502 ≤ 𝑇𝑇 ≤ 1514℃ 

𝑥𝑥𝐹𝐹𝐹𝐹𝑙𝑙 = 0.4 𝑥𝑥𝐶𝐶𝐶𝐶𝑙𝑙 = 0.2 𝑥𝑥𝐶𝐶𝑙𝑙 = 1 − 𝑥𝑥𝐹𝐹𝐹𝐹𝑙𝑙 − 𝑥𝑥𝐶𝐶𝐶𝐶𝑙𝑙  
𝑥𝑥𝐹𝐹𝐹𝐹𝐵𝐵𝐵𝐵𝐵𝐵 = 0.8 𝑥𝑥𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵 = 0.11 𝑥𝑥𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵 = 1 − 𝑥𝑥𝐹𝐹𝐹𝐹𝐵𝐵𝐵𝐵𝐵𝐵 − 𝑥𝑥𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵 
𝑥𝑥𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 0.8 𝑥𝑥𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹 = 0.1 𝑥𝑥𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹 = 1 − 𝑥𝑥𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 − 𝑥𝑥𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹 
𝑓𝑓𝑙𝑙 = 0.4 𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵 = 0.5 𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹 = 1 − 𝑓𝑓𝑙𝑙 − 𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵 
Initial alloy composition: 
𝑥𝑥𝐶𝐶0 = 0.01 𝑥𝑥𝐶𝐶𝐶𝐶0 = 0.8 𝑥𝑥𝐹𝐹𝐹𝐹0 = 1 − 𝑥𝑥𝐶𝐶0 − 𝑥𝑥𝐶𝐶𝐶𝐶0  

1494.1 ≤ 𝑇𝑇 < 1502℃ 

𝑥𝑥𝐹𝐹𝐹𝐹𝑙𝑙 = 0.75 𝑥𝑥𝐶𝐶𝐶𝐶𝑙𝑙 = 0.2 𝑥𝑥𝐶𝐶𝑙𝑙 = 1 − 𝑥𝑥𝐹𝐹𝐹𝐹𝑙𝑙 − 𝑥𝑥𝐶𝐶𝐶𝐶𝑙𝑙  
𝑥𝑥𝐹𝐹𝐹𝐹𝐵𝐵𝐵𝐵𝐵𝐵 = 0.8 𝑥𝑥𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵 = 0.11 𝑥𝑥𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵 = 1 − 𝑥𝑥𝐹𝐹𝐹𝐹𝐵𝐵𝐵𝐵𝐵𝐵 − 𝑥𝑥𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵 
𝑥𝑥𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 0.8 𝑥𝑥𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹 = 0.1 𝑥𝑥𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹 = 1 − 𝑥𝑥𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 − 𝑥𝑥𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹 
𝑓𝑓𝑙𝑙 = 0.4 𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵 = 0.5 𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹 = 1 − 𝑓𝑓𝑙𝑙 − 𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵 
Initial alloy composition: 
𝑥𝑥𝐶𝐶0 = 0.01 𝑥𝑥𝐶𝐶𝐶𝐶0 = 0.11 𝑥𝑥𝐹𝐹𝐹𝐹0 = 1 − 𝑥𝑥𝐶𝐶0 − 𝑥𝑥𝐶𝐶𝐶𝐶0  

1330 ≤ 𝑇𝑇 < 1494.1℃ 

𝑥𝑥𝐹𝐹𝐹𝐹𝑙𝑙 = 0.6 𝑥𝑥𝐶𝐶𝐶𝐶𝑙𝑙 = 0.2 𝑥𝑥𝐶𝐶𝑙𝑙 = 1 − 𝑥𝑥𝐹𝐹𝐹𝐹𝑙𝑙 − 𝑥𝑥𝐶𝐶𝐶𝐶𝑙𝑙  
𝑥𝑥𝐹𝐹𝐹𝐹𝐵𝐵𝐵𝐵𝐵𝐵 = 0.8 𝑥𝑥𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵 = 0.11 𝑥𝑥𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵 = 1 − 𝑥𝑥𝐹𝐹𝐹𝐹𝐵𝐵𝐵𝐵𝐵𝐵 − 𝑥𝑥𝐶𝐶𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵 
𝑥𝑥𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 0.8 𝑥𝑥𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹 = 0.1 𝑥𝑥𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹 = 1 − 𝑥𝑥𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 − 𝑥𝑥𝐶𝐶𝐶𝐶𝐹𝐹𝐹𝐹𝐹𝐹 
𝑓𝑓𝑙𝑙 = 0.4 𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵 = 0.5 𝑓𝑓𝐹𝐹𝐹𝐹𝐹𝐹 = 1 − 𝑓𝑓𝑙𝑙 − 𝑓𝑓𝐵𝐵𝐵𝐵𝐵𝐵 
Initial alloy composition: 
𝑥𝑥𝐶𝐶0 = 0.01 𝑥𝑥𝐶𝐶𝐶𝐶0 = 0.11 𝑥𝑥𝐹𝐹𝐹𝐹0 = 1 − 𝑥𝑥𝐶𝐶0 − 𝑥𝑥𝐶𝐶𝐶𝐶0  
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2.13 The Validation of The CALPHAD Solver 

At every temperature in the range 1330 to 1494℃, the entire calculation of the Fe-Cr-C 

phase diagram depends on successful calculation of a tie-triangle zone. In order to verify 

the developed CALPHAD model, the calculation of the tie-triangle at any temperature is 

verified against MatCalc®. Figure-2.18 shows the result of the verification.  

 
Figure-2.18: The verification of the triangle zone. 

The small deviation between the developed model and MatCalc® is due to the differences 

in the thermodynamics database. The developed model is based on Andersson’s 

thermodynamics assessment, and while MatCalc® uses its own assessment. The main 

difference depends on the interaction parameters of the excess Gibbs energy, such as the 

difference between the two thermodynamics assessments shown in Figure-2.14. However, 

the developed CALPHAD model is very flexible and it can allow any updated assessment 

to be used directly. Figure-2.19a shows an isotherm calculated by Thermo-Calc, and 
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Figure-2.19b shows an isotherm calculated by our calculations. Again, the deviation is due 

to differences in the thermodynamics assessment.  

  

Figure-2.19: The isotherm on the left was calculated at T=1437℃ by Thermo-Calc®, 
and (b) the isotherm on the right was calculated by the developed model. 

Figure-2.20 shows a comparison between two isotherms at T=1500 ℃ in which liquid and 

BCC are in equilibrium.  

 
Figure-2.20: (a) The isotherm at T=1500℃ calculated by Thermo-Calc® and (b) the 
isotherm calculated by the developed model. 
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The calculated thermodynamics data by the computational code include: the equilibrium 

concentration of chromium in liquid 𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙 , the equilibrium concentration of carbon in liquid 

𝐶𝐶𝐶𝐶𝑙𝑙 , the equilibrium concentration of chromium in solid 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠 , and the equilibrium 

concentration of carbon in solid 𝐶𝐶𝐶𝐶𝑠𝑠. At a constant temperature, the collection of 𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙  and 

𝐶𝐶𝐶𝐶𝑙𝑙  describes the liquidus boundary, and the collection of 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠  and 𝐶𝐶𝐶𝐶𝑠𝑠 describes the solidus 

boundary. These data are used by the solidification model during the simulation. 
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Chapter-3: Solidification Modeling by Cellular Automata CA 

 

This chapter is composed of two parts: part-A and part-B. Part-A is a broad review of the 

microstructure solidification modeling by the cellular automata (CA) algorithm. It explains 

the procedures of computing solute diffusion, heat diffusion, curvature-, and solid fraction, 

and discusses the effect of mesh anisotropy on solidifying structure. Part-B describes the 

computational tools developed for solute and heat diffusion, curvature-, and coupling of 

CALPHAD to CA (or CA-CALPHAD) in detail. Validation of the developed CA-

CALPHAD model is discussed in section-3.9. 

Part-A: Using Cellular Automata CA for Soldification Modeling 

3.1 Cellular Automata (CA) 

The CA algorithm was originally developed by John von Neumann to model complex 

physical phenomena using simple rules and algorithms [21]. In 1984, the CA algorithm 

was applied to solidification modeling to simulate the evolution of the microstructure [22]. 

The procedure of the CA application for solidification modeling consists of four main 

components: (1) subdivide the computational domain into cells and predetermine the initial 

state of solid/liquid and boundary conditions for concentration and temperature fields, (2) 

calculate the state variables (e.g. solid fraction, temperature, solute concentration, 

curvature) for each cell at every time step, (3) define the neighborhood cells (i.e. first 
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neighbor or second neighbor), and (4) specify the transition or capturing rules that 

determine whether state variables will change their state. The CA algorithm can be used in 

many materials modeling applications as discussed in many computational material 

textbooks [38, 43, 44]. This study utilizes the CA algorithm for the simulation of 

solidification microstructure with varying thermal and compositional fields. According to 

[23], most published CA solidification models share some common assumptions and 

features. These include the computational domain in 3D being represented by regular 

Cartesian grids, and the state variables of cells are temperature, solute concentration, and 

solid fraction. Additional variables are calculated for interfacial cells (i.e. cells on the S/L 

boundary such as interface curvature and kinetic. Within the computational domain, the 

phase state type of any cell can have one of three possible values: solid, liquid, and 

interface. A solid cell has a solid fraction of one, a liquid cell has a solid fraction of zero, 

and an interface cell has a solid fraction between zero and one. The S/L interface is 

implicitly defined in CA by all cells with solid fractions that are between zero and one. In 

all available models the linearized phase diagram approach was used. In this thesis, more 

accurate CALPHAD based thermodynamics model is developed. 

3.1.1 Cellular Automata Computational Domain and Cell Neighborhood Definition 

The computational domain characteristics include the size of cells, the total number of 

cells, and the size of a control volume. Cubic cells are typically considered for a 3D 

domain, and square cells for a 2D domain. The cell size must be small enough to represent 
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the smallest length scale of dendritic morphology (i.e. the tip radius). Using cubic cells 

produces mesh anisotropy, which is described in the next section. The simplest way to 

reduce the effect of mesh anisotropy is to use a small cells size in the computational 

domain. However, this will increase the simulation time significantly because small cell 

size reduces the time step and increases the total number of cells within a computational 

domain. To reduce the mesh anisotropy, some models use point mesh or point automata 

(PA) [45], hexagonal mesh [23], or the mesh refining technique by the quadtree algorithm 

[46]. In PA, unstructured points are distributed with a computational domain, and initial 

solid fractions are assigned for each point. In addition, the temperature field is computed 

for a structured mesh of the domain, and the temperature values of the unstructured points 

are then interpolated from the structural mesh. In the quadtree refining algorithm the 

interfacial cells are subdivided into smaller cells, which mitigates the mesh anisotropy 

effect. However, none of these solutions eliminate the mesh anisotropy completely.  

Another important feature of CA is definition of the cell neighborhood.  Two types of 

neighborhoods are widely used: Neumann and Moore. In Neumann neighborhoods, the 

nearest cells are counted, so there are four cells in a 2D case and six cells in a 3D case. In 

Moore neighborhoods more cells are counted, so there are eight neighbor cells in a 2D case 

and 26 cells in 3D case. Figure-3.1 shows these neighborhood definitions. The definition 

of neighbor cells can be also determined by defining a circle/sphere of a certain radius 

around a cell, so any cell inside the circle/sphere is a neighbor cell. 
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Figure-3.1: The definition of neighborhood of an interfacial cell. [47], page-217. 

The neighborhood definition is required for curvature calculations, as well as for 

calculations of temperature and concentration fields if a finite difference scheme is used 

with CA, or CA-FD. The calculation of temperature and concentration fields uses the 

Neumann definition, and the calculation of curvature uses the Moore definition. 

3.1.2 Cellular Automata Transition Rules and Mesh Anisotropy 

All cells in CA computational domain are solid, liquid or interfacial, and some are initially 

designated as solid or liquid. During CA simulation, solid cells can “capture” liquid cells, 

and thereby change their state to interfacial. Transition rules dictate this capture process, 

and the classical transition rule assumes that the state of a cell begins to change if at least 

one of its Neumann neighbor cells is completely solid. This assumption is reasonable, since 

a completely solid cell acts as a nucleation site for its Neumann neighbor cells, and once a 

cell starts to solidify, its solid fraction increases with time. If the transition rule is not 

applicable for a cell, it will remain liquid with zero solid fraction, even if it has temperature 
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is below the liquidus temperature. This transition rule produces strong mesh anisotropy 

with dendrites growing faster when parallel to the axis of the mesh. Though dendrites can 

physically grow in every possible direction, strong mesh anisotropy forces dendrites within 

the computational domain to grow in orthogonal directions. In fact, mesh anisotropy is one 

of the main disadvantages of using CA in microstructure prediction. However, attempts 

have been developed to solve the problem, including refining cell size, adjusting the 

increase of solid fraction, and modifying the transition rules.  

In [46], the Quadtree algorithm is used to simulate a thermal dendritic growth and refine 

the size of interfacial cells locally. This decreases the mesh anisotropy and can predict 

many dendritic morphologies. Another solution to mesh anisotropy is to direct the 

increments of solid fractions in different directions than the mesh axis— an adjustment that 

can be included in the anisotropy function, as shown in [48]. In addition, solid grain growth 

in different orientations can be achieved by assigning different orientation angles for each 

solid grain and modifying the capturing rule. In [49] the capturing rule was based on 

solidifying neighborhood rather than one cell, and if all cells in a defined neighborhood are 

solid, they will capture another neighborhood cells. The most common modification for 

capturing rule algorithm is based on the decentered square/octahedron proposed by Rappaz 

et al [50], and later modified by Wang et al [51]. However, implementing the decentered 

algorithm requires additional information storage and uses more computational power. 

Reducing mesh anisotropy and allowing multi-grain orientation growth is more important 

for casting simulation than welding. This is because a columnar dendritic growth aligned 
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with the computational domain axis is for welding simulation, since it reproduces preferred 

crystallographic growth directions. 

3.1.3 Cellular Automata State Variable Calculations 

The state variables that are typically calculated during CA simulation include the 

temperature field, the solute concentration field, S/L interface curvature-, and the solid 

fractions of interfacial cells. The temperature field can either be imposed on a 

computational domain or calculated. An imposed temperature field assigns uniform values 

or gradient undercooled temperatures for all cells, which allows a predetermined cooling 

rate value to be applied at every time step for all cells. The imposed temperature field is 

reasonable, since the heat diffusion process is more than an order of magnitude faster than 

the solute diffusion process (the release of latent heat is not considered in this case). 

However, the temperature field for the entire domain can be solved numerically using an 

implicit heat equation solver at the same time step as the explicit solute diffusion solver 

[52]. Some models [53, 54] solve the heat equation on a macroscale, then interpolate the 

temperature values for the CA microscale domain.  

Due to discontinuity at the S/L interface, calculation of the solute field is more difficult 

than calculating the temperature field. Two approaches are proposed to address this: one-

domain and two-domain. In the one-domain approach, the diffusion equation is solved over 

the entire domain for either liquid or solid, and then a correction is considered for the other 

phase. For example, Dilthey [23] proposed a one-domain approach that solves the solute 
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concentration of the solid phase for the entire domain and gives the solute concentration of 

liquid by dividing the solid solute concentration by a constant distribution coefficient. In 

the two-domain approach the solute diffusion equation is solved in the liquid and solid 

domains separately. The solute field in the interface cells is calculated from the flux from 

both the solid liquid.  

The evolution of the solid fraction 𝑓𝑓𝑠𝑠 is incorporated by considering the S/L interface 

velocity or the S/L interface kinetic [23, 3]. The conservation of mass allows calculation 

of the velocity of the S/L interface from the surrounding concentration field, and the change 

of the solid fraction can be calculated from the velocity of the advanced S/L interface.  

However, calculating the solid fraction from the interface velocity requires consideration 

of geometrical assumptions for the interface inside the cell, one of which could be that the 

S/L interface inside a cell is advancing both vertically and horizontally, as illustrated 

Figure-3.2a. Thus, the velocity components must be calculated according to the solute 

concentration of the surrounding cells, and the solid fraction of the cell is defined as the 

area behind the advanced S/L interface in both directions.  

 
Figure-3.2: Geometrical assumptions of the moving S/L interface inside a cell. 



91 
 

Another geometrical assumption is that the advance of the S/L interface is in the direction 

of the interface normal vector, and the solid fraction is equal to the area covered by a line 

perpendicular to the normal interface, as shown in Figure-3.2b. The most common interface 

geometrical assumption is decentered squares, as shown in Figure-3.2c. All the previous 

assumptions presume that the concentration of solute at the interface is equal to the 

equilibrium concentration. However, these become invalid as the velocity of the interface 

increases.  

The solid fraction can also be calculated using the kinetics equation of solidification, in 

which the velocity of the S/L interface movement (𝑉𝑉𝑠𝑠/𝑙𝑙) is equal to the kinetic coefficient 

(𝜇𝜇𝑘𝑘) multiplied by the total undercooling. Total undercooling includes melt undercooling, 

constitutional undercooling and capillarity undercooling, according to the curvature from 

Equation-3.1. 

𝑉𝑉𝑠𝑠/𝑙𝑙 = 𝜇𝜇𝑘𝑘 ∙ ��𝑇𝑇𝑚𝑚𝑒𝑒 − 𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙� + 𝑚𝑚 ∙ 𝐶𝐶 + (𝛤𝛤 ∙ 𝑘𝑘)� 𝐸𝐸𝐸𝐸3.1 

where (𝑇𝑇𝑚𝑚𝑒𝑒 ) is the melting temperature of the host component, (𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙) is the temperature of 

the liquid, 𝑚𝑚 is the slope of the liquidus line,  𝐶𝐶 is the solute concentration, and (𝑘𝑘) is the 

curvature value (which is negative if convex and positive if concave). Thus, the solid 

fraction (∆𝑓𝑓𝑠𝑠) for a cubic cell can be calculated as:  

∆𝑓𝑓𝑠𝑠 =
∆𝑡𝑡 ∙ 𝑉𝑉𝑠𝑠/𝑙𝑙

∆𝑥𝑥 𝐸𝐸𝐸𝐸3.2 
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where ∆𝑡𝑡 is the time step and ∆𝑥𝑥 is the length of the cell.  Another method for calculating 

the solid fraction is the cellwise mass balance, in which the solid fractions of interface cells 

are calculated by balancing the solute concentration of interface cells with the equilibrium 

concentration using the lever rule. This approach does not require computation of the 

velocity of the advancing S/L interface, and it gives better mass conservation. 

3.1.4 The Computation of S/L Interface Curvature 

During dendrite growth simulation, the effect of the S/L interface curvature on the melting 

temperature should be included. The computational domain of the simulation is composed 

of cubic cells, and there could be problem using cubic cells to illustrate the very complex 

and curved geometry of a dendrite. The computed curvature (𝐾𝐾𝑟𝑟) should not be 

overestimated nor underestimated. If it is overestimated, the resulting dendritic 

morphology will be blunter than it should be, and if 𝐾𝐾𝑟𝑟 is underestimated, the resulting 

dendritic morphology will be sharper with spike-like branches, as in Figure-3.3.  

 
Figure-3.3: (a) a dendrite with actual curvature, (b) the dendrite with overestimated 
curvature, and (c) the dendrite with underestimated curvature. 
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Two methods are used to calculate the curvature of the S/L interface in CA: cell count and 

level set. In the cell count method, the number of cells below a planar front (𝑁𝑁𝑜𝑜)  and the 

number of solid cells is counted (𝑁𝑁𝑠𝑠). As shown in Figure-3.4, if  𝑁𝑁𝑜𝑜 > 𝑁𝑁𝑠𝑠 the S/L interface 

is convex, if  𝑁𝑁𝑜𝑜 < 𝑁𝑁𝑠𝑠 the S/L interface is concave; and it is flat if 𝑁𝑁𝑜𝑜 = 𝑁𝑁𝑠𝑠. There are 

many empirical formulas used in this method, and the most common was proposed by 

Nastac [52]. 

 
Figure-3.4: Calculating curvatures by cell count method. 

Level set is another technique to estimate the curvature of an S/L interface in CA. With 

this method, the curvature at any point is the gradient of the unit normal vector of the 

surface at that point. Since the surface is represented by the solid fraction values in CA, the 

curvature of an interfacial cell is calculated based on the value of its solid fraction. Thus, 

the mean curvature 𝑘𝑘 can be calculated as: 

𝐾𝐾𝑟𝑟 = ∇ ∙
∇𝑓𝑓𝑠𝑠

|∇𝑓𝑓𝑠𝑠| 𝐸𝐸𝐸𝐸3.3 

And the expansion of Equation-3.3 is: 
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𝐾𝐾𝑟𝑟 =

𝑓𝑓𝑥𝑥𝑠𝑠
2�𝑓𝑓𝑦𝑦𝑦𝑦𝑠𝑠 + 𝑓𝑓𝑧𝑧𝑧𝑧𝑠𝑠 � + 𝑓𝑓𝑦𝑦𝑠𝑠

2(𝑓𝑓𝑥𝑥𝑥𝑥𝑠𝑠 + 𝑓𝑓𝑧𝑧𝑧𝑧𝑠𝑠 ) + 𝑓𝑓𝑧𝑧𝑠𝑠
2�𝑓𝑓𝑥𝑥𝑥𝑥𝑠𝑠 + 𝑓𝑓𝑦𝑦𝑦𝑦𝑠𝑠 � −

2�𝑓𝑓𝑥𝑥𝑠𝑠𝑓𝑓𝑦𝑦𝑠𝑠𝑓𝑓𝑥𝑥𝑥𝑥𝑠𝑠 + 𝑓𝑓𝑥𝑥𝑠𝑠𝑓𝑓𝑧𝑧𝑠𝑠𝑓𝑓𝑥𝑥𝑥𝑥𝑠𝑠 + 𝑓𝑓𝑦𝑦𝑠𝑠𝑓𝑓𝑧𝑧𝑠𝑠𝑓𝑓𝑦𝑦𝑦𝑦𝑠𝑠 �

�𝑓𝑓𝑥𝑥𝑠𝑠
2 + 𝑓𝑓𝑦𝑦𝑠𝑠

2 + 𝑓𝑓𝑧𝑧𝑠𝑠
2�

3/2 [level set curvature] 𝐸𝐸𝐸𝐸3.4 

All derivatives in Equation-3.4 can be calculated by using finite difference scheme for the 

solid fraction field. For example, the derivatives in the x-direction of the solid fraction field 

evaluated at cell id i,j,k  are 

𝑓𝑓𝑥𝑥𝑠𝑠 =
𝑓𝑓𝑖𝑖+1𝑗𝑗𝑗𝑗𝑠𝑠 − 𝑓𝑓𝑖𝑖−1𝑗𝑗𝑗𝑗𝑠𝑠

2 ∙ ∆𝑥𝑥                                                  

𝑓𝑓𝑥𝑥𝑥𝑥𝑠𝑠 =
𝑓𝑓𝑖𝑖+1𝑗𝑗𝑗𝑗𝑠𝑠 − 2𝑓𝑓𝑖𝑖−1𝑗𝑗𝑗𝑗𝑠𝑠 + 𝑓𝑓𝑖𝑖−1𝑗𝑗𝑗𝑗𝑠𝑠

∆𝑥𝑥2                                

𝑓𝑓𝑥𝑥𝑥𝑥𝑠𝑠 =
𝑓𝑓𝑖𝑖+1𝑗𝑗+1𝑘𝑘𝑠𝑠 − 𝑓𝑓𝑖𝑖−1𝑗𝑗+1𝑘𝑘𝑠𝑠 − 𝑓𝑓𝑖𝑖+1𝑗𝑗−1𝑘𝑘𝑠𝑠 + 𝑓𝑓𝑖𝑖−1𝑗𝑗−1𝑘𝑘𝑠𝑠

4 ∙ ∆𝑥𝑥4

𝐸𝐸𝐸𝐸3.5 

The anisotropy of the surface energy should be incorporated with the curvature calculation 

into the capillarity undercooling calculation using Gibbs-Thomson-Herring relationship as 

described in 1.5.5. The used model in the current work follows: 

𝑑𝑑𝑇𝑇𝑟𝑟 = Γ ∙ 𝛾𝛾�𝜃𝜃𝑥𝑥𝑥𝑥 ,𝜃𝜃𝑧𝑧� ∙ 𝐾𝐾𝑟𝑟 𝐸𝐸𝐸𝐸3.6 

𝛾𝛾�𝜃𝜃𝑥𝑥𝑥𝑥 ,𝜃𝜃𝑧𝑧� = 1 − 𝜀𝜀𝑥𝑥𝑥𝑥 cos�4𝜃𝜃𝑥𝑥𝑥𝑥� − 𝜀𝜀𝑧𝑧 cos(4𝜃𝜃𝑧𝑧) 𝐸𝐸𝐸𝐸3.7 

where, 𝜀𝜀𝑥𝑥𝑥𝑥 is the anisotropy coefficient in the xy plane, 𝜀𝜀𝑧𝑧 is the anisotropy coefficient in 

the z-direction,  𝜃𝜃𝑧𝑧 = 𝑐𝑐𝑐𝑐𝑐𝑐−1(𝑛𝑛𝑧𝑧), 𝜃𝜃𝑥𝑥𝑥𝑥 = 𝑐𝑐𝑐𝑐𝑐𝑐−1(𝑛𝑛𝑥𝑥 �𝑛𝑛𝑥𝑥2 + 𝑛𝑛𝑦𝑦2⁄ ) or 𝜃𝜃𝑥𝑥𝑥𝑥 = 𝑐𝑐𝑐𝑐𝑐𝑐−1(𝑛𝑛𝑥𝑥) if 𝑛𝑛𝑥𝑥 

and 𝑛𝑛𝑦𝑦 are equal to zero. The normal unit vectors (𝑛𝑛𝑥𝑥, 𝑛𝑛𝑦𝑦, 𝑛𝑛𝑧𝑧) are calculated using the 

derivatives of the solid fraction field as: 
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𝑛𝑛𝑥𝑥 =
𝑓𝑓𝑥𝑥𝑠𝑠

�𝑓𝑓𝑥𝑥𝑠𝑠
2 + 𝑓𝑓𝑦𝑦𝑠𝑠

2 + 𝑓𝑓𝑧𝑧𝑠𝑠
2

𝑛𝑛𝑦𝑦 =
𝑓𝑓𝑦𝑦𝑠𝑠

�𝑓𝑓𝑥𝑥𝑠𝑠
2 + 𝑓𝑓𝑦𝑦𝑠𝑠

2 + 𝑓𝑓𝑧𝑧𝑠𝑠
2

𝑛𝑛𝑧𝑧 =
𝑓𝑓𝑧𝑧𝑠𝑠

�𝑓𝑓𝑥𝑥𝑠𝑠
2 + 𝑓𝑓𝑦𝑦𝑠𝑠

2 + 𝑓𝑓𝑧𝑧𝑠𝑠
2

𝐸𝐸𝐸𝐸3.8
 

3.2 Overview of Some Cellular Automata Models  

The varieties of CA models used for solidification modeling are vast as discussed next. 

Several questions can be asked to distinguish different types of CA models. 

• Does the model consider constrained growth, free growth, or both? Since the growth is 

constrained by the temperature field, using free growth means heat flows from the solid 

phase into the surrounding and undercooled liquid (this is common in equiaxed grain 

growth). With constrained growth, heat flows from the surrounding liquid into the 

solid, which is common in columnar/dendritic growth. If a correct nucleation algorithm 

is used, the model can predict columnar-to-equiaxed growth transition [13].  

• Does the model solve for thermal dendrites, solutal dendrites, or thermo-solutal 

dendrites? With thermal dendrites only the heat equation is solved, so they are typically 

used for the solidification of pure materials, and the solution scheme can be explicit or 

implicit. The boundary conditions can be natural convection or the Neumann type. 

With solutal dendrites the mass diffusion equation is solved and an imposed 

temperature field with some undercooling can be assumed. In thermo-solutal dendrites 

both heat diffusion and mass diffusion equations are solved at each time step.  
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• How does the model determine the curvature? The most common two methods for this 

are cell-count and level-set? 

• How does the model include the physical anisotropy of the growth, and manage mesh 

anisotropy? 

• How does the model estimate the kinetics of the S/L interface? The kinetics of the 

interface is included by calculating the increments in solid fraction at each time step. 

The increments can be based on the Stefan condition or kinetic undercooling. 

Next, some noteworthy models are analyzed by answering the previous questions. 

Gandin and Rappaz used the CA algorithm to simulate the microstructure of a casting, and 

predicted a meso-scale dendrite envelope [23]. In [55], the model was coupled with finite 

elements ( CA-FE) to compute the temperature field. The model was later extented to a 3D 

case [56] by proposing 3D decentred octahedron CA growth count for different grain 

orinetations. In [57], the model was used to simulate casting of aluminum-silicon rods. 

Sasikumar et al [58] proposed a 2D CA model for pure metals that solved the heat equation 

explicitly. The solid fraction was calculated using the kinetics of the interface using the 

stefan condition in x and y directions. The model was used to study the effects of 

undercooling, surface tension, and solidification noise on the solidification. In [59], 

Sasikumar et al used the developed model to study the effect of the Gibbs-Thomson 

coefficient (Γ) on grain coarsening, and concluded that a higher Γ produces an artificial 

Ostwald ripening phenomenon that is equvelant to the simulation running for a long time.  
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V. Pavlyk and U. Dilthey [60] developed a 2D cellular automata model to simulate the 

crystal growth of a binary alloy. They considered a mass balance with Stefan-like 

conditions at the S/L interface, and solved the mass difusion equation explicitly at the S/L 

interface to account for solid fraction incrementation. They also coupled the model with 

finite difference to simulate dendritic growth in a weld pool [44].  

Nastac developed a 2D CA model [61], then extended it to 3D [52]. His main new 

contribution was solving the heat equation implicitly to calculate the temperature field 

during simulation. His second contribution was developing the cell-count method to 

calculate the curvature of a cell by accounting for the solid fractions within its Moore 

neighborhood.  

Part-B: The CA Model of the Current Work 

3.3 Computational Tools 

As described, the implementation of CA algorithms requires calculation of certain field 

variables. Four computational tools are developed in this study to compute: the solute field, 

the temperature field, the curvature field, and the solid fraction. The calculation of solid 

fraction is based on the equilibrium information of the phase diagram obtained by 

CALPHAD calculations. These tools calculate the fields at each time step. 
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3.3.1 Mass Transport Computation Tool 

The solute distribution can be determined by solving the mass diffusion equation by the 

finite volume FV method as follows: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = 𝐷𝐷𝑙𝑙(𝑇𝑇) ∙ �

𝜕𝜕2𝐶𝐶
𝜕𝜕𝜕𝜕2

+
𝜕𝜕2𝐶𝐶
𝜕𝜕𝜕𝜕2

+
𝜕𝜕2𝐶𝐶
𝜕𝜕𝜕𝜕2

� [Fick′s second law of diffusion] 𝐸𝐸𝐸𝐸3.9 

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖
𝑡𝑡+1 − 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖

𝑡𝑡 = ∆𝑡𝑡 ∙ 𝐷𝐷𝑙𝑙(𝑇𝑇) ∙

⎣
⎢
⎢
⎢
⎢
⎢
⎡�
𝐶𝐶𝑖𝑖+1,𝑗𝑗,𝑘𝑘
𝑡𝑡 − 2 ∙ 𝐶𝐶𝑖𝑖,𝑗𝑗,𝑘𝑘

𝑡𝑡 + 𝐶𝐶𝑖𝑖−1,𝑗𝑗,𝑘𝑘
𝑡𝑡

∆𝑥𝑥2 � +

�
𝐶𝐶𝑖𝑖,𝑗𝑗+1,𝑘𝑘
𝑡𝑡 − 2 ∙ 𝐶𝐶𝑖𝑖,𝑗𝑗,𝑘𝑘

𝑡𝑡 + 𝐶𝐶𝑖𝑖,𝑗𝑗−1,𝑘𝑘
𝑡𝑡

∆𝑦𝑦2 � +

�
𝐶𝐶𝑖𝑖,𝑗𝑗,𝑘𝑘+1
𝑡𝑡 − 2 ∙ 𝐶𝐶𝑖𝑖,𝑗𝑗,𝑘𝑘

𝑡𝑡 + 𝐶𝐶𝑖𝑖,𝑗𝑗,𝑘𝑘−1
𝑡𝑡

∆𝑧𝑧2 �
⎦
⎥
⎥
⎥
⎥
⎥
⎤

𝐸𝐸𝐸𝐸3.10 

Our model assumes that: (1) the diffusion coefficient is independent of temperature, (2) 

there is no diffusion in the solid phase, and (3) there is no back diffusion from liquid to 

solid— all these assumptions should be included in the FV formulation. The first 

assumption can be incorporated by using a constant value for the diffusion coefficient for 

each species. The second assumption is incorporated by solving the FV formulation for 

liquid and interfacial cells only. This assumption is reasonable since the diffusivity of 

solutes in solid is hundreds of time smaller than that is in liquid.  

Another important consideration is diffusion through interfacial cells, since they are 

partially liquid and partially solid. Diffusion only occurs in the liquid portion, and this 

should be considered in the formulation. An interfacial cell and its neighbor cells are 

depicted in Figure-3.5. The flux of solutes into the interfacial cell from its liquid neighbor 
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cells occurs in three directions (x, y, z). Only flux in the x-direction is considered here, to 

show how an interfacial cell can be treated.  

 
Figure-3.5: Finite difference formulation of an interfacial cell. 

 
The change in interfacial cell concentration is equal to the change in its mass divided by 

its volume. However, the cell volume must be multiplied by its liquid fraction, since the 

diffusion occurs in liquid only: 

∆𝐶𝐶 =
∆𝑀𝑀
𝑉𝑉 ∙ 𝑓𝑓𝑙𝑙 [the concentration of an interfacial cell] 𝐸𝐸𝐸𝐸3.11 

The change in the cell mass along the x-direction is equal to the net mass flux multiplied 

by the flux area and the time step: 

∆𝑀𝑀 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛 ∙ ∆𝑦𝑦 ∙ ∆𝑧𝑧 ∙ 𝑑𝑑𝑑𝑑 [mass change] 𝐸𝐸𝐸𝐸3.12 

By substituting Equation-5 into Equation-4, the change in concentration of the interfacial 

cell is: 

∆𝐶𝐶 =
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛 ∙ ∆𝑦𝑦 ∙ ∆𝑧𝑧 ∙ 𝑑𝑑𝑑𝑑
∆𝑥𝑥 ∙ ∆𝑦𝑦 ∙ ∆𝑧𝑧 ∙ 𝑓𝑓𝑙𝑙 𝐸𝐸𝐸𝐸3.13 
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and the net flux into the cell is obtained by FD formulation of the diffusion equation: 

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑛𝑛𝑛𝑛𝑛𝑛 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 = 𝐷𝐷𝑙𝑙 ∙ �
𝐶𝐶𝑖𝑖+1 − 𝐶𝐶𝑖𝑖

∆𝑥𝑥
� − 𝐷𝐷𝑙𝑙 ∙ �

𝐶𝐶𝑖𝑖 − 𝐶𝐶𝑖𝑖−1
∆𝑥𝑥

� 𝐸𝐸𝐸𝐸3.14 

The concentration changes in the cell due to solute flux in the x direction are obtained by 

substituting Equation-3.14 into Equation-3.13: 

∆𝐶𝐶 =
𝐷𝐷𝑙𝑙 ∙ ∆𝑡𝑡
𝑓𝑓𝑙𝑙

∙ �
𝐶𝐶𝑖𝑖+1 − 𝐶𝐶𝑖𝑖
∆𝑥𝑥2 −

𝐶𝐶𝑖𝑖 − 𝐶𝐶𝑖𝑖−1
∆𝑥𝑥2

� 𝐸𝐸𝐸𝐸3.15 

Since the same diffusion process also occurs in the y and z directions, Equation-3.15 can 

be rewritten in term of y and z directions. A special modification of Equation-3.10 is 

required to incorporate the third assumption: a diffusion block function, 𝜃𝜃(𝑓𝑓𝑠𝑠), is defined 

as: 

𝜃𝜃(𝑓𝑓𝑠𝑠) = �0 𝑖𝑖𝑖𝑖 𝑓𝑓𝑠𝑠 = 1
1 𝑖𝑖𝑖𝑖 𝑓𝑓𝑠𝑠 < 1 [Diffusion block function] 𝐸𝐸𝐸𝐸3.16 

As the value of the blocking function can be either one or zero, it blocks diffusion from or 

to cells that are completely solid. Eventually, the full FV formulation for solute diffusion 

is: 

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙+1 = 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙 +
𝐷𝐷𝑙𝑙 ∙ ∆𝑡𝑡
𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙

∙

⎣
⎢
⎢
⎢
⎢
⎢
⎡�𝐶𝐶𝑖𝑖+1,𝑗𝑗,𝑘𝑘

𝑙𝑙 − 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙 � ∙ 𝜃𝜃(𝑓𝑓𝑠𝑠)
∆𝑥𝑥2 −

�𝐶𝐶𝑖𝑖,𝑗𝑗,𝑘𝑘
𝑙𝑙 − 𝐶𝐶𝑖𝑖−1,𝑗𝑗,𝑘𝑘

𝑙𝑙 � ∙ 𝜃𝜃(𝑓𝑓𝑠𝑠)
∆𝑥𝑥2 +

�𝐶𝐶𝑖𝑖,𝑗𝑗+1,𝑘𝑘
𝑙𝑙 − 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙 � ∙ 𝜃𝜃(𝑓𝑓𝑠𝑠)

∆𝑦𝑦2 −
�𝐶𝐶𝑖𝑖,𝑗𝑗,𝑘𝑘

𝑙𝑙 − 𝐶𝐶𝑖𝑖,𝑗𝑗−1,𝑘𝑘
𝑙𝑙 � ∙ 𝜃𝜃(𝑓𝑓𝑠𝑠)
∆𝑦𝑦2 +

�𝐶𝐶𝑖𝑖,𝑗𝑗,𝑘𝑘+1
𝑙𝑙 − 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙 � ∙ 𝜃𝜃(𝑓𝑓𝑠𝑠)

∆𝑧𝑧2 −
�𝐶𝐶𝑖𝑖,𝑗𝑗,𝑘𝑘

𝑙𝑙 − 𝐶𝐶𝑖𝑖,𝑗𝑗,𝑘𝑘−1
𝑙𝑙 � ∙ 𝜃𝜃(𝑓𝑓𝑠𝑠)
∆𝑧𝑧2 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

[FV formulation] 𝐸𝐸𝐸𝐸3.17 
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The time step is selected based on the Fourier stability criteria of the explicit scheme: ∆𝑡𝑡 ≤

∆𝑥𝑥2

8𝛼𝛼
, where ∆𝑥𝑥 and 𝛼𝛼 are the cell size and the solute diffusivity respectively. Based on 

Equation-3.17, the solute transportation is computed with the following algorithm. The 

control volume of the solidification model is first subdivided into three domains: the cells 

in the first domain are completely liquid Ω𝑙𝑙, those in the second domain are completely 

solid Ω𝑠𝑠, and those in the third domain are in mushy state Ω𝑠𝑠/𝑙𝑙. Initially, all cells in the 

bottom layer of the control volume are completely solid, and the adjacent cells are in mushy 

state. The rest of the cells are in liquid state, as shown in Figure-3.6. 

   
Figure-3.6: The computational domain of mass diffusion computation. 

In order to conserve the mass, periodical boundary conditions are applied in the x and y 

directions, and no flux moves in or out in the z direction. The concentration of the liquid 

domain cells is initially set to a constant value equal to the initial alloy composition, 𝐶𝐶0, 

and the concentration of the interfacial cells is set to the equilibrium concentration, 𝐶𝐶𝑒𝑒𝑒𝑒. 

Therefore, the concentration gradient will drive solute transport through multiple step.   
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3.3.2 Imposed Temperature Field Computation 

The temperature field can be imposed on a computational domain, in which initial 

temperature values are assigned for all cells. The initial temperature values can be uniform 

or with gradient, as shown in Figure-3.7. In either case, a constant cooling rate (K/s) can 

be applied on the computational domain. Such approach is used in [62, 3]. 

 

(a) uniform imposed temperature 1507 ᵒC 

 

(b) imposed temperature with gradient 

Figure-3.7: Imposed temperature profile. 

On the other hand, the temperature field can be imported from a macroscopic FE mesh of 

a welding case, and the procedure is described in chapter 5. 

3.3.3 Heat Transport Computation 

The heat diffusion equation can also be calculated for a computational domain to determine 

the temperature field. The enthalpy formulation of heat equation is implemented in this 

study. With this method, the differential equation of heat transport should be formulated to 
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include the enthalpy, which is the total heat content of the substance. In Equation-3.18, the 

enthalpy function is used as a dependent variable with the temperature.  

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑘𝑘𝑡𝑡ℎ ∙ ��
𝜕𝜕2𝑇𝑇
𝜕𝜕𝑥𝑥2 � + �

𝜕𝜕2𝑇𝑇
𝜕𝜕𝑦𝑦2 � + �

𝜕𝜕2𝑇𝑇
𝜕𝜕𝑧𝑧2 �� [ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑐𝑐ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎] (𝐸𝐸𝐸𝐸3.18) 

where, 𝑘𝑘𝑡𝑡ℎ is the thermal conductivity. For a numerical scheme, the temperature of the 

entire domain is specified at each time step, and the enthalpy is solved. The temperature 

for the next time step is then calculated from the enthalpy. In interfacial cells, additional 

phase equilibrium condition should be considered as described in section-3.3.5. Writing 

Equation-3.18 in finite volume scheme gives: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

≈
𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡+1 − 𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡

∆𝑡𝑡
= 𝑘𝑘𝑡𝑡ℎ ∙

⎣
⎢
⎢
⎡�
𝑇𝑇𝑖𝑖+1𝑗𝑗𝑗𝑗 − 2𝑇𝑇𝑖𝑖𝑖𝑖𝑘𝑘 + 𝑇𝑇𝑖𝑖−1𝑗𝑗𝑗𝑗

∆𝑥𝑥2
� + �

𝑇𝑇𝑖𝑖𝑖𝑖+1𝑘𝑘 − 2𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑇𝑇𝑖𝑖𝑖𝑖−1𝑘𝑘
∆𝑦𝑦2

�

+ �
𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖+1 − 2𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖−1

∆𝑧𝑧2
� ⎦

⎥
⎥
⎤

(𝐸𝐸𝐸𝐸3.19) 

For a cubic cell ∆𝑥𝑥 = ∆𝑦𝑦 = ∆𝑧𝑧 so 

𝑑𝑑𝑑𝑑 = 𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡+1 − 𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 = ∆𝑡𝑡 ∙ 𝑘𝑘𝑡𝑡ℎ ∙ �
�
𝑇𝑇𝑖𝑖+1𝑗𝑗𝑗𝑗 − 2𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑇𝑇𝑖𝑖−1𝑗𝑗𝑗𝑗

∆𝑥𝑥2
� + �

𝑇𝑇𝑖𝑖𝑖𝑖+1𝑘𝑘 − 2𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑇𝑇𝑖𝑖𝑖𝑖−1𝑘𝑘
∆𝑥𝑥2

� +

�
𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖+1 − 2𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖−1

∆𝑥𝑥2
�

� (𝐸𝐸𝐸𝐸3.20) 

Since the explicit scheme is used, the time step of thermal diffusion is limited by Fourier 

stability criteria, ∆𝑡𝑡 ≤ ∆𝑥𝑥2

8α
, where ∆𝑥𝑥 and α are the cell size and the thermal diffusivity 

respectively. The time step for solute diffusion is determined by the same criteria, but 

although by using the solute diffusivity 𝐷𝐷 rather than the heat diffusivity α. Solving the 

thermal diffusion and solute diffusion in each time step is a multiphysical task, and the 
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same time step should be used for both. Since the thermal diffusivity is much higher than 

the solute diffusivity, the thermal transport time step can be 100 times longer than the solute 

transport time step. The time step of the solute transportation is used to accelerate the 

computation, though the thermal diffusivity is slowed by dividing the thermal conductivity 

by 100.  

The algorithm to solve the heat transport equation requires: (1) initializing the spatial 

domain ( i.e. the number of cells and the cell size), (2) initializing the domain with an initial 

temperature (𝑇𝑇0); (3) specifying boundary conditions; (4) specifying alloy parameters such 

as heat capacity 𝐶𝐶𝐶𝐶, latent heat 𝐿𝐿ℎ, and thermal conductivity 𝐾𝐾𝑡𝑡ℎ; (5) calculating the time 

step; and (6) starting time stepping. For each time step 𝑖𝑖 solve Equation-3.20 for 𝑑𝑑𝑑𝑑𝑖𝑖 and 

find 𝑇𝑇𝑖𝑖 = 𝑑𝑑𝑑𝑑𝑖𝑖

𝐶𝐶𝐶𝐶
+ 𝑇𝑇𝑖𝑖−1 for non-interfacial cells. The calculation is more complicated for 

interfacial cells. 

3.3.4 Curvature Computation 

Two different curvature calculation methods were implemented and compared in this 

study. The first uses a level set approach and the second uses cell counting. The accuracy 

of both methods was compared using a ‘sphere test’.  

3.3.4.1 Curvature Computation by Cell Count Algorithm 

With the cell count method, the curvature of a cell is computed based on its solid fractions 

and those of neighboring cells. The definition of neighbor cells in three dimensions 
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typically has 26 cells, as shown in Figure-3.8. The most popular used model was proposed 

by Nastac [52] as follows: 

𝐾𝐾𝑟𝑟 =
1
𝑎𝑎
�1 − 2

𝑓𝑓𝑠𝑠 + ∑ 𝑓𝑓𝑠𝑠𝑖𝑖𝑠𝑠
26
𝑖𝑖

𝑁𝑁 + 1 � [𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐] (3.21) 

where, 𝑁𝑁 is the number of neighboring cells, 𝑎𝑎 is the cell size, 𝑓𝑓𝑠𝑠 is the solid fraction of the 

cell with the curvature evaluated, and 𝑓𝑓𝑠𝑠𝑖𝑖 is the solid fractions of neighbor cells.  

 
Figure-3.8: The neighbor cells definition for cell count method. The curvature is 
evaluated for the middle cell (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖). 

3.3.4.2 Curvature Computation by the Level Set Method 

With this method, the curvature of a cell is estimated based on the gradient of solid fractions 

according to Equation-3.4. Marcias and Artemev [2] suggested that the solid fractions 

should be weighted by weighting factors (𝑤𝑤1 = 0.2,𝑤𝑤2 = 0.1,𝑤𝑤3 = 0.05) to allow closer 

neighbor cells to have more effect on the curvature value. Using a weighted level set is 

helpful because it mitigates the sensitivity of curvature to the mesh by averaging the value 
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of the calculated curvature. The definition of neighbor weights for a cell is shown in Figure-

3.9.  

 
Figure-3.9: The neighbor weights for a centered cell 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖. 

Each cell in the neighbor set should be weighted according to the following expression: 

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝑡𝑡𝑡𝑡 𝑓𝑓𝑠𝑠 =
∑ 𝑤𝑤𝑖𝑖 ∙ 𝑓𝑓𝑠𝑠𝑖𝑖27
𝑖𝑖=1
∑ 𝑤𝑤𝑖𝑖27
𝑖𝑖=1

[weighted average solid fraction] (3.22) 

The algorithm for calculating curvature with the weighted level set method is: 

- Specify the cell at which curvature should be evaluated, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖. 

- Define its neighbor cells set (26 cells). 

- Calculate the solid fractions (𝑓𝑓𝑠𝑠) of all cells, i.e., 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 and its neighbor cells. 

- Weight each solid fraction by multiplying it by its weight factor, as in Equation-

3.22. 

- Calculate the curvature of 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖 by solving Equation-3.4. 
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The accuracy of curvature calculation of each method is evaluated using a computational 

test (called the sphere test) in which the estimated sphere curvature is compared with the 

analytical sphere curvature. Since with the level set method the weights of neighbor cells 

affect the calculation of the curvature, a searching optimization procedure is applied to 

optimize their values. The objective function is to minimize the difference between the 

estimated average curvature of all interface cells and the analytical curvature of a sphere. 

The optimization algorithm follows: 

for w1= 0.2 to 0.5 step 0.01 

    for w2= 0.1 to w1 step 0.01 

        for w3= 0 to w2 step 0.01 
- estimate the curvature of all interface cells using the 

current weight set (w1, w2, w3). 
- find the average curvature value of all interface cells, 

avrgKls. 
- objective= |avrgKls - total_curvature| 

        next w3 

    next w2 

next w1 

 

The algorithm finds the best weight set (𝑤𝑤1, 𝑤𝑤2, 𝑤𝑤3) that minims the objective function. 

After running the algorithm for a sphere with a radius equal to four cells, the best weight 

values were 𝑤𝑤1 = 0.5, 𝑤𝑤2 = 0.1, and 𝑤𝑤3 = 0. 

3.3.5 The Sphere Test 

In this test a sphere with a known radius is constructed in a cubic mesh and represents the 

S/L interface. Any cell inside the sphere is considered completely solid, and any outside 

the sphere completely liquid. Cells at the sphere perimeter are interface cells, and thus their 
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fraction of solid need to be estimated. In a dendrite simulation, the fraction of solids of 

interface cells are calculated based on thermodynamics. However, for the sphere test, the 

fraction of solids for all interface cells are estimated by generating random points inside 

each cell. For example, if 100 points are randomly and uniformly generated inside an 

interface cell, its solid fraction is equal to the number of points inside the sphere over the 

total number of points, as shown in Figure-3.10. The curvatures of interface cells are, then, 

estimated based on this solid fraction using the level set and cell count methods. The 

accuracy of the curvature estimation is determined by comparing it against the analytical 

curvature of the sphere. 

  
Figure-3.10: The estimation of solid fraction for the sphere test. 

A series of sphere tests are conducted to evaluate the accuracy of the curvature estimation 

of the cell count and level-set methods. Ideally, the estimated curvature for any interfacial 

cell should equal the analytical curvature. However, both methods cannot calculate this 

result, so each cell will have different curvature value. Thus, the average estimated 
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curvature 𝐾𝐾𝐾𝐾���� of all interface cells is the used measurement, and the accuracy of the method 

increases as the 𝐾𝐾𝐾𝐾���� value approaches the analytical curvature. 

Sphere tests with 20 different sphere radii are investigated to evaluate curvature 

computations. The size of the computational domain is 50x50x50 cells with cell size equal 

1e-6, and the sphere radius varies from 1 cell to 20 cells. The analytical sphere curvature 

equal 2/sphere radius, and the value of  𝐾𝐾𝐾𝐾���� = ∑ 𝐾𝐾𝐾𝐾𝑖𝑖𝑠𝑠𝑠𝑠
𝑖𝑖 𝑛𝑛𝑛𝑛. 𝑠𝑠𝑠𝑠⁄ , where 𝑠𝑠𝑠𝑠 is the cell on the 

sphere surface. It was determined that using 100 random points to estimate the solid 

fraction is adequate, and this reduces the computational time. Figure-3.11 shows the error 

of curvature estimation using cell count, level-set with no averaging, level-set with a weight 

averaging-, and level-set with the optimum weight averaging.  

 
Figure-3.11: The error of curvature estimation by different curvature calculation 
methods. 
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Regarding the Figure-3.11, the error of curvature estimation using the cell count method is 

more than 60% according to the sphere tests. However, this method is widely used because 

of its simplicity and lower computational requirements. The figure shows that level-set 

method is more accurate, and the curvature estimation error is approximately 20%. In 

addition, if the averaging of solid fractions is used, the estimation error reduces to 10%. 

Moreover, the averaging procedure with optimum weights produces more accurate 

estimation, as illustrated by the difference between the lowest two curves. Investigation of 

the level set method indicates that it is more accurate than the cell count method. This is 

because the level set method is based on the geometrical differentiation, and it considers 

the neighbor cell effects. However, the level set method with averaging is more 

computationally expensive than the cell count method. 

3.3.5 Solid Fraction Computation Tool 

The solid fraction of any interfacial cell during a simulation is obtained from a stored 

CALPHAD data structure, as will be explained in section-3.5. During simulation each 

interfacial cell has a specific thermodynamic parameter (i.e. temperature and solute 

concentrations). According to a cell’s thermodynamic parameters, the solid fraction of the 

cell is read from the stored CALPHAD data and assigned to the cell. In the case of imposed 

temperature values, the solid fraction can be obtained directly from the CALPHAD data. 

Alternatively, if the enthalpy method is used to calculate the temperature field, the solid 

fraction should be obtained by an iteration scheme that specifies how much the enthalpy 
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changes the sensible heat, and how much it changes the phase fractions. This iteration 

scheme is called in this thesis one cell solidification module (OCSM). The output of the 

heat diffusion solver is the change in enthalpy, 𝑑𝑑𝑑𝑑. If the amount of 𝑑𝑑𝑑𝑑 reduces a cell 

temperature below the liquidus temperature, a portion of 𝑑𝑑𝑑𝑑 will increase the solid fraction. 

The objective of OCSM is to find out the cell temperature and solid fraction according to 

the given 𝑑𝑑𝑑𝑑. Figure-3.12a schematically shows the iteration inside the OCSM for a binary 

alloy, and the same procedure is used for higher order alloys.  

 
Figure-3.12: Pseudo binary liquidus and solidus lines to illustrate OCSM. 

If 𝑇𝑇𝑜𝑜 and 𝑓𝑓𝑜𝑜𝑠𝑠 are the initial temperature and solid fraction of an interfacial cell, it is assumed 

that the given 𝑑𝑑𝑑𝑑 reduces the temperature by ∆𝑇𝑇1. Furthermore, the solid fraction at the 

first iteration (𝑖𝑖 = 1) 𝑓𝑓𝑖𝑖𝑠𝑠 according to 𝑇𝑇1𝑖𝑖 is read from CALPHAD data. Then, the total 

enthalpy is calculated according to: 

𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = (𝑇𝑇1𝑖𝑖 − 𝑇𝑇𝑜𝑜) ∙ 𝐶𝐶𝑃𝑃 + (𝑓𝑓𝑜𝑜𝑠𝑠 − 𝑓𝑓𝑖𝑖𝑠𝑠) ∙ 𝐿𝐿ℎ 𝑒𝑒𝑒𝑒3.23 



112 
 

Since solidification occurs due to ∆𝑇𝑇1, some heat will be released in the cell and increase 

the temperature from 𝑇𝑇1 to 𝑇𝑇2; thus,  ∆𝑇𝑇2 = ∆𝑇𝑇1 ∙ 𝑑𝑑𝑑𝑑
𝑑𝑑𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

. When ∆𝑇𝑇1 ≈ ∆𝑇𝑇2, the 

iterations end, and the cell temperature is equal to 𝑇𝑇2 and its solid fraction is read from 

CALPHAD data (𝑓𝑓𝑖𝑖𝑠𝑠). If the condition is not satisfied, the iteration continues (𝑖𝑖 = 2,⋯) 

until ∆𝑇𝑇1 ≈ ∆𝑇𝑇2. At the onset of a cell solidification, the cell temperature is in the liquid 

state (𝑇𝑇𝑜𝑜) and its initial solid fraction (𝑓𝑓𝑜𝑜𝑠𝑠) is equal to zero (Figure-3.12b). In this case, the 

OSCM set the initial temperature to be the liquidus temperature and the same OSCM 

procedure continues.  

 
Figure-3.13: Incorporation the effect of capillarity undercooling for reading from 
CALPHAD data. 

The stored thermodynamic data are for a flat S/L interface, so the effect of the capillarity 

undercooling 𝑑𝑑𝑑𝑑𝑟𝑟 should be incorporated during reading the information from 

thermodynamic data. Incorporating the capillarity undercooling can be obtained by either 

shifts down the liquidus curve by 𝑑𝑑𝑑𝑑𝑟𝑟 (Figure-3.13a) or shifts up the temperature 𝑇𝑇1 by 
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𝑑𝑑𝑑𝑑𝑟𝑟 (Figure-3.13b). The second option is more applicable to be used. For example, if a 

temperature of an interfacial cell is calculated by the heat diffusion solver 𝑇𝑇1 and 𝑑𝑑𝑑𝑑𝑟𝑟 is 

calculated by the curvature calculation, the used temperature value of reading from 

CALPHAD data is equal to 𝑇𝑇1+𝑑𝑑𝑑𝑑𝑟𝑟.  

3.4 Coupling CALPHAD Data to Cellular Automata Modeling 

The solidification model requires relationships between thermodynamic parameters and 

phase fractions, which are obtained from the precalculated and stored CALPHAD 

calculation. Thermodynamic information calculated at the intended temperature range by 

the computational code includes: the equilibrium concentration of chromium 𝐶𝐶𝑐𝑐𝑐𝑐𝑙𝑙  in liquid; 

the equilibrium concentration of carbon 𝐶𝐶𝑐𝑐𝑙𝑙 in liquid; the equilibrium concentration of 

chromium 𝐶𝐶𝑐𝑐𝑐𝑐𝑠𝑠  in solid; and the equilibrium concentration of carbon 𝐶𝐶𝑐𝑐𝑠𝑠 in solid. At a 

constant temperature, the combination of 𝐶𝐶𝑐𝑐𝑐𝑐𝑙𝑙  and 𝐶𝐶𝑐𝑐𝑙𝑙 describes the liquidus boundary, and 

the combination of 𝐶𝐶𝑐𝑐𝑐𝑐𝑠𝑠  and 𝐶𝐶𝑐𝑐𝑠𝑠 describes the solidus boundary.  

 
Figure-3.14: Thermodynamics lookup table. 
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The thermodynamic data for the temperature range 1494 to 1537 ℃ is stored in a database, 

as shown in Figure-3.14. Another table with the same structure is calculated for the 

temperature range 1330 to 1494 ℃. Each row in the table defines a tie line at the 

corresponding temperature, and all rows with the same temperature define an isotherm. 

Thermodynamic data at any temperature that is not stored in the database can be 

interpolated from the stored data. For example, if the table stores data at temperatures of 

1511 and 1510.5 ℃, the data of the isotherm at T=1510.7 ℃ can be linearly interpolated 

from the stored data. 

The CA solidification model must define the thermodynamic information for each cell at 

every time step of the simulation. The most direct way to achieve this is to apply 

CALPHAD calculation to each cell for the entire simulation. However, performing these 

calculations during a simulation is problematic as the computationally cost is prohibitively 

high. The solution is to pre-calculate and store enough thermodynamic information for the 

intended accuracy, thereby allowing the solidification model to search the stored data and 

do interpolations during the simulation, as shown in Figure-3.15. 

 
Figure-3.15: The interaction between the solidification and CALPHAD models. 
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The coupling algorithm starts with defining the alloy properties and simulation parameters, 

then the computational domain (CD) is initialized. The simulation proceeds by calculating 

the heat transport, solute transport, capillarity undercooling-, and solid fraction at every 

time step. A detailed explanation of these steps follows. 

3.5 Obtaining Information from the CALPHAD Data 

Any thermodynamic state (i.e. stable phases, the fraction of phases, the equilibrium 

composition of elements) is defined by its temperature and average composition. The 

solidification model requires a relationship between thermodynamic states and solid 

fractions, and the solid fraction can be interpolated from the stored CALPHAD data 

structure. Two techniques of storing, searching, and interpolating thermodynamic 

information are proposed and investigated in this study. The first technique 

is based on scanning a lookup-table and interpolating tie lines information. The lookup-

table stores a collection of non-structured tie lines. The second technique is a pointwise 

interpolation scheme which stores a structured thermodynamics data. In addition, the 

possibility of representing phase diagrams using Bezier’s curves is also investigated. 

3.5.1 Scanning Procedure for Reading Solid Fractions 

The scanning procedure is explained next using the lookup table of Fe-Cr-C 

thermodynamics data. Any thermodynamic state can be described by three coordinates: 

temperature, chromium composition, and carbon composition (𝐶𝐶𝐶𝐶𝐶𝐶,𝐶𝐶,𝑇𝑇). Now, consider 

three different query points (qP1, qP2, and qP3) that represent three thermodynamic states, 
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as shown in Figure-3.16. The X and Y coordinates of each point represent its chromium 

and carbon composition, and the Z coordinate represents the state temperature. Since the 

stored CALPHAD data explicitly defines the phase boundary liquidus and solidus curves, 

the procedure can easily locate any state by comparing its coordinates to the boundary 

curve points.  

 
Figure-3.16: Three different thermodynamic states: liquid (qP1), solid (qP3), and mushy 

(qP2). 

If a given query point qP is in the liquid phase (e.g. qP1), its solid fraction equals zero and 

its liquid fraction equals one. As well, the concentration of chromium and carbon in the 

liquid is equal to the initial alloy composition. Reversely, if qP is in the solid phase (e.g. 

qP3), its solid fraction equals to one, and its liquid fraction equals to zero. In addition, the 

concentration of chromium and carbon in the solid phase is equal to the initial alloy 

composition. In the third case (qP2), the solid and liquid fractions should be interpolated 

by following the procedure outlined in Figure-3.17. 
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1) Locate the four nearest points to the given qP using the 

inQuad locating procedure. 

2) Construct two tie-lines, Tie-line1 and Tie-line2, using the 

nearest points. 

3) Fit a parallel tie-line to the constructed tie-lines. 

4) The points (x1, y1) and (x2, y2) can then be calculated using 

linear geometrical relations, where, x1, y1, x2 and y2 are the 

equilibrium compositions of chromium and carbon in 

liquid and solid. 

5) The solid fraction is equal to sF= (x1-qPx)/(x1-x2) and the 

liquid fraction is equal to lF=1-sF. 

Figure-3.17: The procedure of calculating the information of a query point (qP) in the 
mushy phase. 

The inQuad locating procedure defines a convex quadrilateral shape which eases the 

locating procedure. The area of any given quadrilateral shape is the sum of two right 

triangles, as shown in Figure-3.18a. In addition, a given qP can construct four triangles 

with a quadrilateral shape vertex. Thus, qP can be located as shown in Figure-3.18. The 

area of a triangle with known vertex coordinates can be calculated using Heron’s formula. 

   
Figure-3.18: The inQuad locating procedure. (a) the quadrilateral shape 
area=TA1+TA2, (b) qP is inside the shape if A1+A2+A3+A4<=quad area, (c) qP is 
outside the shape if A1+A2+A3+A4>quad area. 
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The query points in Figure-3.16 are at specific temperatures or isotherms, since the 

thermodynamic database stores many isotherms at different temperatures. If a given point 

qP has a temperature value (qT) that is not stored in the database, the information at this 

temperature can be linearly interpolated between two stored isotherms: the first one is at 

temperature Ttop and the second one is at temperature Tbot. For example, if the database 

stores information at Ttop = 1511 ᵒC and Tbot = 1510.5 ᵒC, and the given point is 

qT=1510.7 ᵒC, the information at the query temperature can be interpolated as shown in 

Figure-3.19.  

 
Figure-3.19: Interpolate data between two different temperature values. 

While the calculation of a single point equilibrium takes approximately 0.1 sec to calculate 

the thermodynamic information, the lookup-table procedure takes 0.0003 sec to interpolate 

the information.  
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3.5.2 Pointwise Interpolation Procedure for Reading Solid Fraction 

With this technique, the thermodynamic data are stored in a structural mesh, and the 

distance between all data points is equal in every direction, as shown in Figure-3.20. Each 

point has specific information, including solid fraction, liquid fraction, and the equilibrium 

composition of each element in every phase. The advantage of using the structural mesh is 

that the location of a given inquiry point qP can be found swiftly by knowing its coordinate; 

thus, the eight neighbor data points of qP can be determined directly.  

 
Figure-3.20: Data points that store thermodynamic information at T=1500 ℃. 

The interpolation value of qP (the solid fraction) can be interpolated from the eight-

neighbor data points by using the inverse weighted distance scheme shown in Figure-3.21.  

 
Figure-3.21: The inverse weighted distance scheme. 
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This interpolation scheme can be used to interpolate all thermodynamic information. 

Although this interpolation scheme is faster than the former one, it is found that the 

interpolated information slightly violates the lever rule and more data storage should be 

used to improve the accuracy. For example, it is founded that even with data storage of 50 

MB, the interpolated information slightly violates the lever rule. The violation of lever rule 

causes mass leakage during the solidification simulation. 

3.5.3 Bezier Curves Representation of Phase Diagrams 

A Bezier curve is a parametric curve that uses Bernstein polynomials as a basis. Recently, 

some researches proposed the possibility of storing a phase diagram in a set of Bezier 

curves.  For example, the paper [63] showed that the Bezier curve is a simple, efficient, 

and accurate way to represent and store the phase diagram of Al-Zn binary system.  

 
Figure-3.22: Representing the solidus and liquidus of Al-Mg by Bezier curve. 

In this study, the possibility of reading thermodynamic information from the Bezier curves 

of an Al-Mg binary diagram is investigated. The mathematical formulation is described in 
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[33], and the information of the solidus and liquidus boundaries are obtained using 

MatCalc®. A MATLAB code is developed to construct the Bezier curves description of 

Al-Mg solidus and liquidus as shown in Figure-3.22. Figure-3.23 shows three different 

possibilities of reading solid fractions for a given thermodynamic state. 

 
Figure-3.23: Reading the solid fractions from a Bezier curve. (a) liquid state, (b) mushy 
state, and (c) solid state. 

3.6 Alloy Properties and Simulation Parameters  

The investigated alloy in this study is Fe-Cr-C stainless steel. The required alloy properties 

are chromium diffusion coefficient 𝐷𝐷𝑐𝑐𝑐𝑐, carbon diffusion coefficient 𝐷𝐷𝑐𝑐, heat capacity 𝐶𝐶𝑃𝑃, 

thermal conductivity 𝐾𝐾𝑡𝑡ℎ, latent heat of fusion 𝐿𝐿ℎ, Gibbs-Thomson coefficient Γ, and 

anisotropy strength ∈. In addition, the simulation parameters are the number of cells in x, 

y, and z directions (i.e. the size of a computational domain), the cell size ∆𝑥𝑥, the nominal 

alloy composition (𝐶𝐶𝑐𝑐𝑐𝑐𝑜𝑜 , 𝐶𝐶𝑐𝑐𝑜𝑜), the initial undercooled temperature 𝑇𝑇0, the rate of cooling 𝑅𝑅𝑅𝑅, 

the temperature gradient within the computational domain 𝑇𝑇𝑇𝑇. 
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3.7 Computational Domain (CD) Initialization 

The initialization of CD means assigning the initial field variables (i.e. temperature, 

composition, and solid fraction) to all the CD cells and boundary conditions. An initial 

state is hypothetical, as it doesn’t belong to a specific physical process; thus, some 

fluctuation is expected at the beginning of the simulation. With time, the system achieves 

stability and proceeds with steady state. Figure-3.24 diagrams CD initialization. 

   
Figure-3.24: The initialization of a computational domain. 

The upper and the lower boundaries of the CD are closed, and all side boundaries are 

periodical. These two conditions conserve the mass within the CD (the thermal boundary 

conditions are shown in Figure-3.24b). Two cases can be considered for thermal boundary 

conditions. In the first case a temperature profile with a zero or constant cooling rate is 

imposed on all cells [62]. In this case, there is no need to compute the heat diffusion 

equation since the heat diffusion is much faster than solute diffusion and the temperature 

quickly becomes uniform. However, for more accurate results, the second thermal 

boundary condition is also applied, as shown in Figure-3.24c. This shows the boundary 
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condition with a heat flux entering the CD from the top and another heat flux leaving the 

CD from the bottom.  

 
Figure-3.25: Three different initial solid/liquid interface for simulations. 

The CD can be initialized by three different S/L interfaces, as shown in Figure-3.25. The 

first studies the dendritic or cellular growth, and the second studies the equiaxed growth. 

In these configurations, most CD cells are liquid with zero fraction of solid, and the others 

are completely solid to represent the initial topology of the S/L interface. The solid 

composition of all solid cells equals the initial alloy composition, 𝐶𝐶𝑠𝑠 = 𝐶𝐶𝑜𝑜. In addition, the 

liquid composition of all liquid cells equals the initial alloy composition, 𝐶𝐶𝑙𝑙 = 𝐶𝐶𝑜𝑜. The 

initial composition of the liquid can be undercooled for a specific degree. Figure-3.26a 

shows an initial undercooled liquid state, and Figure-3.26b shows an initial non-

undercooled liquid state. It is important not to use a highly undercooled liquid state, as this 

will produce an aggressive growth rate not suitable for welding processes (low Peclet 

regime). Finally, a buffer zone of a specific height can be added to cover the initial solid 

cells. The composition of the buffer zone equals to the equilibrium composition of the 
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initial temperature 𝑇𝑇𝑇𝑇 and the composition 𝐶𝐶𝑐𝑐𝑐𝑐𝑜𝑜 , 𝐶𝐶𝑐𝑐𝑜𝑜. The buffer zone will suppress any noise 

growth from the flat S/L interface. 

 
Figure-3.26: (a) undercooled and (b) non-undercooled initial alloy composition. 

3.8 The Algorithm of the Simulation  

The entire simulation code is written as a modular structure, and each computational tool 

is written in a separate routine. For example, the computation of a thermal field uses a 

specific routine, while the interpolation of thermodynamics information occurs in another 

routine, and so on. Every simulation is terminated whenever the ending condition is 

satisfied; that is, if a tip of the growing dendrite reaches 90% of the computational domain 

height. The main body of the code calls a routine when it is required, as shown next. 
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The algorithm of the simulation 

1: Define the alloy properties. 

2: Define the simulation parameters. 

3: Initialize the computational domain variables: 

𝑓𝑓𝑠𝑠,𝑇𝑇𝑇𝑇,𝐶𝐶𝑐𝑐𝑐𝑐𝑙𝑙 ,𝐶𝐶𝑐𝑐𝑙𝑙,𝐶𝐶𝑐𝑐𝑐𝑐𝑠𝑠 ,𝐶𝐶𝑐𝑐𝑠𝑠, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.    

4: Calculate the time step ∆𝑡𝑡 and start the time stepping: 

5: 

Call [Temp routine] to apply an imposed 
temperature profile to get 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛.  

OR 

Call [Heat Transport routine] to compute the heat 
diffusion by the enthalpy method to get 𝑑𝑑𝑑𝑑. 

6: Compute the mass diffusion to get the new 

composition distribution: [𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐𝑙𝑙 ,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑐𝑐𝑙𝑙] . 

7: 

Call [phase evolution routine] to compute the 
solid fraction 𝑓𝑓𝑠𝑠 in the CD using 
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑐𝑐𝑐𝑐𝑙𝑙 , 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑐𝑐𝑙𝑙. 

OR  

Call [OCSM] if the enthalpy method is used to 
compute the solid fraction 𝑓𝑓𝑠𝑠 and temperature 
field 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛. 

8: Call [Curvature routine] to compute the new 
curvature of the S/L interface. 

9:      Update all variable fields for all cells. 

10: Check the simulation ending condition. 

11: Next time step. 

-  



126 
 

The algorithm of OCSM 

1 Get solute concentration 𝐶𝐶𝑐𝑐𝑐𝑐,𝐶𝐶𝑐𝑐 from the mass diffusion 
solver. 

2 Get 𝑑𝑑𝑑𝑑 from the heat diffusion solver. 

3 Calculate  ∆𝑇𝑇11 = 𝑑𝑑𝑑𝑑
𝐶𝐶𝑃𝑃
 

4 Start iteration i=2:10 

5 𝑇𝑇1𝑖𝑖 = 𝑇𝑇𝑇𝑇 − ∆𝑇𝑇1𝑖𝑖 

6 Interpolate CALPHAD data for 𝑓𝑓𝑖𝑖𝑠𝑠 using 𝑇𝑇1𝑖𝑖 and 𝐶𝐶𝑐𝑐𝑐𝑐,𝐶𝐶𝑐𝑐 

7 Compute 𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = (𝑇𝑇1𝑖𝑖 − 𝑇𝑇𝑜𝑜) ∙ 𝐶𝐶𝑃𝑃 + �𝑓𝑓𝑜𝑜𝑠𝑠 − 𝑓𝑓𝑖𝑖𝑠𝑠(𝑇𝑇)� ∙ 𝐿𝐿ℎ 

8 Compute ∆𝑇𝑇2 = ∆𝑇𝑇1𝑖𝑖 ∙
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
 

9 
If ∆𝑇𝑇2 ≈ ∆𝑇𝑇1𝑖𝑖 𝑇𝑇2 = 𝑇𝑇𝑇𝑇 − ∆𝑇𝑇2  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑇𝑇2, 𝑓𝑓𝑖𝑖𝑠𝑠,𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙 ,𝐶𝐶𝐶𝐶𝑙𝑙 ,𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠 ,𝐶𝐶𝐶𝐶𝑠𝑠 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

10 Next time step i. 

11 Return last values of 𝑇𝑇2,𝑓𝑓𝑖𝑖𝑠𝑠,𝐶𝐶𝐶𝐶𝐶𝐶𝑙𝑙 ,𝐶𝐶𝐶𝐶𝑙𝑙 ,𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠 ,𝐶𝐶𝐶𝐶𝑠𝑠 . 

3.9 Model Verification and Validation 

3.9.1 Mass Conservation 

To validate the model, the mass conservation was investigated by assigning an initial value 

of chromium and carbon in weight fraction (𝐶𝐶𝑐𝑐𝑐𝑐𝑜𝑜  and 𝐶𝐶𝑐𝑐𝑜𝑜) for every cell in the computational 

domain. If a cell is initially liquid, the initial values of  𝐶𝐶𝑐𝑐𝑐𝑐𝑜𝑜  and 𝐶𝐶𝑐𝑐𝑜𝑜 are assigned to the cell 

liquid phase, and the initial values are assigned to solid phase cell if it is initially solid. 

Therefore, the total amount of chromium and carbon in the entire domain can be calculated. 

At the end of each time step during a simulation, the total mass of chromium and carbon 

are recalculated and compared to the initial total mass, and mass is conserved if the 
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difference between the initial mass and the recalculated mass is close to zero. The total 

mass of solutes can be calculated as follows: 

𝐶𝐶𝑐𝑐𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = � 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑙𝑙 ∙ 𝑓𝑓𝑖𝑖𝑙𝑙 + 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠 ∙ 𝑓𝑓𝑖𝑖𝑠𝑠
𝑛𝑛𝑛𝑛.𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑖𝑖

𝐶𝐶𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = � 𝐶𝐶𝐶𝐶𝑖𝑖𝑙𝑙 ∙ 𝑓𝑓𝑖𝑖𝑙𝑙 + 𝐶𝐶𝐶𝐶𝑖𝑖𝑠𝑠 ∙ 𝑓𝑓𝑖𝑖𝑠𝑠
𝑛𝑛𝑛𝑛.𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝑖𝑖

[solutes total mass] 3.24 

Mass conservation is perfect in this model, as the maximum difference between the initial 

solute mass and the solute mass during the simulation is approximately 10−9 of the weight 

fraction. 

3.9.2 Simulated Dendritic Structures 

Solidification theory and observations predict a parabolic dendrite tip shape [15]. Unlike 

the dendrite body, close to the tip, the S/L interface is smooth under steady-state growth 

(Figure-1.9). This feature should be captured by the solidification model. Figure-3.27 

shows a dendrite of Fe-Cr-C from the model developed in this study. In addition, Figure-

3.28 shows a comparison between the obtained simulation result and a published 

micrograph result.  
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Figure-3.27: The resulting dendrite tip. 

 
Figure-3.28: (a) a scanning-electron micrograph of dendrites in a weld [64], and (b) the 
solidified microstructure of Fe-C-Cr [the developed model]. 

The equiaxed growth of the developed model is compared with the results of [64]. Figure-

3.29 shows the results of the developed CALPHAD model and the results from [65].  

 
Figure-3.29: (a) and (b) show equiaxed dendrites with low anisotropy, with (a) from 
[65] and (b) from the developed CA-CALPHAD model. (c) and (d) show equiaxed 
dendrites with high anisotropy, with (c) from [65] and (d) from the developed CA-
CALPHAD model. 
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3.9.3 The Selection of Cell Size 

In CA simulation, the growth of a dendrite including the formation of secondary and 

tertiary arms, is controlled by two anisotropy effects: mesh anisotropy and surface energy 

anisotropy. Ideally, the effect of the mesh anisotropy should be eliminated, but this is not 

possible since the mesh exists. The effect of the mesh anisotropy decreases as the cell size 

decreases and the growth is more controlled by the effect of surface energy anisotropy. 

However, decreasing the cell size increases the number of cells and decreases the time step 

since an explicit numerical scheme is used. Therefore, the cell size should be selected to 

be large enough to speed up the simulation and small enough to reduce the effect of mesh 

anisotropy and allow the surface energy anisotropy to influence the growth. In order to 

select a proper cell size, some simulation tests with the same simulation parameters and 

different cell sizes are investigated to relate the dendrite tip radius and the cell size. The 

used simulation parameters are nominal alloy composition 10-6 wt% of Cr and 0.009 wt% 

of C, initial temperature =1517 ᵒC, anisotropy coefficient in Z-direction=0.2, anisotropy 

coefficient in XY-plane=0, and Gibbs-Thomson coefficient Γ = 1−7 𝐾𝐾 ∙ 𝑚𝑚. The used cell 

size (dx) for the simulation one to nine is 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5, 0.75, and 1 

μm. Each simulation produces a dendrite with different tip radius TipR, even though the 

used simulation parameters are the same, because of the interaction between the mesh 

anisotropy and the surface energy anisotropy. The tip radius of each dendrite is calculated 

from the curvature value (Kr) of the topmost cell at the end of the simulation as TipR=2/Kr. 

The calculated TipR are plotted with the corresponding dx as shown in Figure-3.30. For 
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every cell size, the tip radius values fluctuate during the growth. This fluctuation is shown 

by the red-dashed line in Figure-3.30. The fluctuating of the tip radius increases as the cell 

size increases, but the fluctuations are almost equal at cell size less than 0.25μm.  

 
Figure-3.30: The relationship between the tip radius (TipR) and the cell size (dx). 

Figure-3.30 shows that at a cell size more than 0.25μm, the mesh anisotropy controls the 

growth because the relation dx-TipR has a proportional relationship. The proportionality 

indicates that the tip radius is computed from the size of only one cell located on the top of 

the dendrite, and as the size of this cell increases the tip radius increases. Reversely, at a 

cell size less than or equal 0.25μm, dx-TipR relationship fluctuates that indicates that there 

is stronger influence of the surface energy anisotropy and less significant effect from mesh 

anisotropy. The dendrites produced by simulations with dx=0.05μm, dx=0.25μm, and 

dx=0.5μm are shown in Figure-3.31.  
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Figure-3.31: The developed dendrite with cell size equal to (a) 0.05 μm, (b) 0.25 μm, 
and (c) 0.5 μm. 

In Figure-3.31a, the produced dendrite tip is more paraboloid with a smooth tip. Figure-

3.31b shows the developed dendrite with dx=0.25μm and growth time was equal to 0.0117 

sec.  With using a higher value of dx (Figure-3.31c), some secondary arms start to form at 

a growth time equal to 0.001 sec, as shown in the figure. Since, the used anisotropy 

coefficient in xy plane is equal to zero, the growth in x and y directions are restricted 

physically, so the early growth of secondary arms in Figure-3.31c is in particular due to 

stronger influence of mesh anisotropy. The conclusion is that a cell size ≤ 0.25μm 

incorporates the effect of the surface energy anisotropy and can be used to capture the 

physics of growth.  

 



132 
 

Chapter-4: CALPHAD-Cellular Automata Coupling Results 

 

In this chapter the results of the investigations of free and constrained growth of dendritic 

microstructures are presented and discussed. First, the effects of the surface energy 

anisotropy and the initial undercooling on the equiaxed growth are investigated. In 

addition, the growth of a dendrite subjected to different cooling rates is studied. Also, the 

solidification of a duplex steel with high and low cooling rates is investigated. Second, a 

series of simulation runs are used to study the constrained growth of dendrites. The effect 

of curvature calculation method on the results are investigated. In addition, two simulations 

that include heat diffusion solver will be used to investigate the development of thermal 

field during the solidification process. The obtained results from simulations include: the 

solidification morphology, phase fractions, the solutes segregation in solid, the solutes 

rejection in liquid, and the capillarity undercooling.  

To quantify the segregation, we proposed a segregation-index (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) which is equal to 

the maximum solute concentration in solid (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) minus the minimum solute 

concentration in solid (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) over the mean solute concentration in solid (𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) as 

calculated by Equation-4.1. As the segregation-index value increases, the segregation 

becomes more severe. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝐸𝐸𝐸𝐸4.1 
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The developed model can handle the solidification of ferritic and austenitic steels 

depending on the input of a nominal alloy composition. Table-4 lists some typical 

composition of stainless steels.  

Table-4: Stainless steels compositions. [9] 

 

The nominal alloy composition used in all simulation runs in this chapter varies in the range 

of 13%𝑤𝑤𝑤𝑤 −  18%𝑤𝑤𝑤𝑤 for chromium and 0.05%𝑤𝑤𝑤𝑤 − 0.15%𝑤𝑤𝑤𝑤 for carbon. In addition, the 

diffusion coefficients of carbon and chromium are considered constant and equal to 

2 × 10−9  𝑚𝑚2 𝑠𝑠⁄ .  

For all simulation-runs in this chapter (excepting section-4.6 in which the heat equation is 

solved), the temperature field is uniform within a regular computational domain with a zero 
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or constant cooling rate and without a temperature gradient. In addition, the initial solutes 

concentration of Cr and C are equal to the nominal alloy composition and uniformly 

distributed within the computational domain. As described in section-3.7, the boundary 

conditions of solving mass diffusion equation are periodical at all side surfaces of the 

domain and isolated at the top and the bottom. These boundary conditions will ensure the 

mass conservation and no leak can occur.     

4.1 The Effect of Surface Energy Anisotropy on the Free Growth of Equiaxed Grain 

In this section a study of the effects of anisotropy coefficient (as described by Equation-

3.7) are investigated. Three different simulation-runs are used with the following 

parameters for each: isothermal condition with initial temperature = 1505 ℃, small initial 

spherical solid, nominal alloy composition 𝐶𝐶𝐶𝐶18%𝑤𝑤𝑤𝑤 − 𝐶𝐶0.08%𝑤𝑤𝑤𝑤, and Gibbs-Thomson 

coefficient Γ = 1−7 𝐾𝐾 ∙ 𝑚𝑚. For this alloy at a flat S/L interface, the distribution coefficient 

of carbon (𝑘𝑘𝐶𝐶𝑜𝑜) is equal to 0.15 and is equal to 0.95 for chromium (𝑘𝑘𝐶𝐶𝐶𝐶𝑜𝑜 ). The anisotropy 

coefficient is different for each simulation; The first simulation-run (RUN411) has very 

small anisotropy coefficients (section-1.7.5) that are equal to 0.002, the second simulation-

run (RUN412) has anisotropy coefficients equal to 0.03, and the third simulation-run 

(RUN413) has anisotropy coefficients equal to 0.3. 

RUN411: 

The developing microstructure of simulation RUN411 is shown in Figure-4.1. The initial 

shape of the solid phase is spherical as illustrated in Figure-4.1a. At a simulation time equal 
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to 0.0005 sec (Figure-4.1b), the spherical morphology is maintained because of the weak 

effect of surface energy anisotropy. In this case, the surface energy is almost isotropic, and 

the growth rates are equal in all directions due to the equal effect of surface energy. 

Spherical shape is maintained, even though the mesh anisotropy is present, because mesh 

with a high resolution (cell size dx=0.2𝜇𝜇𝜇𝜇) was used. However, the spherical morphology 

starts to be unstable as the solid fraction increases (Figure-4.1c) and perturbations along 

the preferred growth directions are produced. For a growth with zero anisotropy, the 

spherical stability is expected to be broken and produced a coral like shape as shown in 

Figure-1.11b.  

  

  
Figure-4.1: Unconstrained dendrite growth with very low anisotropy coefficients 
(anis=0.02). (a) initial solid fraction, (b) solid fraction at t=0.0005 sec, (c) solid fraction 
at t=0.00175 sec, (d) solid fraction at t=0.0025 sec. [RUN411] 
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Figure-4.1d shows a manifestation of the growth along the preferred growth directions. 

Eventually, after a longer time of the simulation, an equiaxed dendrite is expected to form. 

Figure-4.2 shows the concentration of carbon in liquid surrounding the growing solid 

during the simulation. At an early stage of the simulation (Figure-4.2a), the rejected solutes 

form spherical layers around the growing spherical solid. Since the solute diffusion in 

liquid is slow, the solute removal from the S/L interface is slow and hence the growth rate. 

As the solid fraction increases and the spherical morphology is broken (Figure-4.2b), the 

surface area of the solid increases and so the diffusion process becomes faster.   

  

Figure-4.2: (a) the solute (carbon) distribution in liquid at t=0.0005 sec, (b) the solute 
(carbon) distribution in liquid at t=0.0025 sec. 

RUN412: 

Metals with BCC and FCC crystal structure solidify from bulk liquid with six preferred 

<100> growth directions producing equiaxed microstructure morphology under 

unconstrained growth conditions. The effect of preferred growth directions can be included 

in the simulation using anisotropy coefficients in Equation-3.7. The resulting 
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microstructure of RUN412 with anisotropy coefficients equal to 0.03 is shown in Figure-

4.3. In contrast to Figure-4.1d, the microstructure is equiaxed (Figure-4.3d) with six 

primary arms because the maximum growth rate is aligned with the six easy growth 

directions. 

  

  
Figure-4.3: (a) the initial grain nucleus, (b) the grain at t=0.00039 sec, (c) the grain at 
t=0.0027 sec, (d) the grain at t=0.0093 sec. [RUN412] 

Numerically, the maximum growth rate along the preferred growth directions are enforced 

by the anisotropy function (Equation-3.7) which changes the values of the surface energy 

along the dendrite surface, and the maximum surface energy will be located at the tips of 

the dendrite. Physically, more atoms will be attached to the tips of the equiaxed dendrite 

so that the growth rates will be faster there. 
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Figure-4.4: (a) the chromium distribution in liquid, and (b) the carbon distribution in 
liquid. [RUN412] 

Figure-4.4 shows the distribution of solutes (Cr and C) in liquid during the solidification. 

The distribution of Cr in the solid is almost equal to the distribution of it in the surrounding 

liquid (Figure-4.4a), because the distribution coefficient is almost equal to one (𝑘𝑘𝐶𝐶𝐶𝐶𝑜𝑜 =

0.95). In contrast, the distribution of C in liquid (Figure-4.4b) gradually builds layers of 

solute around the growing solid phase, because the distribution coefficient is small (𝑘𝑘𝐶𝐶𝑜𝑜 =

0.15). Since the S/L interface of an equiaxed dendrite is larger than the spherical 

morphology interface, the process of solutes removal from the S/L interface is faster and 

so the growth rate. The pattern of solute distribution around the solid phase is a common 

result feature that results from the solidification simulation as shown in Figure-4.5.   

 
Figure-4.5: The solute layer rejected in liquid as obtained by a) [66], b) [67], and c) [65]. 
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Figure-4.6 shows the distribution of the curvature and the capillarity undercooling of the 

equiaxed dendrite during the simulation. In Figure-4.6a, the positive values of curvature 

are calculated for the convex interface (e.g. the tips) and the negative values are calculated 

for the concave interface. Accordingly, the values of capillarity undercooling dTr (Figure-

4.6b) are calculated using Equation-3.6 and have positive values at convex interface 

portions and negative values at concave interface portions.  

 
Figure-4.6: A cross section of the dendrite showing (a) the curvature of the S/L 
interface, and (b) the capillarity undercooling. [RUN412] 

The maximum value of dTr is around 0.26 ℃ and the minimum value is -0.15 ℃. At convex 

portions of the S/L interface, the melting temperature of solid decreases by the 

corresponding dTr, and, unlikely, the melting temperature of solid increases by dTr at 

concave portions. The incorporation of dTr in the calculation of solid fraction is described 

in section-3.3.5 and Figure-3.13. 

 

 



140 
 

RUN413: 

The third simulation-run (RUN413) uses the same simulation parameters as RUN412 but 

with a higher value of anisotropy coefficients equal to 0.3.  

  

  
Figure-4.7: (a) the initial grain nucleus, (b) the grain at t=0.00039 sec, (c) the grain at 
t=0.0039 sec, (d) the grain at t=0.0079 sec. [RUN413] 

The obtained dendrite morphology of the high anisotropy case (Figure-4.7d) is more fractal 

than the low anisotropy case (Figure-4.3d). This is expected because higher anisotropy 

coefficients promote the growth rate along the easy growth directions, which produces 

more fractal shape. 
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In Figure-4.8a a cross section through the dendrite shows the solid fraction distribution. 

The interfacial cells are in the mushy state, so their solid fractions are less than one. Figure-

4.8b shows the carbon distribution in solid of RUN413.  

 
Figure-4.8: (a) a cross section of the solid fraction at t=0.0079 sec, and (b) the carbon 
distribution in solid. [RUN413] 

The carbon segregation is more pronounced than the chromium segregation because its 

distribution coefficient is lower. Carbon segregates more on the outer surface of the 

dendrite, and its concentration is less in the core. The reason of the solute segregation 

pattern is that at a tip the curvature is large and so the solute concentration in liquid is low. 

Accordingly, less solute concentration in solid is located along the trace of the tip growth. 

The segregation-index of carbon (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝐶𝐶) is equal to 0.276, and the segregation-index 

of chromium (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝐶𝐶𝐶𝐶) is equal to 0.001. As expected, the segregation of carbon in 

solid is much higher than the segregation of chromium since the distribution coefficient of 

carbon is smaller. 
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For comparing RUN412 and RUN413, the segregation index is calculated for RUN412, 

and it is found that 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝐶𝐶 = 0.2322 and  𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝐶𝐶𝐶𝐶 = 0.0004. In addition, the 

growth time for RUN412 was equal to 0.009 sec and it was equal to 0.007 sec for RUN413. 

RUN412 has a lower anisotropy coefficient, so the growth rate is slower and the solute 

segregation is less severing. In addition, the morphology of RUN412 (Figure-4.3d) is 

smoother than RUN413 (Figure-4.7d), because a smaller anisotropy promotes the effect of 

capillarity undercooling which tends to flatten the S/L interface. 

4.2 The Effect of Undercooling on the Free Growth of Equiaxed Grain 

Increasing undercooling increases the driving force of solidification as described in 

section-1.7.1. Solidification undercooling affects the growth velocity, the dendrite 

morphology, and the solute segregation in solid. Two simulation-runs are used to 

investigate the effect of undercooling with the following parameters: nominal alloy 

composition 13 wt% of Cr and 0.15 wt% of C, Gibbs-Thomson coefficient Γ = 1−7 𝐾𝐾 ∙ 𝑚𝑚, 

and anisotropy coefficient equal to 0.2. However, the initial temperature of the first 

simulation-run (RUN421) is equal to 1500 ℃ with 2 ℃ undercooling, and the initial 

temperature of the second simulation-run (RUN422) is equal to 1496 ℃ with 6 ℃ 

undercooling. It is expected that the developed microstructure of RUN422 should be more 

fractal with more solutes segregation because of the higher undercooling. 
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Figure-4.9: (a) the developed dendrite of RUN421, and (b) the developed dendrite of 
RUN422. 

The developed microstructure of RUN421 is shown in Figure-4.9a. The dendrite is an 

equiaxed with six primary arms and some secondary arms. Figure-4.9b shows the 

simulation-run RUN422 which has the same parameters as RUN421 but with a higher 

undercooling. The developed microstructure in RUN422 is more fractal with long 

secondary arms and some short tertiary arms. The solidification time of RUN421 was equal 

to 0.043 and the solidification time of RUN422 was equal to 0.0133 sec. The microstructure 

is more dendritic and the growth rate is higher in the case of a higher undercooling because 

of the higher driving force of solidification. Figure-4.10 shows a cross section of the 

developed microstructure of RUN421 and RUN422. For RUN421, the segregation indices 

are 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝐶𝐶 = 0.2 and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝐶𝐶𝐶𝐶 = 0.0029, and for RUN422, they are 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝐶𝐶 =

0.3277 and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝐶𝐶𝐶𝐶 = 0.0041. In the case of the higher undercooling, the solutes 

segregate more at the boundary of the microstructure. 
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Figure-4.10: (a) a cross section of the developed microstructure of RUN421 (low 
undercooling), and (b) a cross section of the developed microstructure of RUN422 (high 
undercooling). 

As a result, the growth of a dendrite with a higher undercooling is faster than a dendrite 

with a lower undercooling. Similarly, the solutes segregation of a solidification with a 

higher undercooling is more severe than the solidification with a lower undercooling. The 

reason is that more undercooling increases the driving force of the solidification, and the 

microstructure deviates more from the equilibrium composition. 

4.3 The effect of cooling rate 

Increasing cooling rate increases the growth rate and produces more fractal microstructure. 

In addition, increasing cooling rate deviates the composition of microstructure more from 

the equilibrium that increases the segregation. The model is used to predict the effect of 

different cooling rates. Four different simulation-runs with the same parameters and 

different cooling rates are investigated in this section. The used simulation parameters are 
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nominal alloy composition 16 wt% of Cr and 0.08 wt% of C, initial temperature =1504 ᵒC, 

Gibbs-Thomson coefficient Γ = 1−7 𝐾𝐾 ∙ 𝑚𝑚, and anisotropy coefficient equal to 0.2. 

Different cooling rates are used for each run where RUN431 has cooling rate equal to 50 

℃/s, RUN432 has cooling rate equal to 100 ℃/s, RUN433 has cooling rate equal to 200 

℃/s, and RUN434 has cooling rate equal to 500 ℃/s. Their developed microstructures are 

shown in Figure-4.11.  

  

  
Figure-4.11: The microstructure morphology of (a) RUN431, (b) RUN432, (c) 
RUN433, and (d) RUN434. 
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The solidification time and solute segregations of simulation-runs shown in Figure-4.11 

are listed below: 

• RUN431: solidification time=0.0061 sec, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝐶𝐶 = 0.35, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝐶𝐶𝐶𝐶 = 0.0017. 

• RUN432: solidification time=0.0060 sec, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝐶𝐶 = 0.38, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝐶𝐶𝐶𝐶 = 0.0017. 

• RUN433: solidification time=0.0057 sec, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝐶𝐶 = 0.4, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝐶𝐶𝐶𝐶 = 0.0019. 

• RUN434: solidification time=0.0050 sec, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝐶𝐶 = 0.47, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝐶𝐶𝐶𝐶 = 0.0021. 

The results presented in Figure-4.11 show that as the cooling rate increases the 

microstructure becomes finer and more dendritic, forming more secondary and tertiary 

arms. For example, comparing the window-box in Figure-4.11d and 4.10c, the secondary 

arms spacing in the case of the higher cooling rate (Figure-4.11d) is smaller than the case 

of the lower cooling rate (Figure-4.11c). This indicates that the microstructure in Figure-

4.11d is finer than the one in Figure-4.11c, as described in section-1.7. In addition, the 

solutes segregation increases as the cooling rate increases, as estimated by the segregation 

indices. 

4.4 Solidification of Duplex Steels 

The microstructures of duplex stainless steels consist of austenitic and ferritic phases.  They 

have good as-welded mechanical properties and excellent corrosion resistance properties 

[68]. In order to obtain a duplex microstructure, the nominal alloy composition should be 

located in the tie-triangle area as shown in Figure-4.12a. Two simplifications are 
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considered in this study; The zone of FCC-BCC (Figure4.12a) is ignored, and the tie-

triangle is divided into two zones by a boundary line, as shown in Figure-4.12b. Thus, if a 

state is initially located to the right of the boundary line is considered to be in the L-BCC 

zone, and the state is in the L-FCC-BCC zone if it is located to the left of the boundary line. 

Using CALPHAD allows the algorithm to predict the solidifying phases, which can be 

liquid-ferrite or liquid-austenite. This simplification is physically reasonable since the 

nucleation needs some undercooling, and it is considered that crossing the boundary line 

provides the required undercooling for nucleation. 

 
Figure-4.12: A simplifying assumption for isotherms. 

To investigate the solidification of a duplex microstructure, an alloy with initial 

composition Cr 8%wt – C 0.5%wt is used. According to the used thermodynamics 

database, the state of the alloy is L-BCC at T=1469.5 ℃ and L-FCC at T=1469.1 ℃, as 

shown in Figure-4.13. Two simulation-runs with different cooling rates are used for this 

study: RUN441 with 10 ℃/s cooling rate and RUN442 with 100 ℃/s cooling rate. 
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Figure-4.13: For (Cr 8%wt – C 0.5%wt) alloy, the thermodynamics state is (a) L-BCC, 
and (b) L-FCC. 

Figure-4.14 shows the growing microstructure of RUN441, and the simulation estimates 

that the fraction of solid is 96% ferrite and 4% austenite. The developed microstructure is 

almost ferritic with some trace of austenite phase at the diagonal directions of the dendrite. 

Some cells at the dendrite diagonals have high and concave curvatures which cool down 

the solid and favor the austenite phase thermodynamically.   

 
Figure-4.14: The duplex microstructure cooling rate = 10 ℃/s. [RUN441] 

Simulation-run RUN422 has the same simulation parameters as RUN421 but with a higher 

cooling rate that is equal to 100 ℃/s. Figure-4.15 shows the developed duplex 
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microstructure, and it is found that the developed microstructure is around 4.1% ferrite and 

95.9% austenite.  

 
Figure-4.15: The duplex microstructure cooling rate = 100 ℃/s. [RUN442] 

In Figure-4.15 the core of the developed microstructure is ferrite because the initial alloy 

composition was located in the L-BCC zone (Figure-4.13a). As the temperature decreases, 

austenite becomes more stable and starts to form. Therefore, for an alloy with a nominal 

composition of Cr 8%wt – C 0.5%wt, a higher cooling rate produces more austenite in the 

final duplex microstructure. This is because with the higher cooling rate, the 

thermodynamics state will cross the boundary line between L-FCC and L-BCC faster that 

produces more austenitic phase. It is expected that the fraction of austenite phase will 

increase if the simulation time is extended. Figure-4.16 shows the carbon distribution in 

solid for a duplex microstructure with low cooling rate and high cooling rate. For RUN441 

(Figure-4.16a) the segregation indices are 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝐶𝐶 = 0.286 and 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝐶𝐶𝐶𝐶 = 0.0141. 



150 
 

Similarly, for RUN442 (Figure-4.16b), the segregation indices are 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝐶𝐶 = 0.349 and 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝐶𝐶𝐶𝐶 = 0.0113. 

 
Figure-4.16: The carbon distribution in solid for (a) 10 ℃/s cooling rate [RUN441] and 
(b) 100 ℃/s cooling rate [RUN442]. 

The solutes segregation in solid of RUN442 is higher than the segregation of RUN441, 

because RUN442 has a higher cooling rate and produces more austenite fraction. The 

developed microstructure in Figure-4.16b is a duplex one in which the core is ferritic phase 

surrounded by austenitic phase. 

4.5 The Effect of Curvature Calculation Models on a Microstructure Evolution 

This section investigates the constrained dendritic growth. Four simulations are 

investigated all of which have the same parameters (i.e. nominal alloy composition 18 wt% 

of Cr and 0.08 wt% of C, initial temperature =1504 ᵒC, cooling rate =50 ℃/s, Gibbs-

Thomson coefficient Γ = 1−7 𝐾𝐾 ∙ 𝑚𝑚) but different curvature calculation model. The first 

simulation-run (RUN451) uses the cell-count method (Equation-3.21), the second 
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simulation-run (RUN452) uses the level-set method with averaging of the solid fractions 

(Equation-3.4), the third simulation-run (RUN453) uses the level-set method with the 

optimum averaging (section-3.3.4.2), and the fourth simulation-run (RUN454) uses the 

level-set method with the optimum averaging and a reduced Gibbs-Thomson coefficient. 

All of the simulation runs have the same initial S/L interface configuration as shown in 

Figure-4.17.  

 
Figure-4.17: The initial S/L interface for RUN451, RUN452, RUN453, and RUN454. 

The initial morphology, as shown in Figure-4.17, is a flat S/L interface with a small nucleus 

in the middle with 0.75 𝜇𝜇𝜇𝜇 width and 0.5 𝜇𝜇𝜇𝜇 height. The purpose of the nucleus is to 

produce a convex interface that reduces the liquidus temperature and enhances the growth. 

If a flat interface is used without the nucleus, the initial flat interface will advance without 

producing a dendrite.  Figure-4.18 shows the dendrite produced in RUN451, and Figure-

4.19 shows the dendrite produced produced in RUN452. 
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Figure-4.18: (a) the developed microstructure of RUN451 that uses cell-count method, 
and (b) a cross section of the solid fraction through x-axis. [RUN451] 

When a cell-count method is used (Figure-4.18), a main dendrite is developed in the middle 

of the computational domain and some smaller dendrites are produced within the 

computational domain. The main dendrite is developed from the initial nucleus, and the 

other dendrites are grown from disturbances produced on the initially flat S/L interface. 

The disturbances occur because of the cell-count method that impose some uncontrolled 

numerical noise in the curvature computation. This noise starts from the initial nucleus 

surrounding and propagates through the domain disturbing the flat S/L interface and 

produces smaller perturbations. Eventually, the perturbations grow and form full columnar 

dendrites as shown in Figure-4.20. 
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Figure-4.19: The developed microstructure of RUN452 that uses level-set method, and 
(b) a cross section of the solid fraction through x-axis. [RUN452] 

Figure-4.19 shows the resulting microstructure using the level-set method with averaging 

weights, as describe in section-3.3.4.2. In comparison to cell-count method, level-set 

method does not produce strong numerical noise and does not disturb the initial flat S/L 

interface. As a result, one dendrite is grown from the initial nucleus and develops secondary 

and some tertiary arms.  

Figure-4.20a shows the initial disturbances of the S/L interface, and Figure-4.20c shows 

the initial perturbations. These perturbations act as nuclei and produce dendrites as shown 

in Figure-4.20d. 
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Figure-4.20: The disturbance of the initial S/L interface due to cell-count method at (a) 
0.0011 sec, (b) 0.0022 sec, (c) 0.0033 sec, and (d) 0.0045 sec. 

Figure-4.21 shows the dendrite produced in RUN453, and Figure-4.22 shows the dendrite 

produced in RUN454. 

 
Figure-4.21: The developed microstructure of RUN453 that uses level-set method with 
optimum averaging, and (b) a cross section of the solid fraction through x-axis. 
[RUN453] 

Figure-4.21 shows the resulting dendrite when the level-set method with optimum weights 

averaging is used. In contrast to the dendrite shown in Figure-4.19, the developed dendrite 

with optimum weights averaging is smoother and less fractal. This is so because the 
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curvature calculation using optimum averaging values is more accurate, as predicted by the 

sphere test (section-3.3.5), which reduces the numerical noise. Therefore, a simple and 

smooth shape is maintained for a longer time, and the structure will be fractal eventually if 

a larger computational domain is used.  

Figure-4.22 shows the resulting dendrite of RUN454, when the level-set method with 

optimum weights averaging is used and the value of Γ  is reduced by half, so Γ = 0.5−7 𝐾𝐾 ∙

𝑚𝑚. Gibbs-Thomson coefficient enhances the effect of surface energy so that a lower value 

of it reduces the action of the surface energy. Since the surface energy tends to flatten or 

smoothen the S/L interface (as described in section-1.7.1), it is expected that a smaller 

value of Γ  will produce more fractal dendrite, in comparison to the case when a higher 

value of Γ  is used as in RUN453.  

 
Figure-4.22: The developed microstructure of RUN454 that uses level-set method with 
optimum averaging and Γ = 0.5−7 𝐾𝐾 ∙ 𝑚𝑚, and (b) a cross section of the solid fraction 
through x-axis. [RUN454] 
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The growth of the columnar, or smooth, structure is slower than the dendritic structure. For 

example, the simulation time for RUN452 (dendritic) was equal to 0.0098 sec and the 

simulation time for RUN453 (columnar) was equal to 0.0126 sec. This is for the same 

reason as the case of spherical growth (section-4.1) in which smoother S/L interface has a 

smaller total area for diffusion with a slower diffusion process. As a result, the solutes 

removal from the S/L interface is slower and so the growth rate. 

4.6 Dendrite Growth Simulations Including Heat Diffusion Solver 

The heat diffusion is not solved for all previous simulation runs because the isothermal 

case is considered with a uniform temperature within the computational domain. In this 

section two simulation runs (RUN461 and RUN462) are investigated in which the heat 

diffusion is solved as described in section-3.3.5. Both runs have the same simulation 

parameters with nominal alloy composition 16 wt% of Cr and 0.05 wt% of C, initial 

temperature =1508 ᵒC, anisotropy coefficients 0.25, and Gibbs-Thomson coefficient Γ =

1−7 𝐾𝐾 ∙ 𝑚𝑚. Since the heat diffusion equation will be solved, more alloy properties are 

needed which are thermal conductivity 𝑘𝑘𝑡𝑡ℎ = 43/100 𝐽𝐽 𝐾𝐾 ∙ 𝑚𝑚3⁄ , latent heat of fusion 

𝐿𝐿ℎ = 17.2 × 106  𝐽𝐽/𝑚𝑚3, heat capacity 𝐶𝐶𝐶𝐶 = 3.1 × 107 𝐽𝐽 𝐾𝐾 ∙ 𝑚𝑚3⁄ ,  and density 𝜌𝜌 =

6800 𝑘𝑘𝑘𝑘/𝑚𝑚3.  

Periodical thermal boundary conditions are used for all sides of the computational domain. 

In addition, an insulated boundary condition is assigned to the top of the domain, and a 

temperature gradient equal to 0.1 ℃/μm is assigned to the bottom of the domain to add the 
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cooling effect. For solute transport, periodical boundary conditions are used for side 

surfaces of the domain, and isolated boundaries are used for the top and the bottom of the 

domain.  

 Although both simulation-runs have the same simulation parameters, they have different 

initial S/L interface configurations as shown in Figure-4.23, wherein RUN461 has one 

initial nucleus at the middle of the computational domain and RUN462 has a rough initial 

S/L interface. The computation time of these simulations is the longest because the used 

iteration technique to account for the thermal diffusion performs 5 to 10 interpolation 

calculations for each interfacial cell at every time step, as described in section-3.3.5.  

 
Figure-4.23: (a) the initial S/L interface of RUN461, and (b) the initial S/L interface of 
RUN462. 

Figure-4.23a shows the initial S/L interface of RUN 461 in which one small nucleus (0.75 

𝜇𝜇𝜇𝜇 width and 0.5 𝜇𝜇𝜇𝜇 height) is located at the center of the domain to promote the growth 

of the dendrite. Unlikely, Figure-4.23b shows the case when the initial S/L interface is 
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microscopically rough, i.e. four thousand initial nuclei with different size are randomly 

distributed. The induced roughness will change the curvature of the initial S/L interface 

that promotes many dendrites to grow from different locations.  

The next figures (Figure-4.24, 4.25, 4.26) show the growing microstructure for RUN461 

at times equal to 0.0078, 0.019, and 0.027 sec respectively.  

 
Figure-4.24: For RUN461 at t=0.0078sec, (a) the growth dendrite, (b) the rejected 
heat, (c) the rejected solute (carbon), and (d) the capillarity undercooling at a cross 
section. 

Figure-4.24a shows a growth of a dendrite from the initial nucleus at time equal to 0.0078 

sec. The initial S/L interface starts to be disturbed because the cell-count method is used. 

Figure-4.24b shows the temperature distribution within a cross section through the 
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computational domain, and it shows how the releasing of latent heat increases the 

temperature around the dendrite tip. The maximum and minimum temperature are equal to 

1508.1 ℃ and 1507.75 ℃ respectively. In addition, the temperature is minimum at the 

bottom of the domain since a cooling boundary condition is assumed there. Figure-4.24c 

shows the concentration of carbon in liquid, which is formed due to the solute rejection 

process. Well-defined layers of solutes are formed around the growing dendrite, and the 

rest of the domain is at the initial solute concentration. Finally, Figure-4.24d shows the 

calculation of capillarity undercooling (dTr) at a cross section of the computational domain 

in which the range of dTr is -0.1℃ to 0.25 ℃. 

 
Figure-4.25: For RUN461 at t=0.019sec, (a) the growth dendrite, (b) the rejected heat, 
(c) the rejected solute (carbon), and (d) the capillarity undercooling at a cross section. 
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Figure-4.25 shows the growth of the dendrite at time equal to 0.019 sec. The dendrite 

becomes longer and grows secondary arms, and some perturbations start to form nuclei. 

Figure-4.25b and c show the temperature distribution and the carbon concentration around 

the growing dendrite respectively. Finally, Figure-4.25d shows that the absolute values of 

dTr are increased since the dendrite becomes more fractal.  

 
Figure-4.26: For RUN461 at t=0.027sec, (a) the growth dendrite, (b) the rejected heat, 
(c) the rejected solute (carbon), and (d) the capillarity undercooling at a cross section. 

Figure-4.26a shows the developed dendrite at the end of the simulation, at time equal to 

0.027sec. The dendrite is well developed with many secondary arms and a parabolic tip. In 

addition, some columnar dendrites grow from the formed nuclei due to the produced 
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numerical noise. Figure-4.26b shows the temperature distribution and the released latent 

heat around the dendrite. Figure-4.26c shows the solute concentration around the dendrite 

which indicates that the diffusion process promotes the growth. Finally, Figure-4.26d 

shows that the value of dTr is increased up to 1℃, because the dendrite shape becomes 

more complex and acquires sharp features. 

Figure-4.27 shows the result of RUN462 in which the initial S/L interface is rough (see 

Figure-4.23b). It is expected for such initial configuration that many dendrites will start to 

grow and few of them will survive because of the competitive growth. Figure-4.27a shows 

that many columnar dendrites are developed at the end of the simulation (at t=0.03 sec), 

and Figure-4.27b shows a cross section of the solid fraction field. The width of one 

columnar dendrite is approximately equal to 3 𝜇𝜇𝜇𝜇, and no secondary arms are developed 

because there are many columnar dendrites within the domain. Figure-4.27c illustrates the 

temperature distribution and shows that the temperature at the solidification front is higher 

due to the release of the latent heat. Meanwhile, the temperature decreases as we approach 

the bottom of the domain due to cooling effect. In addition, the temperature distribution 

becomes uniform as we go far from the solidification front. Figure-4.27d illustrates the 

solute concentration in liquid that shows a layer with a high solute concentration is formed 

around each columnar. The developed concentration layers interact with each other, this is 

called soft impingement, affecting the microstructure evolution due to the competitive 

growth. 
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Figure-4.27: The results of RUN462 at t=0.03 sec. (a) the developed microstructure, 
(b) a cross section of the solid fraction field, (c) the temperature distribution, (4) the 
rejected solute. 

Figure-4.28 shows four different stages of the microstructure evolution of RUN462. In 

order to study the competitive growth, a MATLAB code is written to count the number of 

dendrites at any time. It is found that the number of surviving dendrites decreases with time 

because some of them will grow at the expense of others. For example, there were 399 

dendrites at t=0.0078 sec, 206 dendrites at t=0.0156 sec, 161 dendrites at t=0.0234 sec, and 

68 dendrites at t=0.03 sec, as shown in Figure-4.28. By comparing the two circular-

windows in Figure-4.28c and Figure-4.28d, there are fewer dendrites in Figure-4.28d. As 
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a result, the primary arm spacing (section-1.7) increases in Figure-4.28d since the number 

of columnar dendrites decreases. It is expected that even fewer dendrites will survive and 

they will grow at the expense of the others after a longer simulation time. 

 

 
Figure-4.28: The developed microstructure at (a) T=0.0078 sec, (b) T=0.0156 sec, (c) 
T= 0.0234 sec, and (d) T=0.0234 sec. [RUN462] 

The initial configuration and state of the system are artificial one that does not represent 

the steady state. Therefore, the system goes through a transient state at the beginning of the 

simulation trying to reach the steady state. Eventually, the heat and mass distribution 

become steady and also the growth velocity. There is one steady state configuration for any 

specific solidification system with specific solidification parameters regardless to the initial 

S/L interface configuration. The steady state determines the microstructure properties such 

as grain density and segregation. 
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Figure-4.29 shows the temperature profile along a line located at the center of the 

computational domain of RUN462 and extended from the bottom to the top. Initially the 

temperature is constant and uniform (1508 ℃), so the temperature profile is as shown by 

the dotted line in the figure. Figure-4.29a shows the temperature profile after 1000 time 

step (0.0039 sec) which is changed due to the heat diffusion. The temperature at the bottom 

(point-A) is less than the initial temperature (approximately equal to 1507.8 ℃) since the 

heat is extracted from the bottom. On the other hand, the temperature at the top of the 

domain (point-B) is yet not changed. The difference in temperature from the bottom and 

the top of the domain derives the heat diffusion process.  

  

  
Figure-4.29: The temperature profile at (a) 1000 time step (0.0039 sec), (b) 2000 time 
step (0.0078 sec), (c) 5000 time step (0.019 sec), and (d) 8000 time step (0.031 sec). 
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Figure-4.29b shows the temperature profile at time step 2000 (0.0078 sec) on which the 

heat is accumulated forming a hump in the temperature profile. This temperature hump is 

due to the releasing of the latent heat at the solidification front, and the temperature 

decreases until it becomes equal to the initial temperature. At the time step 2000, the 

maximum temperature of the temperature hump is equal to 1508.01 ℃, which slightly 

above the initial temperature. As the solidification process continue more heat is released 

and so more heat is accumulated, and the temperature hump becomes higher and wider, as 

shown in Figure-4.29c. At this stage (time step 5000 and 0.019 sec), the maximum 

temperature is equal to 1508.1 ℃. Figure-4.29d shows the temperature profile at the end of 

simulation in which the solidification front reaches the top of the control volume. The 

temperature profile becomes smoother and some interaction with the boundary condition 

at the top of the domain occurs (point-B). The result shows that the releasing of latent heat 

increases the maximum temperature at the solidification front by 0.12 ℃. It is expected 

that this value will decrease if the used thermal conductivity is not reduced. Therefore, the 

effect of latent heat releasing is not significant for this simulation, and a simple temperature 

profile can be imposed on the computational domain without solving the heat diffusion 

equation.  
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Chapter-5: Predicting the Microstructure of the Fusion Zone 

 

This chapter describes how the current CA-CALPHAD model can be used to predict the 

microstructure of the fusion zone of weld joints. The macro/micro coupling of a 

temperature field and CA-CALPHAD model for a Bead-On-Plate weld joint and the effect 

of welding parameters on the solidification microstructure are investigated. The 

temperature history of the weld joint is obtained using VrWeld® [69], and specific points 

on the weld pool boundary are picked for which the CA-CALPHAD solidification model 

is run. VrWeld® can analyze a given weld joint design and calculate the macroscopic 

thermal field and thermal stress [70, 71], fatigue life [72],  the macroscopic microstructure 

for low alloy steels [73], the solid-state microstructure phase transition based on the phase-

field modeling [4], and the microstructure of the fusion zone based on the phase diagram 

linearization [3].  

In this study, three types of steel alloys are investigated for the same weld joint geometry 

and welding procedure: 430 ferritic stainless steel, 410 martensitic stainless steel, and a 

duplex steel with Cr 8%wt – C 0.5%wt. Stainless steel alloys are chosen because the 

available CA solidification models that are based on the linearization approach cannot 

study them. In addition, stainless steels are practical alloys which are being used in many 

industrial applications. Stainless steels have high strength and corrosion resistance at high 

temperatures, so they are suitable for marine and energy applications. Generally, the 



167 
 

stainless steels are readily weldable [74], but the weldability decreases as the carbon 

content increases.  

One main problem with welding stainless steels is the weld decay or the weld sensitization. 

It is an intergranular corrosion in which chromium carbides form around the grain 

boundaries depleting grain boundaries of chromium. Since chromium carbides can form at 

a specific chromium and carbon concentration, estimating the ratio of carbon concentration 

to chromium concentration (C/Cr) can characterize the tendency to carbide formation and 

chromium depletion.  

5.1 Coupling Macroscopic Welding Case to Microscopic Solidification Model 

Figure-5.1 shows a Bead-On-Plate weld joint, as giving by [75]. The welding parameters 

are the welding volt is 11.2V, the welding current is 160A, and the welding speed is 140 

mm/min. The material properties of 316L stainless steel are used for the macroscopic 

thermal analysis. The double ellipsoid model [76] is used for the weld pool (Figure-5.1b), 

and the weld joint design is shown schematically in Figure-5.1a. Using VrWeld®, the 

cooling curve (T-t) at any point in the weld joint can be obtained from the FE analysis. 

 
Figure-5.1: The used welding joint for macroscopic temperature calculation. 
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Figure-5.2, for example, shows the cooling curve at point P0 (shown in Figure-5.1b), and 

the cooling rate at this point at the onset of solidification can be obtained as a corresponding 

dT/dt value. However, to simplify the calculation, a secant slope is used to calculate dT/dt. 

For example, on the cooling curve of P0, a point at the melting temperature (Tm) and a 

point with a temperature value slightly above it (T2) are used to calculate the slope or the 

cooling rate, as shown in Figure-5.2b.  

 
Figure-5.2: (a) the cooling curve at P0, (b) the cooling rate at P0. 

The cooling rate of any point on the weld pool boundary can be calculated using the same 

procedure.  

 
Figure-5.3: The variations of cooling rate and temperature gradient around the weld 
pool. [9], page-201. 
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Figure-5.3a shows the variations of growth velocity and temperature gradient around the 

weld pool. Figure-5.3b lists the cooling rates (Rc) and the temperature gradients (TG) at 

some specific points on the weld pool boundary. The maximum growth velocity is at point 

P0 and the minimum growth velocity is at 𝑃𝑃𝑥𝑥. Reversely, the minimum temperature gradient 

is at P0 and the maximum is at 𝑃𝑃𝑥𝑥, as described in section-1.5.2. Once the cooling rate at 

any point is obtained, the temperature gradient at the point can be calculated as following: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�

temperature gradient

=
𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄�����

cooling rate

𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑 = 𝑉𝑉𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐸𝐸𝐸𝐸5.1

 

where, 𝑉𝑉𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 is the velocity of welding and 𝜃𝜃 is the angle between the fusion line and the 

weld pool boundary at a point on the weld pool perimeter and the fusion line as shown in 

Figure-5.3a. By writing a MATLAB code to calculate Equation-5.1, the cooling rate (Rc) 

and temperature gradient (TG) for some points are calculated as listed in Figure-5.3b. The 

initial configuration for all simulation-runs in this chapter is the same as shown in Figure-

4.17. 

5.2 The Microstructure Evolution of the Weld Pool Boundary 

Referring to Figure-5.3b, the microstructure development at point P0 is studied in RUN511, 

and the microstructure development at point P2 is studied in RUN512. Both runs use the 

same simulation parameters and the cell-count method. The used simulation parameters 

are nominal alloy composition 𝐶𝐶𝐶𝐶16%𝑤𝑤𝑤𝑤 − 𝐶𝐶0.08%𝑤𝑤𝑤𝑤, initial temperature = 1504 ℃, 

anisotropy coefficients = 0.2, and Gibbs-Thomson coefficient = 1−7 𝐾𝐾 ∙ 𝑚𝑚. In addition, a 
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linear temperature profile is assumed within the computational domain in which the 

temperature at the bottom is equal to the initial temperature and increases with the 

corresponding temperature gradient and cooling rate through the computational domain. 

This approach is described in section-3.3.2 and investigated in section-4.6. The 

microstructure of RUN511 is shown in Figure-5.4a. The microstructure is dendritic with a 

main large dendrite in the middle of the computational domain and secondary arms with 

some tertiary ones. In addition, smaller dendrites are developed within the domain because 

the cell-count method is used, as discussed in section-4.5. The minimum temperature in 

the domain is equal to 1503.707 ℃ which is slightly below the initial temperature, 1504 

℃, due to the cooling rate. 

 
Figure-5.4: (a) the developed microstructure of P0 (RUN511) at t=0.01 sec, and (b) the 
resulting temperature gradient in ℃. [RUN511] 

- 
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Figure-5.5: (a) the distribution of carbon in solid, and (b) the C/Cr ratio. [RUN511] 

Figure-5.5 shows the segregation of carbon in the developed dendrite and the C/Cr ratio of 

RUN511. More carbon segregation is at the dendrite boundary, especially at the secondary 

arms. The segregation indices for RUN511 are 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝐶𝐶 = 0.6235, 𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑𝑒𝑒𝑒𝑒_𝐶𝐶𝐶𝐶 =

0.0034, and (𝐶𝐶 𝐶𝐶𝐶𝐶⁄ )𝑚𝑚𝑚𝑚𝑚𝑚 = 0.0015. It can be shown from Figure-5.5b that the grain 

boundary of the secondary arms has higher C/Cr ratios, which indicates they are more 

prone to weld decay.  

 
Figure-5.6: (a) the microstructure of P2 (RUN512) at t=0.01 sec, and (b) the resulting 
temperature gradient in ℃. [RUN512] 
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Figure-5.6 shows the microstructure of the point P2 (RUN512) at t=0.01 sec and the 

resulting temperature gradient. The microstructure is dendritic with a main large dendrite 

with secondary and tertiary arms. The other dendrites are due to the uncontrolled numerical 

noise of cell-count method. The minimum temperature is at the bottom of the control 

volume and equal to 1503.765 ℃. Figure-5.7 shows the segregation of carbon in the 

dendrite and the C/Cr ratio at t=0.01 sec of RUN512. The carbon segregates more at the 

secondary arms boundary which causes higher values of C/Cr ratios. The segregation 

indices for RUN512 are 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝐶𝐶 = 0.612, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝐶𝐶𝐶𝐶 = 0.0034, and (𝐶𝐶 𝐶𝐶𝐶𝐶⁄ )𝑚𝑚𝑚𝑚𝑚𝑚 =

0.0015. The segregation index of carbon of RUN511 is larger than RUN512 because the 

cooling rate of RUN511 is higher, but the maximum C/Cr ratios are almost equal.  

 
Figure-5.7: (a) the distribution of carbon in solid, and (b) the C/Cr ratio. [RUN512]. 

Two more simulation-runs are investigated for the point P0 as shown in Figure-5.3b: 

RUN513 and RUN514. Both runs use the same simulation parameters as RUN511 and 

RUN512, but RUN513 uses the level-set with averaging, and RUN514 uses the level-set 
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with the optimum averaging for curvature calculations, Equation-3.2.2. It is expected that 

one dendrite will be grown from the initial nucleus without any smaller dendrites as in 

RUN5111 and RUN512, because the level-set method does not disturb the initial flat S/L 

interface, as described in section-4.5.  In addition, using the level-set method with the 

optimum averaging as in RUN514 will produce columnar and smooth dendrite, because 

the optimum averaging is more accurate and less sensitive to the numerical noise. 

 
Figure-5.8: (a) the microstructure of RUN513 at t=0.011 sec, and (b) the carbon 
distribution in liquid. [RUN513] 

Figure-5.8a shows just one dendrite in the domain with secondary and tertiary arms. This 

is expected since the level-set method was used. The extensive lateral growth of the 

dendrite arms at the bottom of the domain is due to the temperature gradient, because the 

bottom is colder than the top. Figure-5.8b shows the concentration of carbon in liquid in 

which a thin layer of solute is formed around the developed dendrite. In addition, the carbon 

concertation in liquid is higher at the bottom of the domain because temperature is lower, 

and the dendrite arms are larger at the bottom that rejects and traps more solute atoms. 
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Figure-5.9 shows the carbon distribution in liquid and the C/Cr ratios of RUN513. Carbon 

segregates at the dendrite boundary, and the core of the dendrite primary arm and secondary 

arms have less carbon concentration. The distribution of C/Cr ratios follow the same 

pattern, so the boundary of the dendrite is more prone to weld decay. The maximum C/Cr 

ratio is equal to 0.0059 which is four times bigger than the predicted value by using the 

cell-count method in RUN512. This result shows that the method of curvature computation 

strongly affects the microstructure composition. 

 
Figure-5.9: (a) the distribution of carbon in solid, and (b) the C/Cr ratio. [RUN513]. 

Figure-5.10a shows the dendrite of the point P0 when the optimum averaging of the level-

set is used. The dendrite is smooth, as expected, because of using the optimum averaging 

with level-set method. The carbon distribution in liquid (Figure-5.10b) consists of many 

layers surrounding the developed solid phase. Figure-5.11 shows the segregation of carbon 

and the distribution of C/Cr ratio of RUN514. 
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Figure-5.10: (a) the microstructure of RUN514 at t=0.012 sec, and (b) the carbon 
distribution in liquid. [RUN514] 

- 

 
Figure-5.11: (a) the distribution of carbon in solid, and (b) the C/Cr ratio. [RUN514] 

Figure-5.11a predicts a low carbon concentration in the core of the dendrite and more 

segregation at the boundary. Accordingly, the boundary of the dendrite is more prone to 
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weld decay. The segregation indices for RUN514 are 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆_𝐶𝐶 = 0.32, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑥𝑥_𝐶𝐶𝐶𝐶 =

0.0019, and (𝐶𝐶 𝐶𝐶𝐶𝐶⁄ )𝑚𝑚𝑚𝑚𝑚𝑚 = 0.0011. The segregation index of carbon of RUN514 is less 

than RUN513 and RUN512 because the growth rate of RUN514 is the slowest.  

In summary, the simulation-runs in this section show two key points. First, the 

microstructure around the weld pool boundary varies because of the different thermal 

conditions, as shown in Figure-5.3. Second, the curvature calculation method is important 

for the microstructure prediction accuracy. The dendrite morphology, the segregation 

pattern, and the growth rate are affected significantly by the used method. Therefore, 

improving the accuracy of the curvature calculation method is important to improve the 

overall prediction accuracy of the model. 

5.3 The Microstructure Evolution with a Duplex Structure 

To investigate the development of a duplex microstructure, the point P0 (as shown in 

Figure-5.2b) is investigated in RUN521. The used simulation parameters are nominal alloy 

composition 𝐶𝐶𝐶𝐶8%𝑤𝑤𝑤𝑤 − 𝐶𝐶0.5%𝑤𝑤𝑤𝑤, initial temperature = 1469.5 ℃, cooling rate = 56 ℃/s, 

anisotropy coefficients = 0.2, and Gibb-Thomson coefficient 1−7 𝐾𝐾 ∙ 𝑚𝑚. In addition, a 

linear temperature profile is assumed within the computational domain in which the 

temperature at the bottom is equal to the initial temperature and increases with the 

corresponding temperature gradient (TG=0.075 ℃/μm) through the computational domain. 

According to the thermodynamic database this alloy solidifies with ferritic microstructure 
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at 1469.5 ℃, but it is expecting to develop some austenitic phase at temperature equal to 

1469.1 ℃, as shown in Figure-4.13.  

 
Figure-5.12: (a) the microstructure of RUN521, and (b) a cross section through the x-
axis. [RUN521] 

Figure-5.12a shows the microstructure of RUN521 and a cross section through the x-axis. 

The dendrite composes of just one dendrite on a flat S/L interface with secondary and 

tertiary arms, since the level-set method was used. All cells inside the dendrite in Figure-

5.12b have fraction of solids equal to one, and the cells at the boundary of the dendrite have 

solid fractions less than one because they are in the mushy state. The dendrite arms at the 

bottom of the domain have more lateral growth than the arms at the top because of the 

temperature gradient.  

Figure-5.13 show the duplex microstructure of RUN521. The core of the dendrite is 

composed of a ferrite phase, because the nominal alloy composition solidifies into a ferritic 

solid. However, as the temperature decreases due to the cooling, an austenite phase starts 
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to grow around the grown ferrite. Therefore, the cooling rate is important in determining 

the fraction of ferrite and austenite in a duplex microstructure solidification. The produced 

fraction of austenite would increase if the cooling rate increases. The fraction of ferrite is 

equal to 0.67 and the fraction of austenite is equal to 0.33. The simulation time was equal 

to 0.0124 sec, and it is expected that the fraction of austenite will increases if the simulation 

continues. 

 

 
Figure-5.13: (a) the produced ferrite phase, (b) the produced austenite phase, and (c) the 
developed duplex microstructure.  [RUN521] 
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The same investigation of microstructure can be repeated for any point at the weld pool 

boundary. The results would be affected by the cooling rate and the temperature gradient 

that are vary according to the used heat input and the weld joint design. Decreasing the 

heat input (i.e. increase the welding speed or decrease the welding power) would increase 

the cooling rate and temperature gradient. Therefore, the developed dendrite would be 

more dendritic and fractal, the solute segregation would increase, and the microstructure 

would be more prone to weld decay. Increasing the thickness of the weld joint would result 

in the same effect. On the other hand, increasing the heat input would decrease the cooling 

rate and temperature gradient which has the opposite effect.  
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Chapter-6: Conclusions 

 

A CA-CALPHAD model was successfully developed by coupling the CALPHAD method 

with the cellular automata (CA) microstructure solidification model. The model assumes 

that the interfacial cells are at a thermodynamic equilibrium and assigns the equilibrium 

information to the interfacial cells during the simulation. Since the S/L interface is at 

equilibrium, the values of phase fractions and solute concentrations in phases at a given 

temperature and an average composition in the cell are calculated by CALPHAD and 

assigned to the S/L interfacial cells. Mathematically, the discontinuity between the liquid 

domain and the solid domain is treated as Dirichlet’s boundary conditions to which the 

equilibrium information is assigned. The CA-CALPHAD model overcomes the limitation 

of the linearization approach used in other CA models available in the literature, in which 

the liquidus and solidus curves are considered as straight lines with constant slopes. 

Therefore, a wide range of practical alloys such as stainless steels can be investigated. 

Another advantage of the model is the possibility to model solidification producing 

different solid phases in the same alloy at different temperatures. The model validity is 

confirmed by comparing the results with the published CA model results and with the 

experimentally observed dendritic growth features presented in the literature. 

In order to couple CALPHAD calculations with the CA model, an efficient lookup table 

with tie lines interpolation scheme was developed. The thermodynamic information was 
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pre-calculated and stored in the table so that the required information was interpolated 

during the simulation. The table stores the information of the solidus and liquidus curves 

for many temperature values. Therefore, the required information including the phase 

fractions and the concentration of solutes in each phase can be interpolated. The size of the 

stored data required for the simulation of solidification in a Fe‐Cr‐C alloy is an order of 

one MB and the interpolation for a single point equilibrium is 300 times faster than the 

CALPHAD calculation. 

The capillarity effect was taken into account using two different approaches: the cell-count 

method and the level-set method. The results demonstrate that each method predicts a 

different dendrite morphology, solute segregation, and dendrite growth rate. A comparison 

study for the two method was conducted, and it was found that the cell-count method is 

less accurate and has a higher numerical noise that can disturb a flat S/L interface having 

just one nucleus at the center. As a result, the dendrite morphology and the solute 

segregation are affected significantly. In contrast, the level-set method is more accurate 

and has a lower numerical noise, and its accuracy increases as the mesh size decreases. 

Moreover, the level-set method is less sensitive to the mesh anisotropy. The accuracy of 

the level-set method was improved by averaging the solid fraction field with optimized 

weights. 

The simulations of a free and constrained dendritic growth demonstrated that the 

segregation of chromium was less pronounced than the segregation of carbon, since the 
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distribution coefficient of chromium was bigger. In addition, the solutes segregated at the 

boundary of the evolving dendrite more than at its core, and the solute segregation increases 

as the cooling rate increased. The simulations predicted that increasing the cooling rate 

produced more fractal dendrite (with more secondary and tertiary arms) and a finer grain 

size. Similarly, increasing the initial undercooling increased the segregation and the growth 

rate and produced a finer grain size. 

The solidification of a duplex steel was investigated by using a nominal alloy composition, 

which was composed of both the ferrite and austenite phases. It was found that the austenite 

phase was formed around the ferrite phase, and more austenite phase fraction was obtained 

by increasing the cooling rate. This occurred because, as the temperature was lowered due 

to a higher cooling rate, a larger austenite fraction was produced. 

A competitive growth of dendrites was investigated by initializing a rough initial S/L 

interface. Initially, many dendrites started to grow and, eventually, few of them survived 

due to the competitive growth. This suggests that a steady growth state was established 

after some time of the simulation regardless of the initial state configuration and solute 

distribution. 

In order to investigate the microstructure of the weld, the model was successfully coupled 

with VrWeld®, a computational welding mechanics software. The microstructure within 

the weld pool varies because of the variation in the thermal condition. At the rear‐most 

point of the weld pool on the fusion line the cooling rate is maximum and the temperature 
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gradient is minimum. Correspondingly, the solute segregation and the C/Cr ratio are 

maximum, and the microstructure is finer. Therefore, the locations with high values of the 

cooling rate are more prone to the weld decay, since high C/Cr ratios are predicted there. 

Finally, with a constant arc power, increasing the welding speed or increasing the weld 

joint transverse thickness will increase the cooling rate and affect the microstructure. 

Contribution to Knowledge 

• Coupling CALPHAD method with a cellular automata microstructure solidification 

modeling was successfully accomplished, and the limitation of the phase diagram 

linearization was overcome. 

• An efficient data structure and interpolation scheme to store and interpolate the 

thermodynamic information were developed. 

• The performances of the cell-count and level-set methods were compared, and the 

level-set method with an optimized accuracy was developed. 

• The developed coupled model CA-CALPHAD can be used to investigate stainless steel 

alloys because the linearized approach to phase diagrams is overcome. 

• The effects of cooling rates and temperature gradients on the dendrite size and 

morphology as well as the segregation pattern were predicted. 

• The microstructure variations around the weld pool boundary was investigated for a 

practical stainless steel weld joint in response to realistic welding parameters.  

• The microscopic solidification of a duplex steel and the potential of the weld decay 

were investigated for a practical weld joint and welding parameters. 
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Future Work 

1) Adding a nucleation algorithm based on CALPHAD to the model. A nucleation density 

function can be assumed, and the feasibility of nucleation can be determined by 

thermodynamics. In addition, the type of the nucleated phase (ferrite, austenite) can be 

determined by thermodynamics. Such algorithm is useful in studying the columnar-to-

equiaxed transition.  

2) Modifying the anisotropy function and the capturing rule to allow for grain growth 

orientations. This addition produces grain with arbitrary orientation which is useful 

when nucleation algorithm is used. 

3) Developing an implicit solver to solve the heat diffusion equation in the computational 

computational domain. In this case, the same time step can be used for the heat 

diffusion and the mass diffusion equations.  

4) Developing more efficient and general interpolation scheme for thermodynamics 

information. 
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