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Abstract

A computational model of dendritic growth based on the CALPHAD (the CALculation of
PHAse Diagrams) thermodynamic model was developed in this study. The dendrite growth
was simulated using cellular automata (CA) with the equilibrium conditions in interfacial
cells. The developed novel model (CA-CALPHAD) overcomes the current limitation of
the published CA models, in which linearized phase diagrams are used, and allows for the
investigation of some practical alloys such as stainless steels. To reduce the computational
time, the study proposes a specific data structure to store the thermodynamic information

and an efficient interpolation scheme to retrieve the information during the simulation.

The model takes into account the curvature effect of the evolving solid/liquid (S/L)
interface by incorporating the capillarity undercooling into the thermodynamic information
during the simulation. Two methods of calculating the S/L interface curvature are
investigated in the current study: the level-set and cell-count. It was found that the level-
set method is more accurate and less sensitive to the mesh anisotropy. In addition, the level-
set method was optimized to obtain the highest possible accuracy and to mitigate the effect
of mesh anisotropy. It was demonstrated that the choice of different models for the
curvature calculation could lead to significantly different simulation results, i.e., the
dendrite morphology, segregation pattern, and grain size. The finite volume (FV)

numerical scheme was used to solve the mass and heat diffusion equations. In addition,



imposing a temperature profile with a constant cooling rate and temperature gradient

instead of solving the heat equation was verified.

The developed CA-CALPHAD model can be used to investigate the free growth,
constrained growth, and competitive growth of dendrites in response to different
solidification parameters. The results of modeling include the dendrite morphology,
dendrite size, solute segregation in the dendrite, dendrite growth rate, dendrite tip radius,
and the spacing between primary and secondary dendritic arms. In addition, the model can
be used to investigate the solidification of a duplex steel so that the fractions of ferrite and
austenite can be estimated in the final microstructure. The investigations of a ternary
stainless steel alloy (Fe-Cr-C) demonstrate that a higher cooling rate increases the solute

segregation and the potential of sensitization, and produces a finer grain.

Finally, a procedure of linking the developed CA-CALPHAD model to a computational
welding mechanics tool (CWM) was developed producing a holistic multiphysics model
(CWM-CA-CALPHAD). Therefore, the model can be used to predict the microstructure

of a weld in response to realistic welding parameters and weld joints design.
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Chapter-1: Introduction

1.1 The Objective of the Study

The main contribution of this study is coupling CALPHAD (the CALculation of PHAse
Diagrams) with a Cellular Automata (CA) based solidification modeling. The developed
model is integrated into VrWeld® (a FE software developed by Goldaktec©) to predict
weld microstructure responses to specific weld parameters and weld joint designs.
Solidification modeling of an alloy involves thermodynamics properties, specifically the
relationship between equilibrium temperature and composition. The common approach is
to assume a linear relationship between the two. This assumption excludes using the model
for a wide range of practical alloys and superalloys. The main advantages of CAPHAD are
to increase the ability of the CA solidification model to study any alloy. In addition, model
uncertainty will be reduced, since the relationship between equilibrium temperature and

composition is calculated rather than approximated.

The current solidification model is based on many previous models, the first of which was
proposed by Artemev and Goldak [1]. They studied the dendritic growth of an Al-Si binary
system in two dimensions. They assumed a constant undercooling temperature and verified
the results by comparing the computed growth velocity and tip radius with an analytical

model. In [2], Martinez and Artemev extended the model to study a ternary alloy, Al-Si-


http://www.goldaktec.com/

Cu, in 3D at a constant undercooling temperature. In [3], Ghazi and Artemev developed
the model to include a transient temperature field, by imposing a temperature profile and
cooling rate. They also investigated the effect of the initial solid/liquid interface
morphology on the evolved microstructure, and the results were compatible with
constitutional undercooling theory. The model was further developed by Komeil, Goldak,
and Artemev to allow coupling of the solidification model with a finite element heat
transient solution of the welding process [4]. In addition, they used an implicit solver to

solve the diffusion equation of solutes.

All of the mentioned models were based on the kinetics of the solid/liquid (S/L) interface,
and the movement of the interface was calculated at each time step. If the kinetics is
underestimated, the microstructure evolves too slowly taking more computational time. On
the other hand, the solution becomes unstable if the kinetics is overestimated.
Computationally, the calculation of the kinetics imposes some constrains on the time step.
In contrast, coupling CA with CALPHAD (i.e. CA-CALPHAD) does not require interface
kinetic calculation that imposes less restrictions on the time step, and the mass balance is

perfectly conserved.

1.2 Theses Content

The first chapter introduces into the research topic and summarizes the objectives. The
state of the art is described in the field of solidification theory, welding metallurgy,

morphology of the weld pool, the effects of welding parameters (i.e. welding velocity and



welding power) on the solidification microstructure, and, finally, multiscale algorithms for
solidification modeling with emphasis on microscale modeling. The key topic of first
chapter is to show the importance of using CALPHAD calculation in solidification

modeling to overcome the limitation of phase diagrams linearization approach.

Chapter-2 describes the metallurgical thermodynamics, since this is the theoretical
background of CALPHAD method. It explains the fundamentals of phases stability using
Gibbs energies and chemical potentials and the construction of phase diagrams. The
chapter explains CALPHAD models such as ideal solutions, regular solutions, real
solutions using Redlich-Kister polynomial approximation, and the compound energy
model with sublattices. In addition, the chapter describes the implementation of the
thermodynamic optimization code for Fe-Cr-C system. The chapter also outlines the
equations that are written down to solve the equilibrium problem for the different cases of
stable phases in this ternary system. The solution procedure is solved using MatLab
functions. Finally, the predictions of the implemented Fe-Cr-C model are compared to

ThermoCalc® and MatCalc® predictions.

The following chapter 3 is related to Cellular Automata (CA) modeling which is subdivided
into two parts. The first part presents an overview of existing techniques and CA models
in relation to solidification modeling. In addition, the effect of physical and mesh
anisotropy on microstructure morphology is explained, as is the impact of the S/L interface

curvature on the microstructure growth using kinetics and thermodynamics approaches.



The second part of the chapter describes the details of the developed CA-CALPHAD
model. The treatment starts with the computational tool for mass transport, i.e., diffusion
of atoms through the simulation domain, then the temperature field calculation, curvature
computation and solid fraction determination. In addition, the chapter describes the
procedure to pre-evaluate the thermodynamic data of the system and then perform a table
look-up to interpolate the values for the actual computation without necessity to compute

thermodynamics in every finite volume.

Chapter-4 is focused on the result obtained with the present CA-CALPHAD model. First,
the effect of surface energy anisotropy, undercooling degree, and cooling rate on a dendrite
free growth are investigated. In addition, the solidification of a duplex microstructure with

different cooling rate is investigated.

In the next chapter 5, the present model is applied to welding processes. The first section
describes the evaluation of solidification parameters at specific points along the weld pool
perimeter of a Bead-On-Plate weld joint. These data are subsequently used as input
parameters for the microstructure simulation with CA-CALPHAD model. The dendrite
morphology and chemical composition are analyzed. Finally, the conclusions are

summarized and the contribution to knowledge is stated in Chapter-6.

1.3 Computational Welding Mechanics CWM

This study is intended to extend the field of computational welding mechanics (CWM) by

incorporating thermodynamically accurate microstructure modeling. CWM is a tool that



applies numerical methods (i.e. finite element FE and finite difference FD) to welding aid
design, and can be used to calculate of important characteristics such as temperature
distributions, distortions (i.e. shrinkage and buckling), thermal and residual stresses, and
metallurgical changes due to the thermal cycle of the welding process. One might ask: why
do we need CWM when professionally-verified welding design codes are available? This
question can be addressed by considering three factors. The first is related to the
conservative nature of design codes that produces conservative designs, which are costly
and can limit the design due to geometrical considerations. The second factor is that most
manufacturers must conduct trial-and-error experiments to build their in-house experience.
CWM tools can reduce the number of such experiments. And the final factor is that new
materials are frequently introduced into the industry and not included in the current design

codes, which means that more trial-and-error experiments are required.

Using CWM can reduce the cost of welding design by minimizing the required number of
trial-and-error experiments by up to fifty percent [5]. In addition, CWM can enhance our
understanding of the welding process itself. For example, in [6] Goldak et al used the CWM
tool, VrWeld®, to compute the transient temperature and evolution of the microstructure
in a bead-on-plate weld. They demonstrated that characterizing welds only by power per
unit length, as most researchers do, is not sufficient to specify a unique design. By using
CWM, they demonstrated that welds should be characterized by either weld speed or weld
power, as well as the power per unit length. The long-term objective of CWM is to predict

the quality, reliability, properties, and manufacturing cost of welds and welded structures.



Achieving the long-term objective requires a holistic simulation of all relevant welding
phenomena, from the arc to the micro and macroscopic processes of the welded products.
The simulation is inherently complex because it involves multi-physics and coupled
phenomena. Figure-1.1 illustrates how three main groups of processes interact in a welding

simulation.

7 Microstructure ™, Mechanical ™~
AN evolution A processes P

Figure-1.1: Physical phenomena of the fusion welding process.

Thermal analysis is at the top of the diagram because all aspects of welding simulation are
driven by the transient temperature field. The bold arrows indicate strong coupling between
processes, and the dashed arrows signify weak coupling. The thermal field during welding
causes mechanical deformation and thermal stress, as indecated by the fifth arrow, and
microstructural changes, as shown by the first arrow. Phase transformation processes
release or absorb latent heat, which affects the thermal field by acting as a heat sink when
heating and a heat source when cooling, as depicted by the second arrow. In addition, phase
transformation processes cause volume changes which affect plastic and elastic material
behavior, as shown by the third arrow. The sixth arrow shows the minor effect of

mechanical elastic-plastic deformation on thermal analysis.



1.4 Welding Metallurgy

A weld joint microstructure evolution is driven primarily by the thermal distribution
created by the welding arc. Once the arc is applied the heat transfers to the weld joint and
then diffuses into the weld joint and the material around it. The distribution of heat and
temperature is mainly determined by the welding parameters, the weld joint material, the
weld joint thickness and the design. For example, as the thermal conductivity of aluminum
is high, heat diffuses rapidly in aluminum weld joints, corner fillet weld joints diffuse more

heat than ordinary fillet joints, and thick weld joints can absorb more heat than thinner

joints.
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Figure-1.2: The microstructure of a weld joint of Fe-C alloy in response to a thermal
cycle. [7], page-102.

The distribution of temperature in a weld joint forms two distinct zones: the fusion zone
(FZ) and the heat-affected zone (HAZ), while the rest of the weld joint microstructure is

not significantly affected by the welding process. Each zone has different thermal cycles,



peak temperatures, and cooling rates. Thus, the evolutions of microstructure and
composition are different in FZ and HAZ. In HAZ, the base material endures solid-state
transformations, grain growth, and grain refinement, as shown in Figure-1.2. The
temperature is high enough in the FZ to melt the material, and the molten material solidifies
as the FZ cools down. Due to the solidification process, the FZ acquires an entirely different

microstructure than the base material and different composition if filler metal is used.

The quality of a weld is determined by its mechanical properties which in turn depend on
the weld microstructure. For example, the grain size strongly affects the mechanical
strength and fatigue resistance, as small grains have more grain boundary area that impedes
the dislocation movement and increases the low temperature strength. Similarly, small
grains increase the fracture toughness and, consequently, fatigue life. Thus, grain
refinement is the only strengthening mechanism that increases both the strength and the
fracture toughness of alloys [8]. During welding, grain size can be tailored by controlling
the solidification process and adjusting the welding parameters (i.e. welding speed and
welding power). As well as grain size, grain composition also determines weld quality.
Ideally, the composition should be homogenous to ensure the weld also has homogenous
properties. Solidification processes can be controlled to create microstructures that are as
highly homogenous as possible. Non-homogenous composition can produce a cored
microstructure in which alloying components with low melting temperatures segregate at
the grain boundaries, and this segregation can cause hot cracks and in-service cracks. The

prediction of microstructure responses to welding parameters requires a holistic



multiphysics model that links welding parameters with microstructure evolution. This can

be achieved by CWM and is the main goal of this study.

1.5 Fusion Zone Microstructure

The microstructure of the fusion zone in a weld is a solidified microstructure in which
columnar grains, dendritic grains, and in some cases equiaxed grains are formed. The
nucleation of a solid phase in the weld is mainly heterogeneous, which has a low energy
barrier due to the presence of an existing solid interface at a fusion boundary. However,
equiaxed grains can form with high undercoolings. The growth of grains (away from the
fusion boundary) is governed by a competitive growth mechanism, as shown in Figure-1.3.
With competitive growth, the dendrites that grow quickly will impede the growth of others.
If a dendrite is growing in its easy growth direction (i.e. < 100 >for both FCC and BCC
materials) and/or in the direction of the maximum temperature gradient, the growth will be
relatively fast [9]. The final microstructure of a weld is typically composed of many

columnar/dendritic grains in the fusion zone [10].

Welding Direction

Competitive
—
i Growth

Figure-1.3: Grains competitive growth. [9], page-176.



The resulting microstructure of welds always has nonhomogeneous compositions.
Microsegregation is a chemical inhomogeneity that decreases weld quality by causing hot
cracking and cold cracking. It occurs due to the redistribution of atoms during the
solidification process, which depends on both thermodynamics and kinetics, or thermal
fluctuations during the welding process, known as banding. Solidification parameters,
growth rate (/) and temperature gradient (T;;), as well as the phase diagram of a material,

determine both the microsegregation and the morphology of a solidified structure.
1.5.1 The Morphology of the Solidification Microstructure

The shape of a S/L interface during the solidification of a melt determines the morphology
of the final microstructure. Typically, an S/L interface can be planar, columnar, dendritic,
equiaxed, or a combination of these. In the case of welding, the mode of solidification is
usually cellular, dendritic or a combination of the two, depending on the solidification
parameters [10]. Chalmer et al [9] proposed the constitutional supercooling theory, an
experimentally validated theory, that describes the effect of solidification parameters on
microstructure morphology. The theory mathematically defines when a planar S/L
interface becomes unstable and develops a more complex morphology, and it also
qualitatively describes when the solid phase morphology is cellular, dendritic, or equiaxed.
Essentially, the constitutional supercooling theory proposes that the S/L interface could be
flat if the initial solute concentration of the alloy and the growth rate are small and the

thermal gradient is high. Mathematically, constitutional supercooling proposes that the S/L
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AT,

interface will be flat if Te >
v = b,

[9], where T is the thermal gradient, V is the growth rate,

AT is the equilibrium freezing range, and D, is the diffusion coefficient of solute atoms in
liquid. The main predictions of the constitutional supercooling theory are that T;/V
determines the morphology of the solidification structure, and T; X V (i.e. cooling rate)

determines grain size, as shown in Figure-1.4.

T, /V determines morphology
of solidification structure

T x V determines size of

solidification structure

Temperature gradient, T

xed
Equiax® Low
Dendritic T /v @b

Growth rate, V
Figure-1.4: The microstructure-process parameters map as predicted by the

constitutional supercooling theory. [9], page-166.

1.5.2 Weld Pool Microstructure

Solidification parameters vary in a single weld pool from the weld fusion line boundary
(FL) to the weld fusion centerline (CL), as shown in Figure-1.5. These variations, and the
shape of the weld pool, determine the macrostructure of the weld fusion zone. Figure-1.5a

indicates how solidification parameters vary around a weld pool, and Figure-1.5b depicts

the resulting microstructure.
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Figure-1.5: The variation of solidification parameters according to the shape of the weld
pool. Figure-b is from [9], page-202.

According to the presented description in [9] and illustrated in Figure-1.5a, the temperature
gradient at point P1 is maximum, since the distance y; is the shortest distance between the
source of heat and the fusion line boundary. Since the thermal gradient is the steepest along
Y1, the growth rate is minimum at P1. In contrast, the temperature gradient at point P2 is
minimum since the distance x;is the longest, and the growth rate is the maximum.
Therefore, the ratio of TG/V at P2 is the minimum, and the ratio TG/V at P1 is the
maximum. Mathematically, (TG /V) ¢, < (TG/V)g, which suggests that the solidification
mode at P2 could be dendritic or equiaxed, and the solidification mode at P1 could be
cellular or flat, according to the constitutional supercooling theory. Moreover, the ratio
(TG x V) at P2 is the maximum since it is located where the cooling rate is maximum, and
the ratio (TG x V) at P1 is the minimum. Mathematically, (TG X V)¢, > (TG X V) gy,

suggesting that the grain size at P2 is finer than that at P1.

As a welding speed increases, the weld pool becomes longer and narrower (teardrop shape),

and in contrast, the weld pool becomes elliptical as the welding speed decreases [9]. A
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teardrop weld pool geometry produces smaller (TG/V)., and (TG X V)., than an
elliptical weld pool. Therefore, the microstructure of the teardrop weld pool is more
dendritic/equiaxed and finer at the fusion line than the microstructure of the elliptical weld

pool.

1.6 Welding Parameters

The welding power density distribution and the welding speed (welding parameters), as
well as the configuration of the weld joint and the thermal properties of the material,
determine the shape of a weld pool. The weld joint configuration and material can be
controlled during the design stage, and the welding power and speed can be controlled
during the welding process. However, in practice solidification parameters cannot be
controlled directly, though they can be indirectly controlled by the welding parameters.
Controlling welding parameters influences the shape of the weld pool and determines the
solidification parameters. Finally, the solidification parameters control the microstructure
chemical composition and grain size and shape.

The cooling rate is critical to controlling weld microstructure. Mathematically, the cooling

rate is the thermal gradient multiplied by the growth rate in differential form (i.e. % = Z—Z .

dx . . . .-
E)' As the cooling rate increases, the microstructure becomes finer and more dendritic for

the particular welding job. In practice, the cooling rate can be controlled by the welding

speed, heat input, preheating, and weldment transverse thickness (heat sink).
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1.7 Solidification Microstructure

Many industrial products are the result of the solidification process, directly or indirectly.
As the properties of the products are determined by their microstructure, controlling the
microstructure controls the products properties. The simulation of microstructure evolution
in solidification is a key factor to understanding, controlling, and improving solidification
microstructures. The most common solidification morphologies in practical alloys are
dendrites and equiaxed. Important solidification microstructure features include the tip
radius of the dendrites (Ry;p ), the arm spacing of the dendrites (4,), the equiaxed grain size,
and the secondary arm spacing (4,), as depicted in Figure-1.6a. The size and component

segregation of these microstructure features determine the properties.

!
Grain size <—1
\

@ ®)
Figure-1.6: (a) The main microstructure features, displaying the model of the dendrite
envelope as an ellipsoid. [11], page-323. (b) the size of equiaxed grain.

The dendritic arm spacing is related to the mechanical properties of the alloy; for example,

smaller arm spacing increases mechanical properties. The primary spacing depends on the
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solidification velocity and temperature gradient, A; = const - (V - T;)™™ [12]. Since the
product V - T; is the cooling rate, an increased cooling rate results in finer microstructure.

In addition, the secondary arm spacing (4,) depends on the solidification time (tr), and

A, = (,uo . tf)n, where n = 0.33 to 0.5, , is a function of alloy constituents and tf is the
solidification time [12]. As the solidification proceeds, some dendrites grow, and others
stop to grow because of the competitive growth. In addition, the larger arms grow at the
expense of the smaller ones, and this is known as the dynamic coarsening or ripening of
dendrites. Consequently, solidification time, 4,, and 4, determine the grain structure that,

in return, establishes the mechanical properties of the solidified microstructure or weld.
1.7.1 Solidification Driving Force

Thermodynamically, the driving force of the solidification process is the change in free
energy. During solidification, free energy change can be achieved by cooling a liquid phase
and introducing some degree of undercooling, AT. Thus, the undercooling is the driving
force of microstructure evolution. The total undercooling of a solidifying cell can be split
into four parts [14]: solutal undercooling AT,, thermal undercooling ATy, capillarity
undercooling AT,., and attachment kinetics undercooling AT}, (see Figure-1.7). Kinetic

undercooling can be neglected under normal solidification conditions for metals and alloys.

AT = AT, + AT, + AT, + AT, Eq1.1
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Figure-1.7: The components of undercooling.
In Figure-1.7, Ty, is the melting temperature of the host component at a flat interface, T,
is the melting temperature at a curved interface, T)X is the melting temperature because of
the kinetics, T* is the interface temperature, T ™ is the temperatures of the far field liquid,
C, is the nominal alloy composition, and AC, is the supersaturation. During the
solidification of an alloy, the heat and solute atoms are rejected at the S/L interface and
form thermal and solute layers. The extent and gradient of the two layers determine the
morphology and the segregation of the microstructure. In addition, due to the capillarity
effect the curvature of the S/L interface affects the microstructure evolution. Therefore, the
interplay of thermal, solute, and capillary is the solidification mechanism that controls the
final microstructure. While, the capillarity effect tends to flatten the S/L interface (stabilize
the interface) to reduce the total interfacial energy, the solutal layer tends to amplify any

perturbation on the interface (destabilize the interface), thereby producing a complex
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structure. The thermal layer can stabilize the interface (flatten it) if its gradient is positive

and destabilizes the interface if its gradient is negative.
1.7.2 The Capillarity Effect

The curvature of an S/L interface has a significant effect on solidified microstructure
morphology, since the curvature increases or decreases the melting temperature of the
interface locally. These changes in the equilibrium melting temperature affect the total
undercooling which, in subsequently, affects the driving force of the solidification. This
curvature effect can be quantified using the Gibbs-Thomson relation, which states that the
melting temperature of a curved interface is equal to the equilibrium melting temperature

minus the Gibb-Thomson coefficient, multiplied by the curvature of the interface, as in:

Tk=T¢ —TI-K Eql.2

surface energy

where the Gibb-Thomson coefficient (I") is approximately equal to ~ 1077

entropy of fusion

for most metals [12]. Conventionally, a convex interface (i.e. a bump of solid phase) has a
positive curvature, and a concave interface has a negative one. Therefore, the melting
temperature is suppressed at the tip of any perturbation (convex curvature), and the
equilibrium melting temperature is increased at any valley (concave curvature), as shown
in Figure-1.8a. The effect of curvature on equilibrium melting temperatures can be
explained by thermodynamics. As Gibbs free energy is proportional to the interfacial
energy, if an interface area increases (e.g. the area of a convex perturbation), the Gibbs free

energy curve moves up as shown in Figure-1.8b. This shift in the Gibbs energy of solid
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decreases the equilibrium melting temperature, and the opposite occurs in the case of
concave curvature. The change in curvature values is complex when a curved interface
advances during solidification. Sharp curvatures tend to flatten the S/L interface because

perturbations tend to melt, and depressions tend to solidify and flatten.

Teonvex < Tl < Teoncave Liguid
Tconvex 5|
. ] [ ]
Teq Liquid - — 6
] ﬂ'( ~——_ Convex interface
. & ! = Flatinterface
" Solid —_ Concave interface
concave Temperature 3‘: 3 é‘"

(@) g
®)
Figure-1.8: The effect of curvature on the melting temperature. T¢? is the equilibrium
melting temperature of a flat interface, T°°"V®* is the melting temperature of a convex
interface, and T °°™“?"¢ is the melting temperature of a concaved interface.

1.7.3 Analytical Dendrite Growth Models

A full-scale dendrite is a complex structure with a non-steady state evolution and
developing analytical models for this problem is unlikely. However, some proposed
analytical models attempt to describe the tip growth kinetics and the tip size, as determined
by the thermal and solutal fields as well as capillarity. Most of the analytical models
investigate the growth of only the dendrite tip which is considered to be spherical or

paraboloid, see Figure-1.9.

One of the first models regards a dendrite as needle-like crystal with a hemispherical cap

(hemispherical approximation), as shown in Figure-1.11a. This model solves the steady
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state diffusion equation in radial coordinates and the solution yields the following

relationship [12]:

V-r C'-(,
2D Cl—Cs

or Po = (¢ Eql.3

where, P is the solutal Peclet number, €2 is the solutal dimensionless supersaturation, V
is the tip growth velocity, r is the tip radius, C, is the initial alloy composition, C! is the
solute concentration in liquid, C? is the solute concentration in solid, and D is the diffusivity
coefficient. Similar relationship can also be obtained for a thermal dendrite. Equation-1.3
indicates that the growth velocity depends on the tip radius and supersaturation.
Hemispherical model assumes spherical symmetry of the concentration field around the
dendrite tip. This assumption leads to the equal radial growth rate at all points at the
hemispherical tip and should produce continuously increasing tip radius during the dendrite
growth. This makes a steady state growth with constant tip radius impossible contrary to

experimental observation [12].

steady-state

tip region
time-dependent
side branches

(a) (b)
Figure-1.9: (a) hemispherical model and (b) paraboloid of revolution model.
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The growth of a dendrite (see Figure-1.9b) produces dendrite tip region with a steady-state
shape. In contrast, the remainder of the dendritic interface grows in an unstable and time-

dependent manner, producing quasi-periodic waves that become side arms, or branches.

Papapetrou [15] studied the solidification of salt crystals experimentally. The main
outcomes of his theses include: dendrites evolve from small spherical crystals, a dendrite
tip has the form of a paraboloid of revolution, and surface tension plays an important role
in determining the tip size and arm spacing. Motivated by Papapetrou’s results, Ivantsov
[15] assumed the dendrite tip has the shape of a paraboloid of revolution, which is self-
preserving shape. Ivantsov’s solution of the steady state diffusion equation considering a
parabolic shape is given by:

exp (—x) dx

Eql.4
x q

(P = @ 0P = P exp (P) |
P

Ivantsov’s solution is valid for both the solutal diffusion (P, and (2. ) and the thermal

. . . . _ E __ ATT
diffusion (P; and (2 ) in which Py = - and (2 = "/

Both the hemispherical model and Ivantsov’s solution conclude that a steady state predicts
the tip kinetics will follow a simple scaling law V - r = constant. This states that the tip
radius is inversely proportional to its growth velocity. Thus, a dendrite with a small tip
radius has higher growth velocity than one with a larger tip radius. However, this prediction
has two problems. First, as the tip radius approaches zero the growth velocity increases to

infinity. Second, there is no unique solution for V and r, because, mathematically, there
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are two unknowns and one equation. Temkin [15] solved the first problem by including the
capillarity effect in Ivantsov’s model, so the tip radius cannot reach zero because the
capillarity will blunt a too sharp tip. The most common solution to the second problem is

the marginal stability assumption.

The marginal stability hypothesis was introduced in [16] by performing a linear stability
analysis of a parabolic dendrite tip region. If a smooth S/L interface is distributed by
periodic solid bumps with a certain wavenumber Ay, the interface will become smooth if
its wavenumber is less than the critical wavenumber A0 4y, < 4_,.. In contrast, the solid
bumps will grow forming side branches if its wave number is greater than the critical
wavenumber: Ay, > 4. However, the interface will be marginally stable if 4, = 4 ... The
marginal stability hypothesis assumes that the tip radius is equal to A.,, and this condition
can be applied to Ivantsov’s solution to predict a unique solution for the tip radius Ry;,, and
velocity V. Lipton—Glicksman—Kurz model (LGK model) [17] used the marginal stability
hypothesis and produced two equations that can be solved simultaneously to estimate
Rip and V. The application of marginal stability predicts that a growing dendrite with
Rip < Agr will become slower and blunt its tip. On the other hand, a growing dendrite with

Rip > Acr will grow faster and sharpen/split its tip.

1.7.4 Nucleation

Solidification consists of two stages: nucleation and growth. Nucleation involves small

nuclei of the solid phase that grow or melt depending on its volume and surface energy.
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The volume free energy change AG,, is the difference between the Gibbs energy of the solid
phase and the liquid phase, and the value of AG,, is negative when the temperature is below

the equilibrium melting temperature. The surface energy contribution G, is associated with

the forming solid surface, and it is always positive. The two energy contributions, AG,, and

G,, compete with each other as follows:

AG =N, - AG, + N - G, Eql.5
where, N, is the volume of the forming nucleus and N is its surface. Thus, if AG is
negative, the negative contribution of N, - AG, is greater than N - G,, and the forming solid
nucleus will grow. In contrast, if |NS . Gyl > |N,, - AG, |, the forming solid nucleus will melt.

Therefore, there is a critical nucleus size above which the forming nucleus will grow. The

competition between AG, and G, can be illustrated graphically in Figure-1.10.

Gibbs free energy, AG

~-* Mucleation energy barrier

Critical

~ R Nucleus size
~._nucleation size

N, - AGy

Figure-1.10: Critical size for nucleation.

There are two types of nucleation mechanisms: homogeneous and heterogeneous. With

heterogeneous nucleation, the nuclei form at a pre-existing solid surface such as the weld
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substrate. Conversely, with homogeneous nucleation the nuclei of the new phase form in
its melt bulk. Both these nucleation mechanisms depend on the degree of undercooling.
Heterogeneous nucleation requires less undercooling than homogeneous, because the
contribution of surface energy is smaller. Therefore, heterogeneous nucleation is the major
nucleation mechanism in welding. However, some weld center line grains (i.e.
homogenously nucleated grains) can form under certain welding conditions, including low
welding speed and an elliptical weld pool. The degree of undercooling determines the
nucleation rate and grain size. Although stable nuclei form at a higher undercooling, the
diffusivity of atoms in liquid decreases, resulting in low growth rate. Consequently, the
solidification microstructure is finer at a higher undercooling since the nucleation rate is

high and the growth rate is low.
1.7.5 Surface Energy Anisotropy

The propagation of an S/L interface requires a net flow of atoms attached to the interface,
and in metals, this attachment produces a rough S/L interface. This atomistic interface
roughness produces a high surface energy which is orientation dependant, y (1), and causes
a variation in the growth rate of the dendrite according to the crystallographic direction.
For BCC and FCC crystals, the higher surface energy is associated with <100> directions
[9]. On the other hand, if the surface energy is equal in all crystallographic directions (i.e.

isotropy), the resulting dendrites will resemble coral-like structures, see Figure-1.11b.
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(b)

Figure-1.11: Crystal growth with (a) anisotropic Surface energy (dendrite), and (b)
isotropic Surface energy (coral-like). [11], page-317.

Since anisotropy influences crystal morphology during solidification, its effect should be
included in the microstructure modeling, and the capillarity undercooling should be
modified to incorporate the anisotropy effect. Including the effect of anisotropy in the the
capillarity undercooling calculation is given by Gibbs-Thomson-Herring relationships

[18]:
AT, = I'- (1 — 15¢, - cos40) - K [Gibbs — Thomson — Herring] Eq1.6

where 77 is the Gibbs-Thomson coefficient, K is the S/L curvature, A(n) =
(1 — 15¢, - cos40) is the anisotropy function, €, is the four fold anisotropy coefficient, 71
is the local surface normal vector, and 0 is the angle between 7 and the direction of
maximum surface energy. Regarding to Equation-1.6, if the anisotropy is weak (€, <
1/15), the growth is dendritic. In contrast, if the anisotropy is strong (€, > 1/15), the
growth is facet [11]. Therefore, €, can be any value between zero and 1/15 for metals.

During the solidification simulation, if an interfacial cell is located along an easy growth
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direction, it will accumulate more solid fraction in a time step. Therefore, the growth will

be faster along the easy growth directions.

In the case of 3D, the anisotropy of surface energy is described using two angles as shown
in Figure-1.12. Therefore, Gibbs-Thomson-Herring relationship is more complicated, and
according to [18] the capillarity undercooling is:

2(n 2/
AT, = I Ky(ﬁ) + Vaég)) K+ <y(ﬁ) + Va 9?) : Kl Eql.7

where, the anisotropy function is:

(005492 + sin0, - (1 — 2sin?0,,, - 200526,0,))] Eq1.8

Y@ =(1-39)[1+5 -

~

fl
"Interfacial cell

) Qxy

Figure-1.12: The angles that describe the anisotropy in 3D.

1.8 Solidification Modeling

Physical solidification problems occur when phase changes transform a liquid phase into a
solid phase. Mathematically, this is known as a moving boundary or Stefan problem, after

the pioneer work of Stefan. Phase change problems are nonlinear and difficult to solve due
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to discontinuity at the interface between phases. Considering mathematics, the
discontinuity indicates that the solution of the underlying partial differential equation
(PDE) is not continuous through the entire computational domain. Physically, the interface
indicates that the material properties (e.g. density) behind the interface is different than
those ahead of interface. Moreover, as the interface is moving with time, its position is not
known a priori and depends on the solution. Stefan worked with the solidification of ice
[19], and he solved the heat transfer equation in both phases (ice and water) separately,
then combined the two solutions by the heat balance condition at the interface, or Stefan
condition. Stefan condition assumes that the temperature at the interface is constant and
equal to the equilibrium freezing temperature. Thus, the difference of heat flux from the
solid phase and the liquid phase does not change the temperature of the interface; rather, it

moves the interface with a certain velocity.

Solidification of a material depends on whether it is pure metal or an alloy. In both cases
the latent heat is generated at the S/L interface and alter the thermal field around the
interface. With alloy solidification, there is a compositional field or a compositional
difference in solid and liquid phases due to solute rejection or absorption. The
compositional difference is indicated in the alloy phase diagram. Both fields (thermal and
compositional) drive the kinetics advance of the S/L interface, and ultimately determine
the interface morphology and hence the entire microstructure. Mathematically, the
composition difference should be applied as a boundary condition at the moving interface.

Since the concentration field at the boundary influences the boundary movement, the
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problem becomes complex. In addition, more complexity exists because the thermal
properties such as thermal conductivity, density, and specific heat are temperature
dependant. Thus, due to these complexities, solidification problems are nonlinear and
difficult to solve. However, some analytical solutions for one-dimensional pure metals
solidification problems have been proposed [11]. All analytical solutions assume a definite
shape of the S/L interface such as flat, spherical, or paraboloid. For practical solidification
modeling, i.e. modeling 3D alloys solidification, numerical schemes should be applied.

The modeling can be conducted on different length scales as shown in Figure-1.12.

Referring to Figure-1.13, on a macroscopic scale, the grain structures and
macrosegregation can be predicted for a scale of cm to m. On a mesoscopic scale, grain
structures, cellular-to-equiaxed (CET) structure transition can be predicted for a length
scale of mm. The dendritic growth morphology and microsegregation can be predicted on
a microscopic scale. Finally, the S/L interface kinetics and morphology can be predicted

on a nanoscopic scale.

MACRO MESO MICRO NANG

Figure-1.13: Solidification modeling length scales. [12], page-2.
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1.8.1 Macroscopic Solidification Modeling

On a macroscopic scale the solidification of a material can be computed by the enthalpy
method, in which the phase change and the evolution of the latent heat is accounted for by

solving the enthalpy form of heat transfer equation:

H
Por= V- (k- VT)  [enthalpy formulation] Eq1.9

where, p and k;j are the density and thermal conductivity. With the enthalpy method, the
relationship between the enthalpy and temperature (H-T) should be determined a priori
(Figure-1.14). The main advantage of this method is that the solution is valid for the entire
computational domain (i.e. both the solid and the liquid phases, and the mushy region).

Therefore, the discontinuity at the S/L interface is resolved mathematically.
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Figure-1.14: (a) enthalpy function for pure materials, (b) alloys, (c) real alloys. [13]

Initially, temperature T and enthalpy H® are assigned to the entire computational domain

at the first time step. By applying cooling boundary conditions, at the next time step t +
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At, the new enthalpy H+A¢

is calculated using Equation-1.9 for the entire domain. Thus,
the values of the new temperature Tt+A¢ can be determined by using the relationship
between enthalpy-temperature, as shown in Figure-1.14. The enthalpy functions for the
solidification of alloys can be obtained using several models describing fraction of solid as

function of temperature, as listed in Table-1.

Table-1: Solidification models [13], where, f* is the fraction of solid, T is the equilibrium
liquidus temperature, T™ is the melting temperature of the host alloy, K, is the distribution
coefficient, T is the equilibrium solidus temperature, and T is the local temperature.

Solidification model Description

Equilibrium solidification model considering the lever

T'—T
5= A—K)am=T) rule in with complete mixing of solute in both liquid
’ and solid.
T™M _ T\K 1_1 Scheil solidification model in which a complete mixing
fr=1- (Tm — Tl> of solute in liquid and no mixing in solid are assumed.

Linear distribution of latent heat of freezing. This

= model is assumed if f5 cannot easily be evaluated as a
TL —Ts

function of temperature.

The models in Table-1 consider two approximations that are a constant distribution
coefficient (K;) and a linear liquidus line. The linearization approach increases the
uncertainty in solidification modeling, particularly for higher component alloys. To avoid
such simplifications, more accurate thermodynamics model is necessary. This study
suggests that more accurate model can be achieved by coupling CALPHAD with

solidification modeling. In this case CALPHAD is used to obtain the equilibrium
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information for the S/L interface. The main advantage of this is the ability to model alloys
with non-linearized phase diagrams, since the data of the phase diagram can be obtained
for any temperature and composition from the CALPHAD calculations. In addition, multi-
components alloys can be modeled in the same manner as binary alloys, and the benefits

of coupling CALPHAD can be achieved at any scale of solidification modeling.

1.8.2 Mesoscopic Solidification Modeling

At the mesoscale, a boundary envelope is considered for each grain in the computational
domain, and the growth kinetics of each grain envelope is computed for the envelope,

regardless of the internal features of the grain, as shown in Figure-1.15.

Vtip

Vtip
Figure-1.15: Grain envelope geometry used in the mesoscale solidification modeling.

The model in Figure-1.15 has two steps: nucleation and growth. In the nucleation step, the
number of grains is determined by a nucleation model that relates the grain density and the
undercooling, 11 oc AT, with a specific distribution. Once grains are nucleated, they grow
according to the growth kinetics model. The kinetics describes the movement of the
envelope tips, and the cellular-to-equiaxed transition can be predicted, which is very

important for solidification microstructure properties. Figure-1.16 shows the prediction
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ability of the mesoscale CA for microstructure. Typically, if a parallel computation is used
the size of the computational domain in mesoscale modeling can be from millimeters up to
a few centimeters [20]. Some references describe using CA at this scale as classical CA

modeling [13].

Simulation

Experiment

(a) () (©
Figure-1.16: An experimental and mesoscale CA simulated macrostructures of an Al-
4.5%Cu alloy in casting with various pouring temperatures: (a) 710 °C, (b) 760 °C and
(c) 810 °C. [13], page-231.

Originally, the cellular automaton (CA) algorithm was developed by John von Neumann
to model complex physical phenomena using simple laws [21]. The first numerical
modeling of a dendritic structure evolution was performed by Umantsev et al in 1986 [15].
In the nineties, Rappaz et al applied the CA algorithm to simulate the solidification of a
cast microstructure [22]. The general procedure of the CA algorithm consists of four steps:

(1) subdivide the computational domain into cells and predetermine the initial state; (2)
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specify the state variables to be calculated for each cell (e.g. temperature, crystallographic
orientation, solid, liquid); (3) specify the definition of the neighborhood cells; and (4)
specify the transition or capturing rules that determine whether a cell will change its state

or not.
1.8.3 Microscopic Solidification Modeling (Cellular Automata Modeling)

Microscopic CA modeling has the same four basic steps as mesoscale modeling. Unlike
mesoscale CA, the main interest with microscopic modeling is the internal microstructure
features such as side branching and microsegregation. Therefore, the effect of curvature
should be included into the microscopic model. In this case, the values of the curvature of
every interfacial cell are considered to be state variables, which means, the effect of
capillarity undercooling should be incorporated in the CA model. In addition, the
microsegregation within every cell can be computed, which is helpful when studying the
microstructure quality as a homogenous microstructure is advantageous. The location of
the S/L interface is not explicitly defined in CA modeling, but it is implicitly defined by
the solid fraction values in all cells. Using today’s computational capabilities, the size

domain of the microscopic CA modeling has been defined as between 0.1 to 1mm?>.

In microscopic CA modeling, changes in the solid fraction of an interfacial cell can be
estimated using the kinetics of the S/L interface. The kinetics of the interface, or the
velocity of the advanced solid (V*/), can be calculated using the Stefan condition [23] or

kinetics equation [3].

32



s/l « aCl aCl 6Cl aCS aCS aCS _
Vit Cr(k, — 1) = _DI<E+E+G_Z) S(ax-l-ay-i-az) 'n Eql.10a

[solute conservation at the interface]

v/t = kes (g_z;)s — ki (g_z)l

X Lh

[heat balance at the interface] Eq1.10b

VS/t =y - AT, [Kinetics equation] Eq1.11

Both models are applied by maintaining the equilibrium at the interfacial cells and using
the linearized approach of the phase diagrams. This study uses CALPHAD calculation to
impose the equilibrium on the interfacial cells, without computing the kinetics of the S/L

interface. Thus, for any alloy (binary or n-order) CALPHAD can estimate the solid fraction

as a function of cell temperature and compositions: f$ = F(T*/!, Cls/l, Czs/l, C,f/l).

1.8.4 Nanoscopic Solidification Modeling (Phase Field Modeling)

At this small length scale, the resolution should be small enough to capture the thickness
of S/L interfaces 1-10nm. Although phase-field modeling of the S/L interface can produce
more accurate microstructure predictions, it is computationally expensive. The phase-field
method is used to model solidification and evolving microstructures in materials. The
approach is based on the Gibbs free energy minimization principle. The first component of
the phase field modeling is to describe the state of a system by the order parameter @(x, t),
which is a function of position and time. The value of the order parameter defines the state

of any point in the system. For example, if a system has two states (i.e. solid and liquid in
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the case of solidification), any point with an order parameter of -1 is in the solid phase, and
any point with an order parameter of +1 is in the liquid phase. The next component is to
define a free energy density function (f) for the system. Free energy density is a local
variable that represents the free energy of a phase under current thermodynamic conditions,
and it is dependent on the state of the system at each point, f[@(x, t)]. The free energy of
a two-phase system is comprised of three energy terms that represent the energy that
corresponds to the volume of the first phase, the second phase, and the interface. If we
ignore the free energy of the interface, the total free energy of a system is the sum of the
volume of each phase multiplied by the free energy density of the phase. The final
component in phase field modeling is to define the total free energy functional (G) for the

entire system domain () as follows:

G =ff[®(x,t)]dx Eql.12
)

In fact, the free energy density depends on the values of its order parameter (@) and gradient
(V®), and the width and energy of an interface depends on the gradient of the order
parameter. Every point has an order parameter value between -1 and +1 (=1 < @ < +1),
that corresponds to the interface. Thus, the interface can be included in Equation-1.12 as

shown in Equation-1.13.

G = f 160G, 0, V00 O]dx  Eq113
QO
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Considering that the free energy decreases as @ changes with time, and expanding
Equation-1.13 by Taylor series with a second order truncation yields the functional free

energy as:

G=f[f(®)+ glva)l2 dx Eql.14
Q

where € is a function of the interface orientation. If we consider a variation of the functional

free energy, a partial differential equation for the evolution of @ can be obtained as:

6@_ oG Eal15
ot 50 1

where M is a kinetics coefficient. The free energy density should be defined as @ = +1 for
liquids and @ = —1 for solids. Caginalp [24] proposed the following expression for the

free energy density function:

1
f(@) = §(®2 - 1)%-2T9Q Eql.16

where @ of the solid is equal to -1 and @ of the liquid is equal to +1 at T = 0. Another
model of the free energy density function suggested by Karma and Rappel [25] has the

following form:

g* @2 g* o*
f(@)—z—7+,1-T-®<1—2?+?> Eq1.17
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Kobayashi [26] introduced another form of the free energy density function, and many
other researchers also proposed models of the function. Although these models were
attempts to mimic the behavior of actual thermodynamic systems, more accurate free

energy expressions can be determined using CALPHAD.

Unlike cellular automata, using phase field method precisely defines the interface between
solid- and liquid phases and its finite thickness, which resolves the discontinuity problem
of the diffusion equation at a sharp interface, as shown in Figure-1.17. However, since the
interface is finite and thin, the mesh size must be too small in order to represent the
interface. If too fine mesh is used, a costly computationally solution or complex mesh-

adaptive technique is required.
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Figure-1.17: (a) continuous interface, (b) sharp interface.
To summarize, phase field modeling is a successful tool to reproduce dendritic growth
features including tip growth behavior, coarsening, crystallographic orientations, and the
motion of grain boundaries during impingement. The method describes the S/L interface

as a continuous function, thereby avoiding the discontinuity and tracking of the interface.
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The PF method requires a very fine grid definition to smoothly define the S/L interface,
leading to very high computational cost. This limits the simulation to a single dendrite or
a very small computational domain. In contrast CA model can use a coarser grid which is
more efficient computationally than the phase field model. In [27] a comparison study was
conducted to compare 2D CA and PF, using the same simulation parameters to predict a
2D dendrite growth with a single nucleus and multiple arbitrary-oriented nuclei. The study
found that both PF and CA were capable to predict the growth with good agreement. A.
Choudhury et al [28] evaluated the performance of PF and CA, and concluded that a hybrid
method of CA and PF could be developed that combines the efficiency of CA and the
accuracy of PF. This method is expected to be useful for the investigation of remelting and

fragmentation in the late stages of solidification.

1.9 CALPHAD vs. The Linearization Approach of Phase Diagram

According to the literature, cellular automata-based solidification models apply linearized
approximation to describe the solidus and liquidus lines of an alloy [23, 13, 29]. This means
that a linear equation can be used to determine the relationship between the equilibrium
temperature and the concentration. The linearization approach is accepted for any alloy
that exhibits slightly curved S/L boundaries. Figure-1.18 shows the aluminum rich corner
of Al-Cu and Al-Si binary phase diagrams. As both these systems have a near-linear
liquidus line, knowing the concentration of the alloy and slope of liquidus line, allows the

temperature to be calculated by the linear relation. The resulting temperature is used to
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calculate the kinetics of a moving S/L interface. If a system has more than two chemical
components, such as a Al-Cu-Si ternary system, we assume that the liquidus slope of Al-
Cu in the binary system is equal to the liquidus of Al-Cu in the ternary system, and that the
liquidus slope of Al-Si in the binary system is equal to the liquidus slope of Al-Si in the

ternary system.
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Figure-1.18: Linearization approach of (a) Al-Cu binary system and (b) Al-Si binary
system. [30], pages-286, 316.

This linearization approach involves two uncertainties. The first is approximating the S/L
as straight lines, even if they are slightly curved. The second uncertainty is considering the
behavior of a ternary system (e.g. Al-Cu-Si ternary) as two independent binary systems Al-
Cu and Al-Si, which does not consider any interaction between Cu and Si. With higher
order alloys we consider the equilibrium temperatures and compositions of any two of the
components equivalent to those of their binary systems. This adds uncertainty to the

solidification model, since the behavior of a single component in a binary system is
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different than its behavior in a higher order alloy. Consequently, as the number of

components in an alloy increases the uncertainty of the solidification model also increases.

Linearization approximation of some important binary systems is invalid, because of the
high curvature of the S/L lines. For example, in the Fe-Cr binary system shown in Figure-
1.19, both solidus and liquidus curves cannot be approximated by straight lines. Therefore,
the solidification of this binary alloy cannot be investigated using the linearization
approach. Using CALPHAD overcomes this limitation and increases the accuracy of the
microstructure prediction, and it also has the potential to study any practical alloy. This

study couples CALPHAD with CA to study Fe-Cr-C stainless steel alloy.
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Figure-1.19: Fe-Cr binary phase diagram.
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Chapter-2: The Computation of Phase Diagram (CALPHAD)

2.1 Thermodynamics Potentials

In thermodynamics, the term ‘system’ is used to identify the subject of the analysis. The
system 1is distinguished from its surroundings by a fixed or moving boundary, and it
interacts with its surrounding through the boundary by exchanging energy and/or matter.
If the system can exchange both energy and matter with its surroundings, it is known as an
open system. The system is called a closed system if it can only exchange energy, and it is
known as an isolated system if it cannot exchange energy or matter. The properties of a
given system can be extensive, intensive, or partial [31]. Extensive properties depend on
system size such as volume (V) or composition (n), intensive properties do not depend on
system size such as temperature (T) and pressure (P), and partial properties, such as
chemical potentials (u), are molar properties. Natural variables, or independent variables,
are selected to describe the macrostate of a system, and a given macrostate can be
represented by a number of different microstates. Essentially, the microstate of a system is

the specific arrangement of the energy of each constituent in the system.

The thermodynamic state of a system can be described by thermodynamic potentials or
fundamental functions. Internal energy (U), Gibbs energy (G), Enthalpy (H), and
Helmbholtz energy (F) are four different potential energies. Each of which is defined by its

own natural variables. For example, temperature, pressure, and composition are the natural
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variables for Gibbs energy, G (T, P,n). All thermodynamic properties of a system can be
calculated if its energy potential is expressed as a function of its natural variables, which
can be done by taking partial derivatives of the energy potential with respect to one of its

natural variables. Chemical potentials, for example, can be calculated from Gibbs energy
G

as U = (E)T’P.

2.2 Internal Energy (U) and Gibbs Energy (G)

The internal energy of a system defined in respect to some reference state is equal to the

sum of energy added or removed by heat, work, and matter.
U=Q—W+G [internal energy] Eq2.1

where, Q, W, and G are the energy added or removed by heat, mechanical work, and matter.
Each energy term can be described by a conjugate pair (i.e. Q =T-S, W =P-V,G=pu-
n) as in Eq-2.2.

no.c

U=T-S—-P-V+ 2 Ui *mn; [internal energy with conjugate pairs| Egq2.2
i

where, S is the system entropy, V is the system volume, no. C is the number of components
in the system, y; is the chemical potential of a component i, n; is the quantity of moles of
component i. By taking the total derivative of U and eliminating the zero terms, the

differential form of Eq-2.2 is as follows:
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dU =TdS — PdV + z Y; - dn; [the differential form of internal energy| Eq2.3
i

Eqg-2.3 is the energy scheme of the combined law of the first and second laws of

thermodynamics, with S, V, n; the natural variables for U.

Thermodynamics potentials can be mathematically deduced from each other using the
Legendre transformation. For example, using the transformation, allows the internal energy
function to be reformulated by replacing S and V with T and P to introduce Gibbs energy.

Mathematically, the terms d(TS) and d(-PV) are subtracted from both sides of Eq-2.3.

dG =d(U — TS+ PV) = =SdT + VdP + Z W; -dn; [Legendre transformation] Eq2.4
i

This transformation is useful since the variables T and P are readily controlled
experimentally. According to Eg-2.4, under a constant temperature and pressure, the

differential Gibbs energy is equal to
dG = Z u; -dn; [Gibbsenergy]| Eq2.5
i
From Eg-2.5, the chemical potential of component i is equal to
dG _ _ .
W= [the chemical potential of componenti] Eq2.6
i

A thermodynamics system is typically comprised of many subsystems, and if all the

subsystems are under the same potential values, the energy potentials of the system are
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subject to the law of additivity. For example, the internal energy of a composite system is
equal to the sum of all subsystems’ internal energy, if the the subsystems have the same

values of potentials P and T.

2.3 Metallurgical Thermodynamics

Metallurgical thermodynamics studies the equilibrium states of materials and maps them
in phase diagrams; a piece of material or alloy can be considered to be a closed
thermodynamics system. An alloy is a heterogeneous system comprised of several open
homogenous subsystems, such as phases or grains, and in this context, grain boundaries
and phase boundaries are the system boundaries. According to the law of additivity,
extensive properties of an alloy are equal to the sum of the properties in all phases. For
example, if a material is composed of many phases (@ = 1,2, -+-) with many components
(i = 1,2,-+), and each phase has its own internal energy U?, entropy S?, and composition

n?, the properties of the alloy can be described as
yAlloy — z y® gAlloy Z g0 nAlloY = Z Z n? Eq2.7

The change in any phase internal energy can be described by Eq-2.3 as:

dU® =T?-ds? — p?-qv? + Z u? - dn?  [the combined law for any phase] Eq2.8
i
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The Gibbs energy of a phase is described as
G? = Z,u? nf Eq2.9
i

Accordingly, the Gibbs energy of the system is
GAloY = Z Z uf - nf Eq2.10
0 i

2.4 General Thermodynamics Equilibrium

Equilibrium indicates that the properties of a system are time independent, and the system
will revert to the equilibrium state if it is disturbed. The thermodynamics extremum
principle states that for an isolated system, the entropy has a maximum value at
equilibrium, because the entropy can only increase. Alternatively, the equilibrium criteria
can be obtained by minimizing any energy function (U, H, F, or G). For example, if a
system has constant entropy, volume, and number of moles, the internal energy is minimum
at equilibrium. If a two-phase system with a-phase and B-phase is considered, and the

combined statement of the first and second law of thermodynamics for the two phases are
dU% =T*dS% — P¥dV* + p“dn” Eq2.11a
dUB = TPdsP — PEavE + uBdn¥ Eq2.11b

The change in internal energy of the entire system can be obtained by using the law of

additivity:
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dAUSYS = T¥dS% — P*dV® + u*dn® + TPdSP — PBaVE + uPdnf Eq2.12

Substituting the constrains dS* = dS?, dV* = dVF, and dn® = dn” into Equation-2.12

gives:
dUsys = (T* — TF)dSs* — (P* — PP)dV® + (u® — u#)dn® Eq2.13

The minimum internal energy (Equation-2.13) is achieved when all coefficients are equal
to zero. This yields to the thermodynamics equilibrium criteria: T® = T#, P* = P8, and
u®* = uP. Therefore, a thermodynamics system is at equilibrium when the temperature,

pressure-, and chemical potentials among the system parts are equal.

As constraining entropy and volume is not experimentally practical, using internal energy
in developing phase diagrams is difficult, so in this case, Gibbs free energy, in which
temperature and pressure are controlled parameters, is used instead. Gibbs energy can be
applied as a tool to recognize if a thermodynamics process can occur spontaneously. For
spontaneous change between two states, the difference in Gibbs energy should be negative,
AG < 0. The Gibbs energy function can also determine the equilibrium, because its value
is minimum at equilibrium. In Gibbs energy formulation, equilibrium is reached if the
chemical potentials of all parts in the system are equal, since the temperature and the

pressure are constants.
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2.5 Phase Equilibria and Gibbs Energy

Metallurgical thermodynamics is a powerful tool for predicting whether an alloy is in
equilibrium or not. Phase transformation occurs because the initial state of the alloy is
unstable relative to the final state, and phase stability is measured by Gibbs free energy of

the alloy. The definition of Gibbs free energy of a system is:
G=U+PV—-TS —-G=H-TS |[Gibbsfreeenergy] Eq2.14

where H is the enthalpy, T is the temperature, and S is the entropy of the system. The term
PV in Equation-2.14 can be dropped, as the change in volume is very small when dealing
with condensed phases. A system is in equilibrium when it has no need to change, or
mathematically when dG = 0. Therefore, solid phases are stable at low temperatures
because the term H is higher than the term TS. In contrast, liquids become more stable at

high temperatures because the term TS dominates.

The relationship between equilibrium and Gibbs energy is shown in Figure-2.1, which
shows a schematic variation of Gibbs free energy with atoms arrangement. At
configurations A and B the system is in equilibrium, since the change in Gibbs energy is
zero. Configuration B is a metastable equilibrium (local minimum) and configuration A is
the stable phase (global minimum). However, at any intermediate configuration, in which
dG # 0, the state is unstable, and the system will move toward configuration A or B

depending on the available driving force. The necessary criterion for any phase
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transformation is AG = G, — G; < 0, because the transformation should result in

decreased Gibbs energy.
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Figure-2.1: The variation of Gibbs free energy with the arrangement of atoms.

2.5.1 Phase Stability of Metallic Alloys

A pure material is a single component system consisting of one element or molecule that
does not dissociate. Stable phases can be predicted by plotting the variation of Gibbs energy
with temperature (G-T). Enthalpy and thermal entropy, the components of Gibbs energy,
can be calculated from the specific heat at a constant pressure (Cp), as described in

Equation-2.15 and 2.16.

T
H=H,+ f CpdT Eq2.15
298
T
CP
S=S,+ deT Eq2.16

0
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where, S, is the entropy reference state and Hyis the enthalpy reference state. The variation
of Gibbs energy with temperature can be illustrated by substituting Equation-2.15 and

Equation-2.16 into Equation-2.14.

In alloys, equilibrium involves variables of pressure, temperature-, and composition, and
depends on how the Gibbs energy varies according to these variables. In a two-component
(binary) alloy at a constant pressure, phase stability can be determined from the variations
in Gibbs free energy of the all possible phases, as well as temperature and composition.
Gibbs energy variations with composition at a constant temperature can be depicted in

energy-composition diagrams.

Figure-2.2d shows a pseudo-isomorphous binary system with liquid and solid phases. If
the Gibbs energy of the liquid phase is lower than that of the solid phase for all variations
of B, the liquid phase is stable, as illustrated in Figure-2.2a. In reverse, the solid phase will
be stable if it has a lower Gibbs energy, as shown in Figure-2.2b. However, when two
Gibbs energy curves intersect, the liquid and solid phases coexist in equilibrium with one
another and produce a ‘mushy zone’, as shown in Figure-2.2c. For two phases in
equilibrium, there is a common tangent line that touches the two Gibbs curves at two points.
These points present the liquidus and the solidus equilibrium composition as in Figure-
2.2d. Another example is the stability of eutectic systems is shown in Figure-2.3a. At the
eutectic temperature (Tg), there are three phases in equilibrium: the liquid phase ! and two

solid phases a and B. Thus, there is a common tangent line that touches the three curves at
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three distinct points, as in Figure-2.3b. These points represent the equilibrium composition

of each phase.
G T T T (A)
\/ \_/ | Liquidus
S L
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S
: : Solidus
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Figure-2.2: Gibbs energy and the stability of a binary system. [35], page-33.
Another example is the stability of eutectic systems is shown in Figure-2.3a. At the eutectic
temperature (Tg), there are three phases in equilibrium: the liquid phase [ and two solid
phases a and B. Thus, there is a common tangent line that touches the three curves at three
distinct points, as in Figure-2.3b. These points represent the equilibrium composition of

each phase.

L+a

B
(@) (b)
Figure-2.3: The Gibbs energy curves at eutectic reaction. [35], page-37.
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2.6 Phases Stability and Chemical Potentials

Chemical potential determines the inclination of a chemical component to diffuse from one
phase to another. If the chemical potential is equal in both phases there is equilibrium and
no tendency for the diffusion. For a metallurgical system with two components (A and B),

and three phases (I, a-, and f3), there is chemical potential for each component in each

phase, denoted as ub, uk, u%, ug, ,uf , ug. For equilibrium, under constant pressure and

temperature, all atoms in the system must not tend to move. Figure-2.4, shows that if the
equilibrium state is not achicved, the chemical potentials of atoms A and B in the a-phase
are not equal to those of the atoms in the B-phase, as in Figure-2.4a. In this case, atoms A
and B will transfer from one phase to another until the equilibrium state is reached, as

shown in Figure-2.4b.

At constant T and P

(b)

ilibrium

ug = uf

_ 8
ug # b ug =ub

(%A + %B + % ... = %100 )%
(%A + %B + % ... = %100 )#

Figure-2.4: Chemical potentials at constant temperature and pressure for (a) non-
equilibrium state and (b) Equilibrium state.
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If the temperature or pressure changes, the equilibrium state is altered, and the atoms will
transfer between the two phases leading to a new equilibrium state that could produce a

different phase.

Chemical potentials can be calculated mathematically from the Gibbs free energy curves.
Since Gibbs energy changes when atoms are added or removed, its value is proportional to
the amount of the added/removed atoms (G « n). For instant, if a small quantity of A-
atoms (dny) is added at a constant temperature, pressure, and constant number of B-atoms
to the system, the proportionality constant is equal to the chemical potential, dG = uy -

dn,. Thus, the value of chemical potential can be calculated as:

G
dna/ 1 p g

In Equation-2.17, the chemical potential is known as the partial molar free energy. The
same procedure is valid if we add B-atoms to the system, and the next expression for the

differential Gibbs energy can be written as:

If molar fractions (X4, Xp) are used instead of the quantity of components (ny, ng), the

value of Gibbs energy per mol can be written as:

G=puy X4+ ug-Xp Eq2.19
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Therefore, the relationship between Gibbs energy and chemical potentials yields to a
relationship illustrated in Figure-2.5. The chemical potential of a solution of a multi-
components system can be expressed as follows [32]:

3GY <0G
ox,  Zu 0x,
L

Ut =G*+ [general chemical potential] Eq2.20

where, i is the number of the component, X is the molar fraction of the component, G* is

the molar Gibbs energy of the phase.

G
Hp

A Xp B
Figure-2.5: The graphical interpretation of chemical potentials in a binary system.

Molar free energy

S

As depicted by the figure, the values of the chemical potentials of elements A and B in
solution with composition xg are the intersect points of a tangent line, with the Gibbs

energy vertical axis at pure A and pure B compositions.

Common tangent lines can be used to predict phases stability, as well as to construct phase
diagrams. Figure-2.6 shows two Gibbs energy curves intersecting with. Common tangent
intersects of the molar Gibbs energy vertical axis at pure A and pure B atoms at two points,

P1 and P2. These intersection points are the values of the chemical potential of each
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component in each phase. The equilibrium is satisfied when the chemical potentials of each
component are equal in all phases, p4 = u5 and ph = u§. Figure-2.7 shows the
relationships between the common tangent line and stability. At temperature T,, the solidus
and liquidus lines are defined by points a, b, ¢, and d. As there are two phases and two
Gibbs energy curves, two common tangent lines are required. Since each line touches the
energy curves at two points, the four points on the solidus and liquidus lines can be

calculated.

1

Hp

.. .
1

Molar Gibbs Energy

10 P1

@T,
)
]
[ =
[¥¥)
8
=
G
©
=]
E H H i H
ai bici di
A B A B - B

Figure-2.7: Phase stability with two common tangent lines.
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2.7 Ternary Phase Diagram and Gibbs Energy
The Gibbs phase rule states that
D =i—@+2 [Gibbsphaserule] Eq2.21

where Dy is the degree of freedom or number of independent variables that can be

arbitrarily specified to fix a system at equilibrium, i is the number of components, and @ is

the number of phases at equilibrium.

Ternary systems are comprised of three components, so they have four independent
variables according to the Gibbs phase rule: pressure, temperature-, and two components.
The third component is a dependent variable that conserves the mass. Under constant
pressure, a ternary phase diagram stores the metallurgical equilibrium information of any
alloy that is composed of a given three components and given temperature. The phase
diagram information that should be stored in a database are stable phases, the fraction of
all phases, and the amount of each component in all phases. The ternary phase diagram can
be constructed using the Gibbs triangle or the compositional triangle. By stacking many
Gibbs triangles, the entire ternary phase diagram resembles a triangular prism, as shown in
Figure-2.8. Each Gibbs triangle (i.e. a “slice” of the prism) is known as isotherm because
it stores the information at a specific temperature. The vertices of a given Gibbs triangle
represent three pure component metals. In addition, the edges represent binary metals, and
each point inside the triangle represents a ternary metal comprised of a mixture of all three

components.

54



"lsotherm @ T3

e
=
jd
7] [
E‘ . © Isotherm @ Iz
e .. iTernaryalloy-l '
. ler?
. ¢
G léotherm @ ™7 :
EEN T "'". J " Pure Cymetal
Purec, S temavalort S
metal ~J R )
~ -, Gibbs
) " / triangle
Binary alloy ™ yd
GGy ™~

\‘/' Pure €3 metal
Cy
Figure-2.8: The construction of a ternary phase diagram.

Isotherms can be used to read the equilibrium information of any specific alloy composition
and temperature, and the two-phase regions appear as a collection of tie lines on the
isotherms. For example, Figure-2.9a shows an isotherm with two three distinct zones:
liquid single phase (L), solid single phase (S), and two-phase zone (L + S). Any alloy
composition located within a single-phase zone has thermodynamic properties of this
single phase. In Figure-2.9, for example, the alloy with composition C; is completely liquid
as it has a liquid fraction equal to one, and the alloy with composition C, is completely
solid as it has a solid fraction equal to one. In the two-phase zone (mushy zone), any alloy
composition is described by a tieline belongs to the zone. For example, the alloy
composition C is partially liquid and partially solid and the fraction of solid f*° can be
obtained by the lever rule. The corresponding liquid fraction f* and solid fraction f5 of

alloy with composition C, can be calculated as shown in the figure. In addition, the
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intersection point (C{, C2) of the tieline with the liquidus curve describes the concentration
of component one and component two in liquid. Similarly, the intersection point (C;, C3)
describes the concentration of component one and component two in solid. Thus, any alloy
inside the two-phase zone can be described by a different tieline. Unlike binary systems,
the equilibrium of three-phase in ternary systems occur over a range of temperatures. The
equilibrium of the three phases can be considered a tie triangle, as shown in Figure-2.9b.
Each side of the tie triangle is a tie line for a different two-phase region; thus, two-phase

regions branch out from the tie triangles.

Cy3
-5 _ cl g
Tl
[ 1— -5
The tieline f ;
of alloy &, NIS'Z L= X Co
. X-L

o X -52 L-Cy
7= (51 -sz) (ﬁ)

e [X - S1\(L-C
fr= (51 -sz)(x- L)

Figure-2.9: Reading equilibrium information from isotherms with (a) tie lines and (b)
tie triangles.

2\, Two phase
~ region

C, (a) C, C (b) &

For example, side TL1 is the first tie line of the L+S1 two-phase region. As shown in the
figure, the lever rule can be extended to calculate the equilibrium fraction of each phase.
In practice, a full 3D presentation of a ternary system is very complicated to conceive and
construct. However, the tie lines and tie triangles together are the basic building blocks

from which equilibrium information can be obtained.
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2.8 Thermodynamics Models for CALPHAD

The phase diagram of a given alloy system is based on the minimization of its total Gibbs

energy (G*Y®), which is equal to the summation of the Gibbs energy of each phase:

no. @

G5S = Z n®-G? [the total Gibbs energy] Eq2.22
P=1

where, G? is the molar Gibbs energy of the phase @ and n? is the number of moles.

The Gibbs energy of each phase can be assessed experimentally. The thermodynamic
assignment describes the temperature, pressure, magnetic influence, and any other
contributions to the Gibbs energy of the assessed phase. Mathematically, the Gibbs energy

of any phase @ is described as
GP = G°(T,P) + G'%al + Ge* + GB .  [the Gibbs energy of @ phase] Eq2.23

where, G° describes the Gibbs energy of the mechanical mixture of the phase components,
G'ea describes the entropy of mixing, G®* (the excess Gibbs energy) describes the energy
due to the chemical interaction of the components, and G,?wg is the contribution of the

magnetic effect.

Figure-2.10 illustrates the terms in Equation-2.23 for Al-Mg binary system [33]. The first
term G° describes the Gibbs energy of the mechanical mixture of the phase components,

the second term G #¢# describes the entropy of mixing, and the last term G ¢*, or the excess
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Gibbs energy, describes the energy due to the chemical interaction of the components. The
entropy of mixing AG,y,;, is equal to G'4¢% + G°*,

Al-Mg model-1 @T= 873
1000

-1000

A 2000

T (0C)

-3000

-4000

-5000

Gibbs energy

-6000
0 01 02 0.3 0.4 0.5 0.6 0.7 0.8 09 1

solute —->

Figure-2.10: The terms in Equation-2.23 for Al-Mg alloy.

For metals, the types of thermodynamics models depend on G¢*, and in ideal models,
G is equal to zero. Ideal models can be used to describe gaseous phases. Conversely, for
real solution models, G®* can be described by interaction parameters. A real solution
model yields to a regular model if G®* is described by one interaction parameters. Regular
models can be used to describe liquid metal phases, as well as some solid metal phases.
Finally, for complex alloys, the excess Gibbs energy G°* needs more sophisticated

descriptions such as the Redlich and Kister polynomial (RK-polynomial) [34].
2.8.1 Ideal Solution Model

The ideal solution is the simplest mixing model in which no chemical interaction between
atoms is considered, so AH,,;,, = 0. Therefore, the Gibbs energy of ideal mixing is due to

entropy and mechanical mixing, as follows:
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G = ZXi - GP + RTZ X; - InX; - |[Gibbs energy of ideal solution] Eq2.24
i i

where i is the number of components, X; is the molar quantity of component i, and G/ is
the Gibbs energy of pure component i. The term (R }}; X; - InX;) is the entropy of mixing
or ASpix, and it introduces the effect of configurational entropy in equilibrium. For a binary

alloy system with two components, A and B, Equation-2.24 reduced to
G=X,4-Gf+Xg G2 +RT(X,-InXy + Xg - InXp) [ideal binary system] FEq2.25

And the chemical potential of components A and B in the ideal solution can be calculated

using the next equation [35].

[chemical potentials of ideal solution] Eq2.26

As the main assumption of the ideal solution model is that there is no chemical interaction
between atoms, it can be used to efficiently model gaseous phases. And, with some
modification, introducing activity (a), into the ideal solution model can model dilute solid

solutions, since the activities can account for some chemical interactions among atoms.

Activities quantify the tendency of atoms to leave solutions, and measure how the solutions
deviate from the ideal behavior. They define the activity coefficient y as the activity
divided by the amount of the component, as in y; = a;/X;, where a; and X; are the activity
and the molar fraction of component i, respectively. Thus, the chemical potentials can be

defined using activities as:
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Ha = GX + RT - lnaA
[chemical potentials of ideal solution with activities] Eq2.27
Up = Gg + RT - lnaB

With suitable dilute solutions Henry’s law (yg = cons) and Raoult’s law (yz = 1) can be
used to relate the activity to the amount of the component, though regular solution model

is more efficient for modeling solid and liquid solutions.
2.8.2 Regular Solution Model

An ideal solution model assumes there is no chemical interaction (bonding) between atoms,
and the mixing is due to the entropy. As this is unrealistic for liquids and solids, a regular
solution model based on quasi-chemical assumptions was introduced. Quasi-chemical
model accounts for the bonding energy of the adjacent atoms only so that bond energy is
independent of composition. A quasi-chemical assumption can be applied to liquid phases
of metals more than solid phases, since the interatomic distances are relatively larger in
liquid phases. The enthalpy of mixing (AH,,;,) in a regular solution model can be described

using bonding energy as:
AHpix = Zag " €mix  €Emix = €ap — 0.5(€44 + €gg) [enthalpy of mixing ] Eq2.28

where, Z 5 1s the number of A-B bonds in the mixture, €,,,;, is the total bonding energy of
mixing, €45 is the energy of A-B bonds, €4, is the energy of A-A bonds, and €pp is the
energy of B-B bonds. If €,,;, is equal to zero, the regular solution becomes an ideal
solution. In the case of a negative AH,,;, (i.e. endothermic reaction), the bonding energy

of unlike atoms (A-B bonds) is less than the bonding energy of similar atoms (A-A and B-
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B), so €y < 0. Thus, A-B bonding is more favorable and abundant in the solution. In
contrast, for a positive AH,,;, (i.e. exothermic reaction), €,,;, > 0 and similar bonding
types are more abundant in the solution. The effect of AH,,;, on the AG,,;, at high and low
temperature is shown in Figure-2.11. At a negative AH,,,;, and a high temperature (Figure-
2.11a), there is more mixing between unlike atoms in the solution and so more A-B
bonding. In contrast, at a lower temperature (Figure-2.11b) the mixing of A-B atoms is less
than the mixing at a higher temperature. On the other hand, at a positive AH,,;, and a high
temperature (Figure-2.11c¢), the mixing of different atoms is less favorable than the bonding
of similar atoms A-A and B-B. In addition, a positive AH,,;, at a low temperature could

lead to spinodal decomposition, as shown in Figure-2.11d.

+ Xp — + Xg —
0 0
AHmix
AHmix
- — TAS;,
—TAS e - AG...
A AGmix B A B
(a) AH,< 0, high T (b) AH,pp< 0,low T
AHrnix
" AH, v
mi
) AGmix
Xg —
0 0
IAGmix XB
= TAS iy = TSmix
A B A B
(c) AH,p > 0, high T (d) AHpp> 0,low T

Figure-2.11: The effect of AH,,;, on the AG,,;, at different temperatures T. [35], page-
21.
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For practical purpose, enthalpy of mixing AH,,;, is described by an interaction parameter
(L). For an alloy with multicomponents, the excess Gibbs energy is described by:

no.c

G® = AH iy = Z Xi*Xj- Ly [regularsolution’s excess Gibbs energy | Eq2.29
i=1

i%j
The interaction parameter is a function of temperature which often has the following form:
L(T)=a+b-T+c-T-InT+d-T?+ - Eq2.30
The Gibbs energy of mixing of a regular solution model is defined as:

AGpix = Lag " X4 - Xg + RT(X, - InX, + Xp - InXg) [for Reular solution] Eq2.31
AHmix TASmix

The chemical potentials of a binary regular solution can be obtained using Equation-2.17

as follows:

Ha = GX + LAB(l - XA)Z + RTlnXA
[regular solution’s chemical potentials] Eq2.32
Ug = G§ + Lag(1 — X5)? + RTInXp

2.8.3 Real Solution Model

The regular model considers chemical interactions between all atoms and their neighboring
atoms only. This assumption does not predict the dependence of G®* on the composition
correctly, which limits the feasibility of this model for many practical alloys. To overcome
this limitation, Redlich and Kister proposed a polynomial expression to describe the

composition dependence of G¢* as follows:
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no.c

2
Gex = Z XX - ( Lij(Xi — Xj)n> Eq2.33
i=1 n=1

Jj>i
Equation-2.32 suggests that the excess Gibbs energy of a higher order alloy, e.g. A-B-C
atoms, can be described as a set of binary alloys (A-B, A-C, B-C), and an interaction

parameter for the effect of the three components L,pc can be added to the RK-polynomial

if it is assessed experimentally. For a binary system, Equation-2.33 yields to:

2
G = X, Xp Z Lug(X4 — Xp)" [ G®* forabinary alloy] Eq2.34

n=1

Clearly, if n equals to 1, the real model yields a regular model, and describing the Gibbs
energy of a phase (as in Equation-2.23) using a real solution model requires a complex
mathematical expression. For example, for a ternary system with A, B, and C types of
atoms, Equation-2.23 yields to:

G2(T,X)

=GO = gideal

2 2 2
+ XaXp Z Lap(Xy — Xp)"™ + X X¢ Z Lac(Xq — X)™ + XpXc z Lgc(Xp — Xc)™ Eq2.35
= n=1 n=

n=1 1

= Gex

However, Equation-2.35 can simply be considered as a mathematical function that depends

on temperature (T') and composition (X4, Xg, X¢).
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2.8.4 Sublattice Thermodynamics Model

The real solution model is efficient to describe high order alloys in substitutional solutions.
In substitutional solution, all atoms occupy the main lattice sites interchangeably. This
would be accurate in systems with small differences in atom size, but if there are larger
size differences in atoms, the interstitial solid solutions are energetically favorable. As the
real solution does not account for the interstitial and intermetallic bonds accurately,

sublattice modeling was developed.

In sublattice models, the lattice of a phase crystal is composed of many sublattices, and the
number of sublattices used depends on the crystal complexity and the thermodynamics
assessment. Each sublattice has a specific number of sites that can be occupied by specific
atom types. This allows the interaction parameters between different atoms in different
sublattices to be evaluated and assigned to the Gibbs energy model. The following
assumptions are made of sublattice modeling: (1) the amount of components is described
by site fractions; (2) there is random mixing on each sublattice, (and no mixing across
sublattices); and (3) the total site fractions on each sublattice is equal to one. An illustrative

example of sublattice modeling follows.
2.8.4.1 An Example of a Sublattice Model

Assume a ternary alloy with A, B, and C atoms and a vacancy Va, and all constituents
distributed over two sublattices s1 and s2, as shown in Figure-2.12. The number of sites

available in the first sublattice is nine for atoms A and B. Similarly, the sites available in
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the second sublattice is three for atoms C and the vacancies. This information can be

lumped in the notation: (4, B)31(C,Va)3? or equivalently (4, B)31(C,Va)32.

—H
/ o @ Atoms (A)
(@] ® = | °® B Atoms (B)
e o ® o T o Atoms (0
@ | / / | /
J |

® O Vacancy (Va)

Vs

the sublattic model sublatticl (s1) sublatticZ (s2)

Figure-2.12: An example of a sublattice model.

: . . . )
The site fraction is defined as y; = %, where y; is the site fraction of component i on

sublattice s, n} is the number of components i in sublattice s, and N¥ is the total number
: : . 5
of sites on the sublattice s. In Figure-2.12, for example, y;! = g, yi' = 5 Ya =0 and

y#? = 0. In this case if the sublattice has a vacancy such as s2 in Figure-2.12, the site
fraction is defined as:

S

n:
S l
= Eq2.36
yl nis}a + Zi nig q
. . . s2 2 2 s1 s2 1 1 .
And for atoms C the site fraction is yz* = TSV = 0, ype = TS5 The total site

fraction in each sublattice should equal 1 to ensure mass conservation. For example, the

O |

+§= landons2is)y =

wIlN

+

[OSH I

total site fractions on sl is ),y = = 1. The relationship

between mole fractions and site fractions follows [36]:

_ XNy
s N*(1 = ypq)

X; [the relation btween mole and site fractions] Eq2.37
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2.8.4.2 The Gibbs Energy in the Sublattice Model

The Gibbs energy model of an interstitial solution phase with the sublattice model is similar
to the model of substitutional model, except the mole fractions are replaced by the site
fraction. For example, the Gibbs energy of the sublattice model mentioned in 8.4.1 is as

follows [37]:

S20

G® = Y Y& Guc + Y5 ViGava + V3 Ve Gaya + V5 VEEGp.c

+ RT[a(yst - Iny§t + y3t - InyH) + b(y3% - InyE + yi2 - Iny$2)] + G

where,

Ge* = Z Z z yiyi - Z Z YiLij..x [Gibbs energy of a Sublattice model] Eq2.38

r#S

2.9 Phase Diagram as an Optimization Problem

Once the thermodynamics assessment is complete for a particular alloy, the construction
of its phase diagram can be formulated as a mathematical optimization problem.
Specifically, the assessments include the Gibbs energies of all possible phases, the
interaction parameters between different components, the definition of sublattices, and the
equilibrium range of different phases. The solution of the optimization problem defines the
phases boundaries. However, the optimization problem is a non-convex and multi-
objective function with linear constraints minimization problem. This is a complex
problem especially for multicomponents systems with sublattice modeling. The difficulty

of solving these minimization problems arises from the uncertainty in choosing feasible
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initial guesses, as well as from the wide range of decision variables. It is commonly
assumed that the correct phases at equilibrium is known a priori, otherwise, the
optimization problem would be more difficult. A comprehensive discussion and

mathematical formulation of the CALPHAD optimization is in [38, 39].
2.9.1 Global Optimization Formulation of Gibbs Energy Minimization

Consider a metallurgical system with three components and two phases. The first phase is
liquid [ with a phase fraction f!, and the second phase is solid s with a phase fraction f5.
The total Gibbs energy of this system is:

Ls

GSYS = Zf‘” -G? > fL-G' 4+ fS-GS [the total Gibbs energy] Eq2.39
0

The Gibbs energy of phases can be described by molar fractions x or site fraction y,
depending on the thermodynamics assessment. The lever rule and the mass balance impose

the following constrain on all components in the system:

Ls xi-fttxi-fS—xf =0
Zx?'f®=x{’—> xp-ft+x5-f5—x =0 Eq240
) xiflr xS fS—-x9=0

where, x/ is the nominal concentration of the component i. In addition, the global

conservation of phase fractions imposes a constrain:

ls
Zf®=1—> fl+f5—1=0 Eq241
(0]
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With regard to the sublattice model, the site fractions balance imposes the next constrain

on each sublattice s!:

Z yst=1 Eq2.42
i

Finally, all system variables y;' and f? are in the range between 0 and 1:

0<f%<

Eq2.43
0<y?<1 a

This mathematical formulation can be solved by applying the Lagrange multiplier method,
and thereby transforming the minimization problem of a constraint multivariable function

into an unconstrained one objective function optimization problem as follows:

L, yf fO Ly, Ly Ls) = T £ GO+ Ly(ZPCxf - 2 —xP) + L (5 f° — 1) +

Ly(X; v —1) [Lagrangian function] Eq2.44

where, L4, L,, L5 are the Lagrangian multipliers. A set of nonlinear equations is determined

by differentiating the Lagrangian function with respect to its variables:

dL 9L AL 9L AL OL . ) ) )
—,—,—,—,—,—. Finally, this system of nonlinear equations can be solved by the
9x;” 0y’ 9f%’ 9L, 9L, Ly Y y 9 y

Newton-Raphson method. Note that the previous procedure should be solved at every

temperature value.
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2.9.2 Phase Diagram from Chemical Potentials Equalities

Consider two metallurgical systems with two phases (liquid and solid), as shown in Figure-
2.13. The liquid phase has Gibbs energy diminished by dG', and the solid phase has Gibbs

energy diminished by dG*. Both systems are composed of components i.

] "‘.I i ."‘l.l \\]I Close s.ystem :
Liauid " |' - solid ‘l
‘phase, v | Eephasersay ' tauid | | sold |
,-’I '.t\ ;.' ;IJI phase, [ | phase,s |
1,1 l l l
dG™ = mdm + padn;  g6s = pidng + psdng dGsY* = dG' + dG*

Figure-2.13: The total Gibbs energy of two phases in contact.
If both systems are brought into contact at constant pressure and temperature, the
components will transfer between them to reach a new equilibrium state. Since the total
system (liquid + solid) is closed, the total amounts of components will remain constant.
Thus, an increase of any component in one system is compensated by an equivalent
decrease of the component amount in the other phase. Mathematically, this is equal to
dy, = —dy, and d,, = —d;. By substituting these two equations in dG' and dG*, the

total Gibbs energy at equilibrium is equal to:

dGS = dG' +dG° = (ub — pf)dnt + (pb — us)dnb  Eq2.45
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Since at equilibrium dGY* = 0, each term (,uﬁ - ,uf) and (,ué - ,uﬁ) must also be equal to
zero. Eventually, this leads to equality of the chemical potentials at equilibrium: ! = us
and pj = 3.

This procedure can be tailored for many phases with many components. An array of

chemical potential equalities can be constructed as following:

pi o= W o= @ o= - = 40
py = Wk o= @B = . = 4
pho= puk o= 4 o= . = #? [chemical potential equality equations] FEg2.46

Each row has (@ — 1) equations and since there are i rows, the total numbers of equations
is equal to i - (@ — 1). Due to mass conservation, not all of the equations are independent.
In each column, there are (i — 1) independent equations, and @ - (i — 1) independent
equations in the entire array. Therefore, the number of chemical potential equality

equations that describe the equilibrium are equal to

F=0-(i-D—-i-@-1D=i—-90 Eq2.47
If F is the degree of freedom and the temperature is another variable, Equation-2.21 yields
F =i— @+ 1, which is the reduced Gibbs phase rule. In addition, there are @ number of

equations from the mass conservation in each phase. For example, if a system has of two

phases (s, 1) and two components (i = 2, @ = 2), the number of chemical potential equality
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equations is two, 2 - (2 — 1), and the number of mass conservation equations is also two,

since @ = 2. The equations are:

[Equilibrium equations for a binary system] Eq2.48
x+xd=1 x$+x5=1

Solving these equilibrium equations defines the boundary between the two phases, and by
calculating all the boundaries between the phases, the entire phase diagram can be

constructed.

2.10 Fe-Cr-C Thermodynamics Modeling

The thermodynamics assessment of the Fe-Cr-C alloy describes phase relations and
equilibrium compositions over a wide temperature and composition ranges, and the Fe-Cr-
C system is comprised of many phases according to temperature and composition. The
phases are liquid, BCC ferrite, FCC austenite, and some carbide phases such as Cr;C3 and
Cr3Cy. An assessment of the Fe-Cr-C system was given by Andersson [40], and it
determined that the liquid phase is treated as a substitutional real solution, since it does not

have any regular lattices.

Gn = y°Ge + Yor'Ger + Yre°Gre
+ RT(yc In yc + yer In ye, + yre In yee)
+ YeYeile.or + YeyreLere + Yoo YreLerpe
+ YeYorYee(e 'Le.cre + Yor'Le,core + Yre Le.crre)

Eq2.49
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With respect to Equation-2.49, yfe, ycr, yc are the molar fractions of iron, chromium, and
carbon atoms, where R is the gas constant, T is the temperature, and L is an interaction
parameter of the corresponding elements. For example, L, ¢ is the interaction parameter
of chromium and carbon atoms. It is worth mentioning here that there is no difference
between the L¢, ¢ and L ¢, notations. Moreover, all interaction parameters, including
L Fes Llc,Cr,Fe are given as functions of temperature. The first line in Equation-2.49
describes the molar Gibbs energy of the mechanical mix, the second line describes the
molar Gibbs energy contribution from the configurational entropy, and the third and the

fourth lines describe the excess molar Gibbs energy.

Both solid phases (BCC ferrite and FCC austenite) are modeled using sublattice models,
since Fe and Cr atoms are substitutional elements and carbon atoms are interstitial.
Therefore, the notation of y addresses the site fractions rather than the molar fractions. The

Gibbs energy of BCC and FCC is given by Equation-2.50.

Gn = Y& Y% Glove + ¥& Y Glee t ¥i Y40 Glevs
+ yEyc'G Be.C
+ RT[a(yt In y& + yk In yE)
+ c(yeInye + yba In yi,)]
+ GE + G™

Eq2.50

where, Va represents the vacancies, and a and ¢ denote the number of sites on each
sublattice in a formula unit: (Fe, Cr),(Va, C)p. The parameters a = 1,¢ = 3  are for the

BCC phase, and a = ¢ = 1 are for FCC phase. With respect to Equation-2.50, the first and

72



second lines describe the Gibbs energy of the mechanical mix, the third and fourth lines
describe the configurational entropy, GE describes the excess Gibbs energy, and G*°
describes the Gibbs energy of the magnetic effect. There is no magnetic term of Gibbs
energy for the FCC phase. With the BCC phase, the free energy due to the magnatic effect

(G°) is a function of temperature and compositon, and defined as:
G = RTIn(B + 1)f(r) [Gibbs energy of magnetic] Eq2.51

The excess molar free energy (G, ) for both BCC and FCC is:

Gr = y&YiYcLerrec + YvaLorFeva) Eq2.52
+ yuye(yeLlervsc + YieLrevs o)
where, the interaction parameters (L) are denoted by ‘:’ to indicate that the corresponding
atoms are in different sublattices. For example, L.y, ¢ indicates the interaction parameter
between iron atoms (which are in the first sublattice s) and vacancies, and the carbon atoms
are in the second sublattice t. Equations 2.49 and 2.50 define the thermodynamics model
of the three phases of Fe-Cr-C alloy in a temperature range of 25 — 1538°C. In our
solidification model we consider only ferrite @ and austenite y phases and do not include

carbides.

Another thermodynamics assessment of Fe-Cr-C was proposed by Alexandra et al [41],
and they used the same Gibbs energy models for the liquid, BCC, and FCC phases.

However, some interaction parameters were modified. For example, a comparison of the
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interaction parameters of the liquid phase of Andersson and Alexandra assessments

follows:

Table-2: Interaction parameters of two differnrt Fe-Cr-C thermodynamic model.

Andersson’s assessment Alexandra’s assessment
LY. = —90526 — 25.9116T LY, = —69245 — 35T
Ltrc = 80000 Lty = 83242
L%, = 80000 L%, = 88000

The important point here is that the difference between two thermodynamics assessments
is the definition of interaction parameters as functions of temperature. A thermodynamics
computational code is developed in this study to calculate the phase diagram of Fe-Cr-C,
as described in the next section. The developed code is used to compare Andersson and

Alexandra’s thermodynamic assessments, as shown in Figure-2.14.

Different Thermodynamic Assessments at T=1710 K

Alexandra model
= = =Andersson model

s

/_/— -
ot
it

P

/_...{,"-"f Difference of liquidus curves

Figure-2.14: A comparesion between Andersson and Alexandra’s thermodynamic
assessments.
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Figure-2.14 shows that the tie-triangle calculated by Andersson’s assessment is shifted to
the right that means the stability range of L-FCC zone is extended compared to Alexandra’s
assessment. The leftmost points (the ones surrounded by the dashed circles) of both
assessments are equal that indicates the assessment of the binary Fe-C are equal in both
models. Finally, the liquidus curve of Andersson’s assessment are shifted down which will

predict less solid fractions for any thermodynamic state.

Total Gibbs energy comprises all interaction terms that affect phase equilibrium, and the
magnetic effect in BCC is one of the important reaction terms. Though the value of
magnetic Gibbs G™%9 energy is small at high temperatures, it does affect the stability of
the phases. For example, at T=1436°C, the total Gibbs energy of the BCC phase is equal to
—102,587 J/mol and its G™* = —68 J/mol. However, even though, the contribution

of G™%9 is 0.06% of the total Gibbs energy of the BCC phase, it affects the phase stability.

2.11 The Implementation of Fe-Cr-C Thermodynamics Model

Andersson’s thermodynamics assessment is used in this work to compute the data of the
Fe-Cr-C phase diagram. In current computations, the range of chromium concentration in
alloy is limited so that carbide phases cannot be formed. In addition, the range of
temperature at which the liquid phase is in equilibrium with solid phases is 1330 to 1538
°C. According to the thermodynamics model used, liquid and BCC are in equilibrium in a
temperature range of 1494 to 1538 °C, and L-BCC-FCC exists in equilibrum within a

temperature range of 1330 to 1494 °C. To calculate the phase diagram within these
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temperature ranges, the corresponding system of equations must be solved, and three
computational codes have been developed to do this: L BCC solver, L FCC solver, and

L BCC FCC solver. The solvers use the fsolve Matlab command [42].

The first solver resolves the 2.53 set of equations in which liquid and BCC are in
equilibrum. This set of equations has the following eight unknowns:
{xke, xby, xb, xBEC, xBCC, xBCC | £1, FBCCY where xk,, x&,, x& are the molar fraction of iron,

BCC BCC BCC

chromium, and carbon in liquid phase, and xgz"~, x5-~, xc -~ are the molar fractions of

iron, chromium, and carbon in BCC phase. Finally, f!, fB¢C are the fraction of liquid and

BCC phases.
e = HEEC
pk, = pBce [L_BCC solver]
e = e

Xhe +xb +xt =1
XfsC+xfEC +xEC =1
L . fl BCC , ¢BCC _ ,.0
XFe f + XFe f = XFre
L . rl BCC , £BCC _ ,.0
Xcr f + Xcr f = Xcr
fl _l_fBCC =1

[mass conservation constraints (Eq2.53)

[lever rule constraints]

The second solver resolves the 2.54 set of equations, in which liquid and FCC are in

equilibrum.
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Hpe = Hrg©
pk, = ukce [L_FCC solver]
= e

Xhe +xb +xt =1
XECC 4 xECC 4 xFCC = 1
Xie  f1 4 xpeC - fTEC = xp
xér'fl'l'xg?gc' Fee =xgr
fl+fFCC= 1

[mass conservation constraints (Eq2.54)

[lever rule constraints]

This set of equations has eight unknowns as follows: {xf,, xt,., x&, xES€, xECC, xECC, £,

fFCCL. The third solver resolves 2.55 set of equations, in which liquid, BCC, and FCC are

in equilibrum. This set of equations has twelve unknowns:

l l l BcCc .,.BCC ..BCC Fcc ., FcCc .. FcC Il £fBCC gFCC
{xFe'xCr'xC'xFe VX Xe o Xpe s Xer L Xel L fL RN f }

The results of each solver define the boundry between the coressponding phases. For
example, Figure-2.15 shows the calculated isotherm at T=1514 °C, and the boundary of the

mushy zone is calculated based on the L BCC solver.

I _ ,BCC L _ ,FCC

Hre = HFe Hre = HFe
I _ ,BCC L _ ,FcC

Her = Her Her = Her
L _ ,BCC L _ , FCC

He = Hc He = Hc

L ! !
xFe + xcr + xC = 1
xBEC + xBEC + xEC =1 [mass conservation constraints] (Eq2.55)

XESE + xECC + xECC =1
I . rl BCC ., £BCC FCcC , gFCC _ ,.0
XFe f + XFe f + XFe = Xre
L . rl BCC ., £BCC FCcC , gFCC _ ,.0
Xcr f + Xcr f + XFe = Xcr
fl _|_fBCC _|_fFCC =1

[lever rule constraints]
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w1072 L-Bcocl @T= 1514

04h The mushy zene of L-BCC

el e . S s L ;
0.05 0.1 0.15 0.2 0.25 03 0.35 04

Figure-2.15: The mushy zone of L-BCC as calculated by the L-BCC solver.

0 Sfer

Figure-2.16 shows a calculated isotherm at 1437 °C with three distinct mushy zones and
their boundaries. The first mushy zone consists of L-BCC, the second of L-FCC, and the
third of L-BCC-FCC. A two phases region consist of BCC-FCC is shown in the figure too.

Each zone boundary is calculated by the corresponding solver.

T= 1437 oC

L-BCC zone !
L-FCC zone

/ L-FCC-BCC zone iy /{ ihitfyitftiuity

. _....‘....,.,..".. eofllindlis o Daldidal
Fcc-BCC zone : :
o (5] oz 03 04 05 06 o7 oa

C maole fraction

Cr mole fraction
Figure-2.16: Different mushy zones in temperature range two.
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2.12 Calculation Algorithm and Initial Guess

For a temperature range of 1330 to 1494 °C in which L-BCC-FCC is in equilibrum, tie-
triangles can be calculted as follows. First, the L. FCC BCC_Solver is provided with an
appropriate initial guess and the initial alloy composition X, to find the L-BCC-FCC tie-
triangle zone. The value of the initial guess is determined by trial and error. It is important

that the value of x; is inside or close to the tie-triangle. Once, the triangle is constructed,

all other zones can be calculated automatically, as shown in Figure-2.17.

T= 1436 oC

,,,,,

The initial alloy composition Xo

for the first tie line in L-FCC region. .-~

' i

.-"The original alloy composition

/i 4, used to construct the triangle.
s

The triangle according to MatCalc solution.
v

Each end points are used as initial guess
to find the next tie line.
»

@

The initial alloy composition Xo
for the first tie line in BCC-FCC region.

Figure-2.17: The algorithm of the solution.

In Figure-2.17, the midpoint of the left side of the triangle is used as an initial alloy
composition to find the first tie line in the L-FCC region. In addition, the tie-triangle
vertices at the left are also used as initial guesses. Feeding L FCC _Solver with a new

initial guess and x, yields the first tie line of the L-FCC zone. The second tie line of the
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L-FCC zone is determined in the same way, except that the first tie line is used rather than
the triangle side. Every tie line is constructed according to the previous one until the entire
L-FCC mushy zone is calculated. The process is repeated for the other two faces of the
triangle to calculate the L-BCC and BCC-FCC zones. As stated previously, for this
algorithm to work, it needs a suitable initial guess to solve for the tie-triangle in which L-
FCC-BCC are in equilibrium. Table-3 shows the initial guesses used for different

temperature ranges.

Table-3: The used initial guess to calculate the phase diagram.
Temperature Range Initial Guess

L _ I — 1 — l l
Xpe =04 x6=02 xc=1—Xxp, — X

xBEC = 0.8 xBEC = 011 xBCC = 1 — xBEC — xBEC
FCC _ 0.8 xFCC =01 xg'CC =1 FCC FCC

. Xp cr = —Xre T XC
1502 < T < 1514°C e 04 fRCC Q5 prCC_1_ i pAcc

Initial alloy composition:

x2 =001 x2. =08 x% =1-—x2—x2.
Xk, = 0.75 xt =02 xt=1-—xbt, —xt,
xpe¢ =08 x£F€ =011 x£° =1-xp —xft¢

1494.1 < T < 1502°C xpg© =08 x¢r€ =01 x(%=1—xp" —xg
- fl =04 fBCC =0.5 fFCC =1 _fl _fBCC

Initial alloy composition:

x2=001 x2 =011 x2%=1-—x2—x2
Xk, =06 xt =02 xt=1-—xbt, —xt,

XBSC = 0.8 xBYC = 011 xBCC = 1 — xBEC — xBC

xFEC =08 xEC=01 xECC=1—xEC — xECC
1330 < T < 1494.1°C fl=04 fBCC=(5 fFCC—1_ fl_ fBec

Initial alloy composition:
x2=001 x2 =011 x2=1-—x2—x2
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2.13 The Validation of The CALPHAD Solver

At every temperature in the range 1330 to 1494°C, the entire calculation of the Fe-Cr-C
phase diagram depends on successful calculation of a tie-triangle zone. In order to verify
the developed CALPHAD model, the calculation of the tie-triangle at any temperature is

verified against MatCalc®. Figure-2.18 shows the result of the verification.
T= 1439 oC

0.08
0.07[
0.06

e The calculated tie-triangle

0.04 by using MatCalc®

The calculated tie-triangle by using

/
0.03 /
g
K /' the developed CALPHAD model

11/
i;k? \ The used initial guess to
vl

¥ calculate the tie-triangle

C mole fraction

L L L L s L s
0 0.1 0.2 0.3 0.4 0.5 0.8

Cr mole fraction

Figure-2.18: The verification of the triangle zone.

The small deviation between the developed model and MatCalc® is due to the differences
in the thermodynamics database. The developed model is based on Andersson’s
thermodynamics assessment, and while MatCalc® uses its own assessment. The main
difference depends on the interaction parameters of the excess Gibbs energy, such as the
difference between the two thermodynamics assessments shown in Figure-2.14. However,
the developed CALPHAD model is very flexible and it can allow any updated assessment

to be used directly. Figure-2.19a shows an isotherm calculated by Thermo-Calc, and
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Figure-2.19b shows an isotherm calculated by our calculations. Again, the deviation is due

to differences in the thermodynamics assessment.
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Figure-2.19: The isotherm on the left was calculated at T=1437°C by Thermo-Calc®,
and (b) the isotherm on the right was calculated by the developed model.

Figure-2.20 shows a comparison between two isotherms at T=1500 °C in which liquid and

BCC are in equilibrium.

penginytd L-Bec! @T= 1500
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Figure-2.20: (a) The isotherm at T=1500°C calculated by Thermo-Calc® and (b) the
isotherm calculated by the developed model.
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The calculated thermodynamics data by the computational code include: the equilibrium
concentration of chromium in liquid Ct,., the equilibrium concentration of carbon in liquid
Ct, the equilibrium concentration of chromium in solid CZ., and the equilibrium
concentration of carbon in solid CS. At a constant temperature, the collection of Ct, and
Ct describes the liquidus boundary, and the collection of C§, and C§ describes the solidus

boundary. These data are used by the solidification model during the simulation.
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Chapter-3: Solidification Modeling by Cellular Automata CA

This chapter is composed of two parts: part-A and part-B. Part-A is a broad review of the
microstructure solidification modeling by the cellular automata (CA) algorithm. It explains
the procedures of computing solute diffusion, heat diffusion, curvature-, and solid fraction,
and discusses the effect of mesh anisotropy on solidifying structure. Part-B describes the
computational tools developed for solute and heat diffusion, curvature-, and coupling of
CALPHAD to CA (or CA-CALPHAD) in detail. Validation of the developed CA-

CALPHAD model is discussed in section-3.9.

Part-A: Using Cellular Automata CA for Soldification Modeling

3.1 Cellular Automata (CA)

The CA algorithm was originally developed by John von Neumann to model complex
physical phenomena using simple rules and algorithms [21]. In 1984, the CA algorithm
was applied to solidification modeling to simulate the evolution of the microstructure [22].
The procedure of the CA application for solidification modeling consists of four main
components: (1) subdivide the computational domain into cells and predetermine the initial
state of solid/liquid and boundary conditions for concentration and temperature fields, (2)
calculate the state variables (e.g. solid fraction, temperature, solute concentration,

curvature) for each cell at every time step, (3) define the neighborhood cells (i.e. first
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neighbor or second neighbor), and (4) specify the transition or capturing rules that
determine whether state variables will change their state. The CA algorithm can be used in
many materials modeling applications as discussed in many computational material
textbooks [38, 43, 44]. This study utilizes the CA algorithm for the simulation of
solidification microstructure with varying thermal and compositional fields. According to
[23], most published CA solidification models share some common assumptions and
features. These include the computational domain in 3D being represented by regular
Cartesian grids, and the state variables of cells are temperature, solute concentration, and
solid fraction. Additional variables are calculated for interfacial cells (i.e. cells on the S/L
boundary such as interface curvature and kinetic. Within the computational domain, the
phase state type of any cell can have one of three possible values: solid, liquid, and
interface. A solid cell has a solid fraction of one, a liquid cell has a solid fraction of zero,
and an interface cell has a solid fraction between zero and one. The S/L interface is
implicitly defined in CA by all cells with solid fractions that are between zero and one. In
all available models the linearized phase diagram approach was used. In this thesis, more

accurate CALPHAD based thermodynamics model is developed.
3.1.1 Cellular Automata Computational Domain and Cell Neighborhood Definition

The computational domain characteristics include the size of cells, the total number of
cells, and the size of a control volume. Cubic cells are typically considered for a 3D

domain, and square cells for a 2D domain. The cell size must be small enough to represent
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the smallest length scale of dendritic morphology (i.e. the tip radius). Using cubic cells
produces mesh anisotropy, which is described in the next section. The simplest way to
reduce the effect of mesh anisotropy is to use a small cells size in the computational
domain. However, this will increase the simulation time significantly because small cell
size reduces the time step and increases the total number of cells within a computational
domain. To reduce the mesh anisotropy, some models use point mesh or point automata
(PA) [45], hexagonal mesh [23], or the mesh refining technique by the quadtree algorithm
[46]. In PA, unstructured points are distributed with a computational domain, and initial
solid fractions are assigned for each point. In addition, the temperature field is computed
for a structured mesh of the domain, and the temperature values of the unstructured points
are then interpolated from the structural mesh. In the quadtree refining algorithm the
interfacial cells are subdivided into smaller cells, which mitigates the mesh anisotropy

effect. However, none of these solutions eliminate the mesh anisotropy completely.

Another important feature of CA is definition of the cell neighborhood. Two types of
neighborhoods are widely used: Neumann and Moore. In Neumann neighborhoods, the
nearest cells are counted, so there are four cells in a 2D case and six cells in a 3D case. In
Moore neighborhoods more cells are counted, so there are eight neighbor cells in a 2D case
and 26 cells in 3D case. Figure-3.1 shows these neighborhood definitions. The definition
of neighbor cells can be also determined by defining a circle/sphere of a certain radius

around a cell, so any cell inside the circle/sphere is a neighbor cell.
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Von Neumnann neighborhood Moore Neighbourhood

2D L |cell|

3D

Figure-3.1: The definition of neighborhood of an interfacial cell. [47], page-217.

The neighborhood definition is required for curvature calculations, as well as for
calculations of temperature and concentration fields if a finite difference scheme is used
with CA, or CA-FD. The calculation of temperature and concentration fields uses the

Neumann definition, and the calculation of curvature uses the Moore definition.
3.1.2 Cellular Automata Transition Rules and Mesh Anisotropy

All cells in CA computational domain are solid, liquid or interfacial, and some are initially
designated as solid or liquid. During CA simulation, solid cells can “capture” liquid cells,
and thereby change their state to interfacial. Transition rules dictate this capture process,
and the classical transition rule assumes that the state of a cell begins to change if at least
one of its Neumann neighbor cells is completely solid. This assumption is reasonable, since
a completely solid cell acts as a nucleation site for its Neumann neighbor cells, and once a
cell starts to solidify, its solid fraction increases with time. If the transition rule is not

applicable for a cell, it will remain liquid with zero solid fraction, even if it has temperature
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is below the liquidus temperature. This transition rule produces strong mesh anisotropy
with dendrites growing faster when parallel to the axis of the mesh. Though dendrites can
physically grow in every possible direction, strong mesh anisotropy forces dendrites within
the computational domain to grow in orthogonal directions. In fact, mesh anisotropy is one
of the main disadvantages of using CA in microstructure prediction. However, attempts
have been developed to solve the problem, including refining cell size, adjusting the

increase of solid fraction, and modifying the transition rules.

In [46], the Quadtree algorithm is used to simulate a thermal dendritic growth and refine
the size of interfacial cells locally. This decreases the mesh anisotropy and can predict
many dendritic morphologies. Another solution to mesh anisotropy is to direct the
increments of solid fractions in different directions than the mesh axis— an adjustment that
can be included in the anisotropy function, as shown in [48]. In addition, solid grain growth
in different orientations can be achieved by assigning different orientation angles for each
solid grain and modifying the capturing rule. In [49] the capturing rule was based on
solidifying neighborhood rather than one cell, and if all cells in a defined neighborhood are
solid, they will capture another neighborhood cells. The most common modification for
capturing rule algorithm is based on the decentered square/octahedron proposed by Rappaz
et al [50], and later modified by Wang et al [51]. However, implementing the decentered
algorithm requires additional information storage and uses more computational power.
Reducing mesh anisotropy and allowing multi-grain orientation growth is more important

for casting simulation than welding. This is because a columnar dendritic growth aligned
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with the computational domain axis is for welding simulation, since it reproduces preferred

crystallographic growth directions.
3.1.3 Cellular Automata State Variable Calculations

The state variables that are typically calculated during CA simulation include the
temperature field, the solute concentration field, S/L interface curvature-, and the solid
fractions of interfacial cells. The temperature field can either be imposed on a
computational domain or calculated. An imposed temperature field assigns uniform values
or gradient undercooled temperatures for all cells, which allows a predetermined cooling
rate value to be applied at every time step for all cells. The imposed temperature field is
reasonable, since the heat diffusion process is more than an order of magnitude faster than
the solute diffusion process (the release of latent heat is not considered in this case).
However, the temperature field for the entire domain can be solved numerically using an
implicit heat equation solver at the same time step as the explicit solute diffusion solver
[52]. Some models [53, 54] solve the heat equation on a macroscale, then interpolate the

temperature values for the CA microscale domain.

Due to discontinuity at the S/L interface, calculation of the solute field is more difficult
than calculating the temperature field. Two approaches are proposed to address this: one-
domain and two-domain. In the one-domain approach, the diffusion equation is solved over
the entire domain for either liquid or solid, and then a correction is considered for the other

phase. For example, Dilthey [23] proposed a one-domain approach that solves the solute
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concentration of the solid phase for the entire domain and gives the solute concentration of
liquid by dividing the solid solute concentration by a constant distribution coefficient. In
the two-domain approach the solute diffusion equation is solved in the liquid and solid
domains separately. The solute field in the interface cells is calculated from the flux from

both the solid liquid.

The evolution of the solid fraction f* is incorporated by considering the S/L interface
velocity or the S/L interface kinetic [23, 3]. The conservation of mass allows calculation
of the velocity of the S/L interface from the surrounding concentration field, and the change

of the solid fraction can be calculated from the velocity of the advanced S/L interface.

However, calculating the solid fraction from the interface velocity requires consideration
of geometrical assumptions for the interface inside the cell, one of which could be that the
S/L interface inside a cell is advancing both vertically and horizontally, as illustrated
Figure-3.2a. Thus, the velocity components must be calculated according to the solute
concentration of the surrounding cells, and the solid fraction of the cell is defined as the

area behind the advanced S/L interface in both directions.

inter-
face

Figure-3.2: Geometrical assumptions of the moving S/L interface inside a cell.
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Another geometrical assumption is that the advance of the S/L interface is in the direction
of the interface normal vector, and the solid fraction is equal to the area covered by a line
perpendicular to the normal interface, as shown in Figure-3.2b. The most common interface
geometrical assumption is decentered squares, as shown in Figure-3.2c. All the previous
assumptions presume that the concentration of solute at the interface is equal to the
equilibrium concentration. However, these become invalid as the velocity of the interface

Increases.

The solid fraction can also be calculated using the kinetics equation of solidification, in
which the velocity of the S/L interface movement (V*/%) is equal to the kinetic coefficient
(uy) multiplied by the total undercooling. Total undercooling includes melt undercooling,
constitutional undercooling and capillarity undercooling, according to the curvature from

Equation-3.1.
Vo = [ = Tig) +meC+ (0] Eqaa

where (Ty7,) is the melting temperature of the host component, (Tj;,) is the temperature of
the liquid, m is the slope of the liquidus line, C is the solute concentration, and (k) is the
curvature value (which is negative if convex and positive if concave). Thus, the solid

fraction (Afy) for a cubic cell can be calculated as:

At - VS/L

A
fs Ax

Eq3.2
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where At is the time step and Ax is the length of the cell. Another method for calculating
the solid fraction is the cellwise mass balance, in which the solid fractions of interface cells
are calculated by balancing the solute concentration of interface cells with the equilibrium
concentration using the lever rule. This approach does not require computation of the

velocity of the advancing S/L interface, and it gives better mass conservation.
3.1.4 The Computation of S/L Interface Curvature

During dendrite growth simulation, the effect of the S/L interface curvature on the melting
temperature should be included. The computational domain of the simulation is composed
of cubic cells, and there could be problem using cubic cells to illustrate the very complex
and curved geometry of a dendrite. The computed curvature (K,) should not be
overestimated nor underestimated. If it is overestimated, the resulting dendritic
morphology will be blunter than it should be, and if K, is underestimated, the resulting

dendritic morphology will be sharper with spike-like branches, as in Figure-3.3.

Dendrite morphology with Dendrite morphology with

Actual Dendrite overestimated curvature underestimated curvature

Morphology More columnar structure. - More dendritic structure.
- Shorter/blunter/less branches. - longer/sharper/more branches.

(a) (b) ()
Figure-3.3: (a) a dendrite with actual curvature, (b) the dendrite with overestimated
curvature, and (c) the dendrite with underestimated curvature.
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Two methods are used to calculate the curvature of the S/L interface in CA: cell count and
level set. In the cell count method, the number of cells below a planar front (N,) and the
number of solid cells is counted (Ny). As shown in Figure-3.4, if N, > N, the S/L interface
is convex, if N, < N; the S/L interface is concave; and it is flat if N, = N,. There are
many empirical formulas used in this method, and the most common was proposed by

Nastac [52].

N, no. cells below this contour

S/L planar R
interface AN L/

\
T\

\ " lls bel
H thi;Iine

N, no. cells within this contour
(a) N;> N,
Figure-3.4: Calculating curvatures by cell count method.

(b) Np > N (€) Ns = N,

Level set is another technique to estimate the curvature of an S/L interface in CA. With
this method, the curvature at any point is the gradient of the unit normal vector of the
surface at that point. Since the surface is represented by the solid fraction values in CA, the
curvature of an interfacial cell is calculated based on the value of its solid fraction. Thus,

the mean curvature k can be calculated as:

K, =V v Eq3.3
T |stl q "

And the expansion of Equation-3.3 is:
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S+ ) RS D + A+ ) -
20656558 + RS + 1)
(e + 57+ £

K, = [level set curvature] Eq3.4

All derivatives in Equation-3.4 can be calculated by using finite difference scheme for the
solid fraction field. For example, the derivatives in the x-direction of the solid fraction field

evaluated at cell id 1,j,k are

 fa foa

fx 2 Ax
s s 5
£s :fi+1jk_2/Z—12jk+fi—1jk Eq3.5
X
S o fS . fS . 4 FS .
fl+1]+1k fl—1]+1k fl+1]—1k fl—l]—lk
fxsy =

4 - Ax*
The anisotropy of the surface energy should be incorporated with the curvature calculation

into the capillarity undercooling calculation using Gibbs-Thomson-Herring relationship as

described in 1.5.5. The used model in the current work follows:
dT, = I y(0yy,6;) K, Eq3.6
y(@xy, 92) =1—¢g, cos(40xy) — &, cos(40,) Eq3.7

where, &y, is the anisotropy coefficient in the xy plane, &, is the anisotropy coefficient in

the z-direction, 8, = cos™'(n,), Oy, = cos~'(n,/\/n% + n2) or O, = cos™*(ny) if n,
and n,, are equal to zero. The normal unit vectors (ny, n,, n,) are calculated using the

derivatives of the solid fraction field as:
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n, =

fx n. = fy n; = 2
y = s2 s2 s2
VR 5

Eq3.8

3.2 Overview of Some Cellular Automata Models

The varieties of CA models used for solidification modeling are vast as discussed next.

Several questions can be asked to distinguish different types of CA models.

Does the model consider constrained growth, free growth, or both? Since the growth is
constrained by the temperature field, using free growth means heat flows from the solid
phase into the surrounding and undercooled liquid (this is common in equiaxed grain
growth). With constrained growth, heat flows from the surrounding liquid into the
solid, which is common in columnar/dendritic growth. If a correct nucleation algorithm

is used, the model can predict columnar-to-equiaxed growth transition [13].

Does the model solve for thermal dendrites, solutal dendrites, or thermo-solutal
dendrites? With thermal dendrites only the heat equation is solved, so they are typically
used for the solidification of pure materials, and the solution scheme can be explicit or
implicit. The boundary conditions can be natural convection or the Neumann type.
With solutal dendrites the mass diffusion equation is solved and an imposed
temperature field with some undercooling can be assumed. In thermo-solutal dendrites

both heat diffusion and mass diffusion equations are solved at each time step.
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e How does the model determine the curvature? The most common two methods for this

are cell-count and level-set?

e How does the model include the physical anisotropy of the growth, and manage mesh

anisotropy?

e How does the model estimate the kinetics of the S/L interface? The kinetics of the
interface is included by calculating the increments in solid fraction at each time step.

The increments can be based on the Stefan condition or kinetic undercooling.
Next, some noteworthy models are analyzed by answering the previous questions.

Gandin and Rappaz used the CA algorithm to simulate the microstructure of a casting, and
predicted a meso-scale dendrite envelope [23]. In [55], the model was coupled with finite
elements ( CA-FE) to compute the temperature field. The model was later extented to a 3D
case [56] by proposing 3D decentred octahedron CA growth count for different grain

orinetations. In [57], the model was used to simulate casting of aluminum-silicon rods.

Sasikumar et al [58] proposed a 2D CA model for pure metals that solved the heat equation
explicitly. The solid fraction was calculated using the kinetics of the interface using the
stefan condition in x and y directions. The model was used to study the effects of
undercooling, surface tension, and solidification noise on the solidification. In [59],
Sasikumar et al used the developed model to study the effect of the Gibbs-Thomson
coefficient (I') on grain coarsening, and concluded that a higher I" produces an artificial

Ostwald ripening phenomenon that is equvelant to the simulation running for a long time.
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V. Pavlyk and U. Dilthey [60] developed a 2D cellular automata model to simulate the
crystal growth of a binary alloy. They considered a mass balance with Stefan-like
conditions at the S/L interface, and solved the mass difusion equation explicitly at the S/L
interface to account for solid fraction incrementation. They also coupled the model with

finite difference to simulate dendritic growth in a weld pool [44].

Nastac developed a 2D CA model [61], then extended it to 3D [52]. His main new
contribution was solving the heat equation implicitly to calculate the temperature field
during simulation. His second contribution was developing the cell-count method to
calculate the curvature of a cell by accounting for the solid fractions within its Moore

neighborhood.

Part-B: The CA Model of the Current Work

3.3 Computational Tools

As described, the implementation of CA algorithms requires calculation of certain field
variables. Four computational tools are developed in this study to compute: the solute field,
the temperature field, the curvature field, and the solid fraction. The calculation of solid
fraction is based on the equilibrium information of the phase diagram obtained by

CALPHAD calculations. These tools calculate the fields at each time step.
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3.3.1 Mass Transport Computation Tool

The solute distribution can be determined by solving the mass diffusion equation by the

finite volume FV method as follows:

aC—Dl T 626+626+626 Fick' dl f diffusi Eq3.9
FTi (T) oz T2 Tz [Fick’s second law of diffusion] Eq3.

[ Cf+1,j,k -2 Cg,j,k + Cf—l,j,k
+
Ax?
ct. k=2 C?.k + C?._lk
Cil = ¢ = At~ DY(T) - ( s Ay;" )+ Eq3.10
Cijjrr — 2 Cijp+ Ciips
AZ?

Our model assumes that: (1) the diffusion coefficient is independent of temperature, (2)
there is no diffusion in the solid phase, and (3) there is no back diffusion from liquid to
solid— all these assumptions should be included in the FV formulation. The first
assumption can be incorporated by using a constant value for the diffusion coefficient for
each species. The second assumption is incorporated by solving the FV formulation for
liquid and interfacial cells only. This assumption is reasonable since the diffusivity of

solutes in solid is hundreds of time smaller than that is in liquid.

Another important consideration is diffusion through interfacial cells, since they are
partially liquid and partially solid. Diffusion only occurs in the liquid portion, and this
should be considered in the formulation. An interfacial cell and its neighbor cells are

depicted in Figure-3.5. The flux of solutes into the interfacial cell from its liquid neighbor
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cells occurs in three directions (x, y, z). Only flux in the x-direction is considered here, to

show how an interfacial cell can be treated.

v

X i
Z k |\/ S

“"‘“‘\_\‘Inter‘fa(ial cell
|—- i-1jk ijk i+1jk

—_— X

Figure-3.5: Finite difference formulation of an interfacial cell.

The change in interfacial cell concentration is equal to the change in its mass divided by
its volume. However, the cell volume must be multiplied by its liquid fraction, since the

diffusion occurs in liquid only:

AC = AM
_V'fl

[the concentration of an interfacial cell] Eq3.11

The change in the cell mass along the x-direction is equal to the net mass flux multiplied

by the flux area and the time step:

AM = flux,e - Ay - Az-dt [mass change] Eq3.12
By substituting Equation-5 into Equation-4, the change in concentration of the interfacial
cell is:

AC _ fluxpey - Ay - Az - dt
 Ax-Ay-Az-fl

Eq3.13
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and the net flux into the cell is obtained by FD formulation of the diffusion equation:

Civt — C; C; — Ci_y
flux,ee = fluxg,e — flux;, = D' (#) —D!t- <#) Eq3.14

The concentration changes in the cell due to solute flux in the x direction are obtained by

substituting Equation-3.14 into Equation-3.13:

AC

_ Dl At . (Ci+1 — Ci Ci - Ci—l) Eq315

f! Ax?2  Ax?
Since the same diffusion process also occurs in the y and z directions, Equation-3.15 can
be rewritten in term of y and z directions. A special modification of Equation-3.10 is

required to incorporate the third assumption: a diffusion block function, 8(f*®), is defined

as:

0 iffs=1

H(fs)z{l if F5 <1 [Diffusion block function] Eg3.16

As the value of the blocking function can be either one or zero, it blocks diffusion from or
to cells that are completely solid. Eventually, the full FV formulation for solute diffusion

1S:

(Cliaie = Cipe) 0U) (Gl = Clryad) 0 ||
Ax? Ax?
DAt |(ct..., —CL.)-0(FfS cl.. —cl. CO(FS
Chd = Cly + —— (Cljraie = Cili) - 0F°) _ (Clype = Cljrs) " 0G) +| [FVformulation] Eq3.17
fijk Ay? Ay?
(Cliprs = Cla) - 0F) _ (Clis = Cljna) - 0F)
Az? Az? .
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The time step is selected based on the Fourier stability criteria of the explicit scheme: At <

Ax? . . . . .
%, where Ax and a are the cell size and the solute diffusivity respectively. Based on

Equation-3.17, the solute transportation is computed with the following algorithm. The
control volume of the solidification model is first subdivided into three domains: the cells
in the first domain are completely liquid Q', those in the second domain are completely
solid Q°, and those in the third domain are in mushy state s/, Initially, all cells in the

bottom layer of the control volume are completely solid, and the adjacent cells are in mushy

state. The rest of the cells are in liquid state, as shown in Figure-3.6.

No solute flux infout

QL

uoypPUOI AJEPUNOg JPOLIad
uopuod Alepunog JIpouad

QS/L

RARE" LR

No solute flux infout

Figure-3.6: The computational domain of mass diffusion computation.

In order to conserve the mass, periodical boundary conditions are applied in the x and y
directions, and no flux moves in or out in the z direction. The concentration of the liquid
domain cells is initially set to a constant value equal to the initial alloy composition, Cj,
and the concentration of the interfacial cells is set to the equilibrium concentration, C,g.

Therefore, the concentration gradient will drive solute transport through multiple step.
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3.3.2 Imposed Temperature Field Computation

The temperature field can be imposed on a computational domain, in which initial

temperature values are assigned for all cells. The initial temperature values can be uniform

or with gradient, as shown in Figure-3.7. In either case, a constant cooling rate (K/s) can

be applied on the computational domain. Such approach is used in [62, 3].

140

(a) uniform imposed temperature 1507 °C

Figure-3.7: Imposed temperature profile.
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(b) imposed temperature with gradient

On the other hand, the temperature field can be imported from a macroscopic FE mesh of

a welding case, and the procedure is described in chapter 5.

3.3.3 Heat Transport Computation

The heat diffusion equation can also be calculated for a computational domain to determine

the temperature field. The enthalpy formulation of heat equation is implemented in this

study. With this method, the differential equation of heat transport should be formulated to
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include the enthalpy, which is the total heat content of the substance. In Equation-3.18, the

enthalpy function is used as a dependent variable with the temperature.

oH 0%T 0%T 02T _
— =k - +|l— ]+ [heat transfer with phase — change] (Eq3.18)
ot 0x? ay? 0z*

where, k;j, is the thermal conductivity. For a numerical scheme, the temperature of the
entire domain is specified at each time step, and the enthalpy is solved. The temperature
for the next time step is then calculated from the enthalpy. In interfacial cells, additional
phase equilibrium condition should be considered as described in section-3.3.5. Writing

Equation-3.18 in finite volume scheme gives:

. . (Ti+1jk — 2Ty, + Ti—ljk) N (Tij+1k — 2Ty, + Tij—lk)
a_H~Hijk — Hijie Ko - Ax? Ay? (Eq3.19)
ot At th Tijrv1 — 2Tijp + Tijr—1 '
| + z |
Az

For a cubic cell Ax = Ay = Az so

(Ti+1jk — 2Tyj + Ti—ljk) N (Tij+1k — 2Tyj + Tij—lk) 4
Ax? Ax?2
(Tijk+1 — 2Ty + Tijk—l)
Ax?

dH = Hj' — Hfjj = At - kyp, -

7 (Eq3.20)

Since the explicit scheme is used, the time step of thermal diffusion is limited by Fourier
2
stability criteria, At < Asia’ where Ax and a are the cell size and the thermal diffusivity

respectively. The time step for solute diffusion is determined by the same criteria, but
although by using the solute diffusivity D rather than the heat diffusivity a. Solving the

thermal diffusion and solute diffusion in each time step is a multiphysical task, and the
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same time step should be used for both. Since the thermal diffusivity is much higher than
the solute diffusivity, the thermal transport time step can be 100 times longer than the solute
transport time step. The time step of the solute transportation is used to accelerate the
computation, though the thermal diffusivity is slowed by dividing the thermal conductivity

by 100.

The algorithm to solve the heat transport equation requires: (1) initializing the spatial
domain ( i.e. the number of cells and the cell size), (2) initializing the domain with an initial
temperature (T?); (3) specifying boundary conditions; (4) specifying alloy parameters such
as heat capacity Cp, latent heat Lh, and thermal conductivity K;p; (5) calculating the time

step; and (6) starting time stepping. For each time step i solve Equation-3.20 for dH® and
find T! = i—fg + T'=! for non-interfacial cells. The calculation is more complicated for
interfacial cells.

3.3.4 Curvature Computation

Two different curvature calculation methods were implemented and compared in this
study. The first uses a level set approach and the second uses cell counting. The accuracy

of both methods was compared using a ‘sphere test’.
3.3.4.1 Curvature Computation by Cell Count Algorithm

With the cell count method, the curvature of a cell is computed based on its solid fractions

and those of neighboring cells. The definition of neighbor cells in three dimensions
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typically has 26 cells, as shown in Figure-3.8. The most popular used model was proposed
by Nastac [52] as follows:

26 fi
1(1_2fs+z £

=3 N+1

" ) [cell count curvature] (3.21)

where, N is the number of neighboring cells, a is the cell size, f; is the solid fraction of the

cell with the curvature evaluated, and f{ is the solid fractions of neighbor cells.

o -
—

Figure-3.8: The neighbor cells definition for cell count method. The curvature is
evaluated for the middle cell (cell; ).

3.3.4.2 Curvature Computation by the Level Set Method

With this method, the curvature of a cell is estimated based on the gradient of solid fractions
according to Equation-3.4. Marcias and Artemev [2] suggested that the solid fractions
should be weighted by weighting factors (w; = 0.2, w, = 0.1, w3 = 0.05) to allow closer
neighbor cells to have more effect on the curvature value. Using a weighted level set is

helpful because it mitigates the sensitivity of curvature to the mesh by averaging the value
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ofthe calculated curvature. The definition of neighbor weights for a cell is shown in Figure-

3.9.

-
-
. > .

e
-—

Figure-3.9: The neighbor weights for a centered cell Cell;jy,.

Each cell in the neighbor set should be weighted according to the following expression:
weighted f° = _T [weighted average solid fraction] (3.22)
£ W;

The algorithm for calculating curvature with the weighted level set method is:
- Specify the cell at which curvature should be evaluated, cell; jy.
- Define its neighbor cells set (26 cells).
- Calculate the solid fractions (f;) of all cells, i.e., cell;j; and its neighbor cells.

- Weight each solid fraction by multiplying it by its weight factor, as in Equation-

3.22.

- Calculate the curvature of cell;j; by solving Equation-3.4.
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The accuracy of curvature calculation of each method is evaluated using a computational
test (called the sphere test) in which the estimated sphere curvature is compared with the
analytical sphere curvature. Since with the level set method the weights of neighbor cells
affect the calculation of the curvature, a searching optimization procedure is applied to
optimize their values. The objective function is to minimize the difference between the
estimated average curvature of all interface cells and the analytical curvature of a sphere.

The optimization algorithm follows:

for wl= 0.2 to 0.5 step 0.01
for w2= 0.1 to wl step 0.01

for w3= 0 to w2 step 0.01
- estimate the curvature of all interface cells using the
current weight set (wl, w2, w3).
- find the average curvature value of all interface cells,
avrgKls.

— objective= |avrgKls - total curvature|
next w3
next w2

next wl

The algorithm finds the best weight set (w;, w,, ws) that minims the objective function.
After running the algorithm for a sphere with a radius equal to four cells, the best weight

values were w; = 0.5, w, = 0.1, and w3 = 0.
3.3.5 The Sphere Test

In this test a sphere with a known radius is constructed in a cubic mesh and represents the
S/L interface. Any cell inside the sphere is considered completely solid, and any outside

the sphere completely liquid. Cells at the sphere perimeter are interface cells, and thus their
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fraction of solid need to be estimated. In a dendrite simulation, the fraction of solids of
interface cells are calculated based on thermodynamics. However, for the sphere test, the
fraction of solids for all interface cells are estimated by generating random points inside
each cell. For example, if 100 points are randomly and uniformly generated inside an
interface cell, its solid fraction is equal to the number of points inside the sphere over the
total number of points, as shown in Figure-3.10. The curvatures of interface cells are, then,
estimated based on this solid fraction using the level set and cell count methods. The
accuracy of the curvature estimation is determined by comparing it against the analytical

curvature of the sphere.

B geias
P ™ Xl
T,

o

Figure-3.10: The estimation of solid fraction for the sphere test.
A series of sphere tests are conducted to evaluate the accuracy of the curvature estimation
of the cell count and level-set methods. Ideally, the estimated curvature for any interfacial
cell should equal the analytical curvature. However, both methods cannot calculate this

result, so each cell will have different curvature value. Thus, the average estimated
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curvature K7 of all interface cells is the used measurement, and the accuracy of the method

increases as the Kr value approaches the analytical curvature.

Sphere tests with 20 different sphere radii are investigated to evaluate curvature
computations. The size of the computational domain is 50x50x50 cells with cell size equal
le-6, and the sphere radius varies from 1 cell to 20 cells. The analytical sphere curvature
equal 2/sphere radius, and the value of Kr = Yi°Kr;/no.sc, where sc is the cell on the
sphere surface. It was determined that using 100 random points to estimate the solid
fraction is adequate, and this reduces the computational time. Figure-3.11 shows the error
of curvature estimation using cell count, level-set with no averaging, level-set with a weight

averaging-, and level-set with the optimum weight averaging.

delta=1e-6, 50x50x50

2

esfimated average curdaturs

&

curvalure -

&
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%aErmor: analytical

o L = L e i =
2 4 8 8 10 1”2
sphere radius (in unit cefl)

Figure-3.11: The error of curvature estimation by different curvature calculation
methods.
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Regarding the Figure-3.11, the error of curvature estimation using the cell count method is
more than 60% according to the sphere tests. However, this method is widely used because
of its simplicity and lower computational requirements. The figure shows that level-set
method is more accurate, and the curvature estimation error is approximately 20%. In
addition, if the averaging of solid fractions is used, the estimation error reduces to 10%.
Moreover, the averaging procedure with optimum weights produces more accurate
estimation, as illustrated by the difference between the lowest two curves. Investigation of
the level set method indicates that it is more accurate than the cell count method. This is
because the level set method is based on the geometrical differentiation, and it considers
the neighbor cell effects. However, the level set method with averaging is more

computationally expensive than the cell count method.
3.3.5 Solid Fraction Computation Tool

The solid fraction of any interfacial cell during a simulation is obtained from a stored
CALPHAD data structure, as will be explained in section-3.5. During simulation each
interfacial cell has a specific thermodynamic parameter (i.e. temperature and solute
concentrations). According to a cell’s thermodynamic parameters, the solid fraction of the
cell is read from the stored CALPHAD data and assigned to the cell. In the case of imposed
temperature values, the solid fraction can be obtained directly from the CALPHAD data.
Alternatively, if the enthalpy method is used to calculate the temperature field, the solid

fraction should be obtained by an iteration scheme that specifies how much the enthalpy
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changes the sensible heat, and how much it changes the phase fractions. This iteration
scheme is called in this thesis one cell solidification module (OCSM). The output of the
heat diffusion solver is the change in enthalpy, dH. If the amount of dH reduces a cell
temperature below the liquidus temperature, a portion of dH will increase the solid fraction.
The objective of OCSM is to find out the cell temperature and solid fraction according to
the given dH. Figure-3.12a schematically shows the iteration inside the OCSM for a binary

alloy, and the same procedure is used for higher order alloys.

To, fas
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g E T, fy
B~ - [
TL [
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(a) )
Figure-3.12: Pseudo binary liquidus and solidus lines to illustrate OCSM.

If T, and f;° are the initial temperature and solid fraction of an interfacial cell, it is assumed
that the given dH reduces the temperature by AT'1. Furthermore, the solid fraction at the
first iteration (i = 1) f;° according to T1; is read from CALPHAD data. Then, the total

enthalpy is calculated according to:

dHporq = (T1; = To) - Cp + (f — f°) - Lh eq3.23
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Since solidification occurs due to AT'1, some heat will be released in the cell and increase

dH

the temperature from T1 to T2; thus, AT2 = AT1- . When AT1 = AT2, the

total

iterations end, and the cell temperature is equal to T2 and its solid fraction is read from
CALPHAD data (f;%). If the condition is not satisfied, the iteration continues (i = 2,-++)
until AT1 =~ AT?2. At the onset of a cell solidification, the cell temperature is in the liquid
state (T,) and its initial solid fraction (f;’) is equal to zero (Figure-3.12b). In this case, the
OSCM set the initial temperature to be the liquidus temperature and the same OSCM

procedure continues.
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Figure-3.13: Incorporation the effect of capillarity undercooling for reading from
CALPHAD data.

The stored thermodynamic data are for a flat S/L interface, so the effect of the capillarity
undercooling dT, should be incorporated during reading the information from
thermodynamic data. Incorporating the capillarity undercooling can be obtained by either

shifts down the liquidus curve by dT,. (Figure-3.13a) or shifts up the temperature T1 by
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dT, (Figure-3.13b). The second option is more applicable to be used. For example, if a

temperature of an interfacial cell is calculated by the heat diffusion solver T'1 and dT, is

calculated by the curvature calculation, the used temperature value of reading from

CALPHAD data is equal to T1+dT,..

3.4 Coupling CALPHAD Data to Cellular Automata Modeling

The solidification model requires relationships between thermodynamic parameters and

phase fractions, which are obtained from the precalculated and stored CALPHAD

calculation. Thermodynamic information calculated at the intended temperature range by

the computational code includes: the equilibrium concentration of chromium C/,. in liquid;

the equilibrium concentration of carbon C/ in liquid; the equilibrium concentration of

S

chromium C¢g, in solid; and the equilibrium concentration of carbon C¢ in solid. At a

constant temperature, the combination of C},. and C! describes the liquidus boundary, and

the combination of Cz. and C? describes the solidus boundary.

Isotherm
@ 1514 °C

Isotherm

@ 1513°C |

i
28
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El

- 32
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35
36
37
EL)
39
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41
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Temp xt.  «xt Xg. x5
1514 0.2684 0.0014 0.2828  1.8933e-04
1514 0.2795 0.0016 02952 2.2235e-04
1514 0.2906 0.0020 03076  2.5623e-04
1514 03018 0.0023 03199 2.9050e-04
1514 03131 0.0027 0.3322 3.2476e-04
1314 0.3245 0.0031 0.3444 3.5865e-04
1513 0.0051 0.0030 0.0044 5.2583e-04
1513 0.0169 0.0026 0.0147  4.5597e-04
1513 0.0288 0.0023 0.0254  3.974de-04
1513 0.0410 0.0020 0.0366 3.3748e-04
1513 0.0528 0.0017 0.0476 2.8406e-04
1513 0.0637 0.0014 0.0581 2.3782e-04
1513 0.0761 0.0011 0.0703  1.9046e-04
1513 0.0877  8.9035e-04 0.0819  1.5123e-04
1513 0.09%0 6.9305e-04 0.0935  1.1741e-04
1513 01106  5.2098e-04 0.1055  8.8003e-05

Figure-3.14: Thermodynamics lookup table.
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The thermodynamic data for the temperature range 1494 to 1537 °C is stored in a database,
as shown in Figure-3.14. Another table with the same structure is calculated for the
temperature range 1330 to 1494 °C. Each row in the table defines a tie line at the

corresponding temperature, and all rows with the same temperature define an isotherm.

Thermodynamic data at any temperature that is not stored in the database can be
interpolated from the stored data. For example, if the table stores data at temperatures of
1511 and 1510.5 °C, the data of the isotherm at T=1510.7 °C can be linearly interpolated

from the stored data.

The CA solidification model must define the thermodynamic information for each cell at
every time step of the simulation. The most direct way to achieve this is to apply
CALPHAD calculation to each cell for the entire simulation. However, performing these
calculations during a simulation is problematic as the computationally cost is prohibitively
high. The solution is to pre-calculate and store enough thermodynamic information for the
intended accuracy, thereby allowing the solidification model to search the stored data and

do interpolations during the simulation, as shown in Figure-3.15.
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Figure-3.15: The interaction between the solidification and CALPHAD models.
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The coupling algorithm starts with defining the alloy properties and simulation parameters,
then the computational domain (CD) is initialized. The simulation proceeds by calculating
the heat transport, solute transport, capillarity undercooling-, and solid fraction at every

time step. A detailed explanation of these steps follows.

3.5 Obtaining Information from the CALPHAD Data

Any thermodynamic state (i.e. stable phases, the fraction of phases, the equilibrium
composition of elements) is defined by its temperature and average composition. The
solidification model requires a relationship between thermodynamic states and solid
fractions, and the solid fraction can be interpolated from the stored CALPHAD data
structure. Two techniques of storing, searching, and interpolating thermodynamic
information are proposed and investigated in this study. The first technique
is based on scanning a lookup-table and interpolating tie lines information. The lookup-
table stores a collection of non-structured tie lines. The second technique is a pointwise
interpolation scheme which stores a structured thermodynamics data. In addition, the

possibility of representing phase diagrams using Bezier’s curves is also investigated.
3.5.1 Scanning Procedure for Reading Solid Fractions

The scanning procedure is explained next using the lookup table of Fe-Cr-C
thermodynamics data. Any thermodynamic state can be described by three coordinates:
temperature, chromium composition, and carbon composition (Ccr, C,T). Now, consider

three different query points (qP1, qP2, and qP3) that represent three thermodynamic states,
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as shown in Figure-3.16. The X and Y coordinates of each point represent its chromium
and carbon composition, and the Z coordinate represents the state temperature. Since the
stored CALPHAD data explicitly defines the phase boundary liquidus and solidus curves,
the procedure can easily locate any state by comparing its coordinates to the boundary

curve points.
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Figure-3.16: Three different thermodynamic states: liquid (qP1), solid (qP3), and mushy
(qP2).

If a given query point P is in the liquid phase (e.g. qP1), its solid fraction equals zero and

its liquid fraction equals one. As well, the concentration of chromium and carbon in the
liquid is equal to the initial alloy composition. Reversely, if qP is in the solid phase (e.g.
qP3), its solid fraction equals to one, and its liquid fraction equals to zero. In addition, the
concentration of chromium and carbon in the solid phase is equal to the initial alloy
composition. In the third case (qP2), the solid and liquid fractions should be interpolated

by following the procedure outlined in Figure-3.17.
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3)
4)

5)

Locate the four nearest points to the given qP using the
inQuad locating procedure.

Construct two tie-lines, Tie-linel and Tie-line2, using the
nearest points.

Fit a parallel tie-line to the constructed tie-lines.

The points (X1, y1) and (X2, y2) can then be calculated using
linear geometrical relations, where, X1, y1, X2 and y» are the
equilibrium compositions of chromium and carbon in
liquid and solid.

The solid fraction is equal to sF= (x1-qPx)/(x1-x2) and the
liquid fraction is equal to IF=1-sF.

Figure-3.17: The procedure of calculating the information of a query point (qP) in the

mushy phase.

The inQuad locating procedure defines a convex quadrilateral shape which eases the

locating procedure. The area of any given quadrilateral shape is the sum of two right

triangles, as shown in Figure-3.18a. In addition, a given qP can construct four triangles

with a quadrilateral shape vertex. Thus, qP can be located as shown in Figure-3.18. The

area of a triangle with known vertex coordinates can be calculated using Heron’s formula.

2

Figure-3.18: The inQuad locating procedure. (a) the quadrilateral shape
area=TA1+TA2, (b) qP is inside the shape if A1+A2+A3+A4<=quad area, (c) qP is
outside the shape if A1+A2+A3+A4>quad area.
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The query points in Figure-3.16 are at specific temperatures or isotherms, since the
thermodynamic database stores many isotherms at different temperatures. If a given point
gP has a temperature value (qT) that is not stored in the database, the information at this
temperature can be linearly interpolated between two stored isotherms: the first one is at
temperature Ttop and the second one is at temperature Tbot. For example, if the database
stores information at Ttop = 1511 °C and Tbot = 1510.5 °C, and the given point is

qT=1510.7 °C, the information at the query temperature can be interpolated as shown in

Figure-3.19.
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Figure-3.19: Interpolate data between two different temperature values.

While the calculation of a single point equilibrium takes approximately 0.1 sec to calculate
the thermodynamic information, the lookup-table procedure takes 0.0003 sec to interpolate

the information.
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3.5.2 Pointwise Interpolation Procedure for Reading Solid Fraction

With this technique, the thermodynamic data are stored in a structural mesh, and the
distance between all data points is equal in every direction, as shown in Figure-3.20. Each
point has specific information, including solid fraction, liquid fraction, and the equilibrium
composition of each element in every phase. The advantage of using the structural mesh is
that the location of a given inquiry point qP can be found swiftly by knowing its coordinate;

thus, the eight neighbor data points of qP can be determined directly.

0.08 o

Figure-3.20: Data points that store thermodynamic information at T=1500 °C.

The interpolation value of qP (the solid fraction) can be interpolated from the eight-

neighbor data points by using the inverse weighted distance scheme shown in Figure-3.21.
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Figure-3.21: The inverse weighted distance scheme.
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This interpolation scheme can be used to interpolate all thermodynamic information.
Although this interpolation scheme is faster than the former one, it is found that the
interpolated information slightly violates the lever rule and more data storage should be
used to improve the accuracy. For example, it is founded that even with data storage of 50
MB, the interpolated information slightly violates the lever rule. The violation of lever rule

causes mass leakage during the solidification simulation.
3.5.3 Bezier Curves Representation of Phase Diagrams

A Bezier curve is a parametric curve that uses Bernstein polynomials as a basis. Recently,
some researches proposed the possibility of storing a phase diagram in a set of Bezier
curves. For example, the paper [63] showed that the Bezier curve is a simple, efficient,

and accurate way to represent and store the phase diagram of Al-Zn binary system.
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Figure-3.22: Representing the solidus and liquidus of Al-Mg by Bezier curve.

In this study, the possibility of reading thermodynamic information from the Bezier curves

of an Al-Mg binary diagram is investigated. The mathematical formulation is described in
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[33], and the information of the solidus and liquidus boundaries are obtained using
MatCalc®. A MATLAB code is developed to construct the Bezier curves description of
Al-Mg solidus and liquidus as shown in Figure-3.22. Figure-3.23 shows three different

possibilities of reading solid fractions for a given thermodynamic state.
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Figure-3.23: Reading the solid fractions from a Bezier curve. (a) liquid state, (b) mushy
state, and (c) solid state.

3.6 Alloy Properties and Simulation Parameters

The investigated alloy in this study is Fe-Cr-C stainless steel. The required alloy properties
are chromium diffusion coefficient D,., carbon diffusion coefficient D, heat capacity Cp,
thermal conductivity K;j, latent heat of fusion Lh, Gibbs-Thomson coefficient I', and
anisotropy strength €. In addition, the simulation parameters are the number of cells in x,
y, and z directions (i.e. the size of a computational domain), the cell size Ax, the nominal
alloy composition (C2., C2), the initial undercooled temperature T, the rate of cooling RC,

the temperature gradient within the computational domain TG.
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3.7 Computational Domain (CD) Initialization

The initialization of CD means assigning the initial field variables (i.e. temperature,
composition, and solid fraction) to all the CD cells and boundary conditions. An initial
state is hypothetical, as it doesn’t belong to a specific physical process; thus, some
fluctuation is expected at the beginning of the simulation. With time, the system achieves

stability and proceeds with steady state. Figure-3.24 diagrams CD initialization.
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Figure-3.24: The initialization of a computational domain.

The upper and the lower boundaries of the CD are closed, and all side boundaries are
periodical. These two conditions conserve the mass within the CD (the thermal boundary
conditions are shown in Figure-3.24b). Two cases can be considered for thermal boundary
conditions. In the first case a temperature profile with a zero or constant cooling rate is
imposed on all cells [62]. In this case, there is no need to compute the heat diffusion
equation since the heat diffusion is much faster than solute diffusion and the temperature
quickly becomes uniform. However, for more accurate results, the second thermal

boundary condition is also applied, as shown in Figure-3.24c. This shows the boundary
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condition with a heat flux entering the CD from the top and another heat flux leaving the

CD from the bottom.

() (») ©
Figure-3.25: Three different initial solid/liquid interface for simulations.

The CD can be initialized by three different S/L interfaces, as shown in Figure-3.25. The
first studies the dendritic or cellular growth, and the second studies the equiaxed growth.
In these configurations, most CD cells are liquid with zero fraction of solid, and the others
are completely solid to represent the initial topology of the S/L interface. The solid
composition of all solid cells equals the initial alloy composition, C* = C°. In addition, the
liquid composition of all liquid cells equals the initial alloy composition, C! = C°. The
initial composition of the liquid can be undercooled for a specific degree. Figure-3.26a
shows an initial undercooled liquid state, and Figure-3.26b shows an initial non-
undercooled liquid state. It is important not to use a highly undercooled liquid state, as this
will produce an aggressive growth rate not suitable for welding processes (low Peclet
regime). Finally, a buffer zone of a specific height can be added to cover the initial solid

cells. The composition of the buffer zone equals to the equilibrium composition of the
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initial temperature To and the composition CZ., C2. The buffer zone will suppress any noise

growth from the flat S/L interface.
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Figure-3.26: (a) undercooled and (b) non-undercooled initial alloy composition.

3.8 The Algorithm of the Simulation

The entire simulation code is written as a modular structure, and each computational tool
is written in a separate routine. For example, the computation of a thermal field uses a
specific routine, while the interpolation of thermodynamics information occurs in another
routine, and so on. Every simulation is terminated whenever the ending condition is
satisfied; that is, if a tip of the growing dendrite reaches 90% of the computational domain

height. The main body of the code calls a routine when it is required, as shown next.
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The algorithm of the simulation

l:  Define the alloy properties.

2: Define the simulation parameters.

Initialize the computational domain variables:
fS,To,CL., CL CS., CS, curvature.

4:  Calculate the time step At and start the time stepping:

Call [Temp routine] to apply an imposed
temperature profile to get newT.

5: OR

Call [Heat Transport routine] to compute the heat
diffusion by the enthalpy method to get dH.

Compute the mass diffusion to get the new

6:
composition distribution: [newCl.,newC!]
Call [phase evolution routine] to compute the
solid fraction f® in the CD using
newT,newCl,., newC} .

T OR
Call [OCSM] if the enthalpy method is used to
compute the solid fraction f® and temperature
field newT.

g Call [Curvature routine] to compute the new

. curvature of the S/L interface.

9: Update all variable fields for all cells.

10:

Check the simulation ending condition.

I Next time step.
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The algorithm of OCSM

Get solute concentration Cg,C, from the mass diffusion
solver.

2 Get dH from the heat diffusion solver.

3 Calculate AT14 =Cé—l:

4 Start iteration i=2:10

5 T1; =To —AT1;

6 Interpolate CALPHAD data for f using T1; and C..,C,
7 Compute dHyorq = (T1; = T,) - Cp + (£ — f(T)) - Lh

dH

8 Compute AT2 = AT1;-

total

If AT2 ~ AT1;> T2 =To — AT2
Return T2, f7,CL,, CL, CE., CS  exit
10 Next time step 1.

11 Return last values of T2,f5 CL.CtL CE.,CE .

3.9 Model Verification and Validation

3.9.1 Mass Conservation

To validate the model, the mass conservation was investigated by assigning an initial value
of chromium and carbon in weight fraction (CS- and C?) for every cell in the computational
domain. If a cell is initially liquid, the initial values of C2 and C2 are assigned to the cell
liquid phase, and the initial values are assigned to solid phase cell if it is initially solid.
Therefore, the total amount of chromium and carbon in the entire domain can be calculated.
At the end of each time step during a simulation, the total mass of chromium and carbon

are recalculated and compared to the initial total mass, and mass is conserved if the
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difference between the initial mass and the recalculated mass is close to zero. The total

mass of solutes can be calculated as follows:

no.Cells
Cct;)tal — Z CCT‘il .fil + CCT‘iS _fis
i

no.Cells

crt= N cclflacef
i

[solutes total mass] 3.24

Mass conservation is perfect in this model, as the maximum difference between the initial
solute mass and the solute mass during the simulation is approximately 10~ of the weight

fraction.
3.9.2 Simulated Dendritic Structures

Solidification theory and observations predict a parabolic dendrite tip shape [15]. Unlike
the dendrite body, close to the tip, the S/L interface is smooth under steady-state growth
(Figure-1.9). This feature should be captured by the solidification model. Figure-3.27
shows a dendrite of Fe-Cr-C from the model developed in this study. In addition, Figure-
3.28 shows a comparison between the obtained simulation result and a published

micrograph result.
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region growth

time-dependent
side branches region growth

(a)
Figure-3.28: (a) a scanning-electron micrograph of dendrites in a weld [64], and (b) the
solidified microstructure of Fe-C-Cr [the developed model].

The equiaxed growth of the developed model is compared with the results of [64]. Figure-

3.29 shows the results of the developed CALPHAD model and the results from [65].

(@) (d)

Figure-3.29: (a) and (b) show equiaxed dendrites with low anisotropy, with (a) from
[65] and (b) from the developed CA-CALPHAD model. (¢) and (d) show equiaxed
dendrites with high anisotropy, with (¢) from [65] and (d) from the developed CA-
CALPHAD model.
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3.9.3 The Selection of Cell Size

In CA simulation, the growth of a dendrite including the formation of secondary and
tertiary arms, is controlled by two anisotropy effects: mesh anisotropy and surface energy
anisotropy. Ideally, the effect of the mesh anisotropy should be eliminated, but this is not
possible since the mesh exists. The effect of the mesh anisotropy decreases as the cell size
decreases and the growth is more controlled by the effect of surface energy anisotropy.
However, decreasing the cell size increases the number of cells and decreases the time step
since an explicit numerical scheme is used. Therefore, the cell size should be selected to
be large enough to speed up the simulation and small enough to reduce the effect of mesh
anisotropy and allow the surface energy anisotropy to influence the growth. In order to
select a proper cell size, some simulation tests with the same simulation parameters and
different cell sizes are investigated to relate the dendrite tip radius and the cell size. The
used simulation parameters are nominal alloy composition 10°® wt% of Cr and 0.009 wt%
of C, initial temperature =1517 °C, anisotropy coefficient in Z-direction=0.2, anisotropy
coefficient in XY-plane=0, and Gibbs-Thomson coefficient I' = 177 K - m. The used cell
size (dx) for the simulation one to nine is 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5, 0.75, and 1
um. Each simulation produces a dendrite with different tip radius TipR, even though the
used simulation parameters are the same, because of the interaction between the mesh
anisotropy and the surface energy anisotropy. The tip radius of each dendrite is calculated
from the curvature value (Kr) of the topmost cell at the end of the simulation as TipR=2/Kr.

The calculated TipR are plotted with the corresponding dx as shown in Figure-3.30. For
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every cell size, the tip radius values fluctuate during the growth. This fluctuation is shown
by the red-dashed line in Figure-3.30. The fluctuating of the tip radius increases as the cell

size increases, but the fluctuations are almost equal at cell size less than 0.25um.

+ Tip radius mean value
the: fluctuation in TipR calculation |

surface energy anisotropy control mesh anisotropy control

Tip radius (micro-meter)

nsngfeas s g

v e
:  0.25

dx (micro-meter)

Figure-3.30: The relf;ttionship between the tip radius (TipR) and the éell size (dx).
Figure-3.30 shows that at a cell size more than 0.25um, the mesh anisotropy controls the
growth because the relation dx-TipR has a proportional relationship. The proportionality
indicates that the tip radius is computed from the size of only one cell located on the top of
the dendrite, and as the size of this cell increases the tip radius increases. Reversely, at a
cell size less than or equal 0.25um, dx-TipR relationship fluctuates that indicates that there
is stronger influence of the surface energy anisotropy and less significant effect from mesh
anisotropy. The dendrites produced by simulations with dx=0.05pum, dx=0.25um, and

dx=0.5pm are shown in Figure-3.31.
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Top views

Figure-3.31: The developed dendrit',[)e wiﬂ:cel;ll

and (c) 0.5 um.
In Figure-3.31a, the produced dendrite tip is more paraboloid with a smooth tip. Figure-
3.31b shows the developed dendrite with dx=0.25um and growth time was equal to 0.0117
sec. With using a higher value of dx (Figure-3.31c), some secondary arms start to form at
a growth time equal to 0.001 sec, as shown in the figure. Since, the used anisotropy
coefficient in xy plane is equal to zero, the growth in x and y directions are restricted
physically, so the early growth of secondary arms in Figure-3.31c is in particular due to
stronger influence of mesh anisotropy. The conclusion is that a cell size < 0.25um

incorporates the effect of the surface energy anisotropy and can be used to capture the

physics of growth.
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Chapter-4: CALPHAD-Cellular Automata Coupling Results

In this chapter the results of the investigations of free and constrained growth of dendritic
microstructures are presented and discussed. First, the effects of the surface energy
anisotropy and the initial undercooling on the equiaxed growth are investigated. In
addition, the growth of a dendrite subjected to different cooling rates is studied. Also, the
solidification of a duplex steel with high and low cooling rates is investigated. Second, a
series of simulation runs are used to study the constrained growth of dendrites. The effect
of curvature calculation method on the results are investigated. In addition, two simulations
that include heat diffusion solver will be used to investigate the development of thermal
field during the solidification process. The obtained results from simulations include: the
solidification morphology, phase fractions, the solutes segregation in solid, the solutes

rejection in liquid, and the capillarity undercooling.

To quantify the segregation, we proposed a segregation-index (SIndex) which is equal to
the maximum solute concentration in solid (maxS) minus the minimum solute
concentration in solid (minS) over the mean solute concentration in solid (means$) as
calculated by Equation-4.1. As the segregation-index value increases, the segregation

becomes more severe.

maxS — minS

SIndex = ——— Eq4.1
naex meanS q
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The developed model can handle the solidification of ferritic and austenitic steels
depending on the input of a nominal alloy composition. Table-4 lists some typical

composition of stainless steels.

Table-4: Stainless steels compositions. [9]

Nominal Composition (%)

AISI Type C Mn Cr Ni Other
Austenitic grades

301 015 max 2.0 16-18 6-8

302 0.15max 2.0 17-19 8-10

304 008 max 2.0 18-20 8-12

304L 0.03 max 2.0 18-20 8-12

309 020 max 2.0 22-24 12-15

310 025 max 2.0 24-26 19-22

316 0.08 max 2.0 16-18 10-14  2-3% Mo

316L 003 max 2.0 16-18 10-14  2-3% Mo

321 0.08 max 2.0 17-19 9-12 (5 x %C) Ti min

347 0.08 max 2.0 17-19 9-13 (10 x %C) Nb-Ta min
Martensitic grades

403 015max 1.0 11.5-13

410 0.15max 1.0 11.5-13

416 0.15max 1.2 12-14 0.15% S min

420 0.15min 1.0 12-14

431 020 max 1.0 15-17 1.2-2.5

440A 0.60-0.75 1.0 16-18 0.75% Mo max

440B 0.75-095 1.0 16-18 0.75% Mo max

440C 0.95-1.20 1.0 16-18 0.75% Mo max
Ferritic grades

405 008 max 1.0 11.5-145 0.1-0.3% Al

430 0.15max 1.0 14-18

446 020 max 1.5 23-27

The nominal alloy composition used in all simulation runs in this chapter varies in the range
of 13%wt — 18%wt for chromium and 0.05%wt — 0.15%wt for carbon. In addition, the
diffusion coefficients of carbon and chromium are considered constant and equal to

2% 107° m?/s.

For all simulation-runs in this chapter (excepting section-4.6 in which the heat equation is

solved), the temperature field is uniform within a regular computational domain with a zero
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or constant cooling rate and without a temperature gradient. In addition, the initial solutes
concentration of Cr and C are equal to the nominal alloy composition and uniformly
distributed within the computational domain. As described in section-3.7, the boundary
conditions of solving mass diffusion equation are periodical at all side surfaces of the
domain and isolated at the top and the bottom. These boundary conditions will ensure the

mass conservation and no leak can occur.

4.1 The Effect of Surface Energy Anisotropy on the Free Growth of Equiaxed Grain

In this section a study of the effects of anisotropy coefficient (as described by Equation-
3.7) are investigated. Three different simulation-runs are used with the following
parameters for each: isothermal condition with initial temperature = 1505 °C, small initial
spherical solid, nominal alloy composition Cr18%wt — €0.08%wt, and Gibbs-Thomson
coefficient /"= 177 K - m. For this alloy at a flat S/L interface, the distribution coefficient
of carbon (k) is equal to 0.15 and is equal to 0.95 for chromium (kg,.). The anisotropy
coefficient is different for each simulation; The first simulation-run (RUN411) has very
small anisotropy coefficients (section-1.7.5) that are equal to 0.002, the second simulation-
run (RUN412) has anisotropy coefficients equal to 0.03, and the third simulation-run

(RUN413) has anisotropy coefficients equal to 0.3.
RUN411:

The developing microstructure of simulation RUN411 is shown in Figure-4.1. The initial

shape of the solid phase is spherical as illustrated in Figure-4.1a. At a simulation time equal
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to 0.0005 sec (Figure-4.1b), the spherical morphology is maintained because of the weak
effect of surface energy anisotropy. In this case, the surface energy is almost isotropic, and
the growth rates are equal in all directions due to the equal effect of surface energy.
Spherical shape is maintained, even though the mesh anisotropy is present, because mesh
with a high resolution (cell size dx=0.2um) was used. However, the spherical morphology
starts to be unstable as the solid fraction increases (Figure-4.1c) and perturbations along
the preferred growth directions are produced. For a growth with zero anisotropy, the
spherical stability is expected to be broken and produced a coral like shape as shown in

Figure-1.11b.

) - 4 et

Figure-4.1: Unconstrained dendrite growth with very low anisotropy coefficients
(anis=0.02). (a) initial solid fraction, (b) solid fraction at t=0.0005 sec, (c) solid fraction
at t=0.00175 sec, (d) solid fraction at t=0.0025 sec. [RUN411]
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Figure-4.1d shows a manifestation of the growth along the preferred growth directions.
Eventually, after a longer time of the simulation, an equiaxed dendrite is expected to form.
Figure-4.2 shows the concentration of carbon in liquid surrounding the growing solid
during the simulation. At an early stage of the simulation (Figure-4.2a), the rejected solutes
form spherical layers around the growing spherical solid. Since the solute diffusion in
liquid is slow, the solute removal from the S/L interface is slow and hence the growth rate.
As the solid fraction increases and the spherical morphology is broken (Figure-4.2b), the

surface area of the solid increases and so the diffusion process becomes faster.
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Figure-4.2: (a) the solute (carbon) distribution in liquid at t=0.0005 sec, (b) the solute
(carbon) distribution in liquid at t=0.0025 sec.

RUN412:

Metals with BCC and FCC crystal structure solidify from bulk liquid with six preferred
<100> growth directions producing equiaxed microstructure morphology under
unconstrained growth conditions. The effect of preferred growth directions can be included

in the simulation using anisotropy coefficients in Equation-3.7. The resulting
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microstructure of RUN412 with anisotropy coefficients equal to 0.03 is shown in Figure-
4.3. In contrast to Figure-4.1d, the microstructure is equiaxed (Figure-4.3d) with six
primary arms because the maximum growth rate is aligned with the six easy growth

directions.

ST

e d) =
Figure-4.3: (a) the initial grain nucleus, (b) the grain at t=0.00039 sec, (c) the grain at
t=0.0027 sec, (d) the grain at t=0.0093 sec. [RUN412]

Numerically, the maximum growth rate along the preferred growth directions are enforced
by the anisotropy function (Equation-3.7) which changes the values of the surface energy
along the dendrite surface, and the maximum surface energy will be located at the tips of
the dendrite. Physically, more atoms will be attached to the tips of the equiaxed dendrite

so that the growth rates will be faster there.
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Figure-4.4: (a) the chromium distribution in liquid, and (b) the carbon distribution in
liquid. [RUN412]
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Figure-4.4 shows the distribution of solutes (Cr and C) in liquid during the solidification.
The distribution of Cr in the solid is almost equal to the distribution of it in the surrounding
liquid (Figure-4.4a), because the distribution coefficient is almost equal to one (k2, =
0.95). In contrast, the distribution of C in liquid (Figure-4.4b) gradually builds layers of
solute around the growing solid phase, because the distribution coefficient is small (kg =
0.15). Since the S/L interface of an equiaxed dendrite is larger than the spherical
morphology interface, the process of solutes removal from the S/L interface is faster and
so the growth rate. The pattern of solute distribution around the solid phase is a common

result feature that results from the solidification simulation as shown in Figure-4.5.
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Figure-4.5: The solute layer rejected in liquid as obtained by a) [66], b) [67], and ¢) [65].
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Figure-4.6 shows the distribution of the curvature and the capillarity undercooling of the
equiaxed dendrite during the simulation. In Figure-4.6a, the positive values of curvature
are calculated for the convex interface (e.g. the tips) and the negative values are calculated
for the concave interface. Accordingly, the values of capillarity undercooling dTr (Figure-
4.6b) are calculated using Equation-3.6 and have positive values at convex interface

portions and negative values at concave interface portions.
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Figure-4.6: A cross section of the dendrite showing (a) the curvature of the S/L
interface, and (b) the capillarity undercooling. [RUN412]

The maximum value of dTr is around 0.26 °C and the minimum value is -0.15 °C. At convex
portions of the S/L interface, the melting temperature of solid decreases by the
corresponding dTr, and, unlikely, the melting temperature of solid increases by dTr at
concave portions. The incorporation of dTr in the calculation of solid fraction is described

in section-3.3.5 and Figure-3.13.
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RUN413:

The third simulation-run (RUN413) uses the same simulation parameters as RUN412 but

with a higher value of anisotropy coefficients equal to 0.3.

Figure-4.7: (a) the irﬁtial grain nucleus, (b) the grain at t=0.00039 sec, (¢) the grain at
t=0.0039 sec, (d) the grain at t=0.0079 sec. [RUN413]

The obtained dendrite morphology of the high anisotropy case (Figure-4.7d) is more fractal
than the low anisotropy case (Figure-4.3d). This is expected because higher anisotropy
coefficients promote the growth rate along the easy growth directions, which produces

more fractal shape.
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In Figure-4.8a a cross section through the dendrite shows the solid fraction distribution.
The interfacial cells are in the mushy state, so their solid fractions are less than one. Figure-

4.8b shows the carbon distribution in solid of RUN413.
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Figure-4.8: (a) a cross section of the solid fraction at t=0.0079 sec, and (b) the carbon
distribution in solid. [RUN413]

The carbon segregation is more pronounced than the chromium segregation because its
distribution coefficient is lower. Carbon segregates more on the outer surface of the
dendrite, and its concentration is less in the core. The reason of the solute segregation
pattern is that at a tip the curvature is large and so the solute concentration in liquid is low.
Accordingly, less solute concentration in solid is located along the trace of the tip growth.
The segregation-index of carbon (SIndex_C) is equal to 0.276, and the segregation-index
of chromium (SIndex_Cr) is equal to 0.001. As expected, the segregation of carbon in
solid is much higher than the segregation of chromium since the distribution coefficient of

carbon is smaller.
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For comparing RUN412 and RUN413, the segregation index is calculated for RUN412,
and it is found that SIndex_C = 0.2322 and SIndex_Cr = 0.0004. In addition, the
growth time for RUN412 was equal to 0.009 sec and it was equal to 0.007 sec for RUN413.
RUN412 has a lower anisotropy coefficient, so the growth rate is slower and the solute
segregation is less severing. In addition, the morphology of RUN412 (Figure-4.3d) is
smoother than RUN413 (Figure-4.7d), because a smaller anisotropy promotes the effect of

capillarity undercooling which tends to flatten the S/L interface.

4.2 The Effect of Undercooling on the Free Growth of Equiaxed Grain

Increasing undercooling increases the driving force of solidification as described in
section-1.7.1. Solidification undercooling affects the growth velocity, the dendrite
morphology, and the solute segregation in solid. Two simulation-runs are used to
investigate the effect of undercooling with the following parameters: nominal alloy
composition 13 wt% of Cr and 0.15 wt% of C, Gibbs-Thomson coefficient I’ = 177 K - m,
and anisotropy coefficient equal to 0.2. However, the initial temperature of the first
simulation-run (RUN421) is equal to 1500 °C with 2 °C undercooling, and the initial
temperature of the second simulation-run (RUN422) is equal to 1496 °C with 6 °C
undercooling. It is expected that the developed microstructure of RUN422 should be more

fractal with more solutes segregation because of the higher undercooling.
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Figure-4.9: (a) the developed dendrite of RUN421, and (b) the developed dendrite of
RUN422.

The developed microstructure of RUN421 is shown in Figure-4.9a. The dendrite is an
equiaxed with six primary arms and some secondary arms. Figure-4.9b shows the
simulation-run RUN422 which has the same parameters as RUN421 but with a higher
undercooling. The developed microstructure in RUN422 is more fractal with long
secondary arms and some short tertiary arms. The solidification time of RUN421 was equal
to 0.043 and the solidification time of RUN422 was equal to 0.0133 sec. The microstructure
is more dendritic and the growth rate is higher in the case of a higher undercooling because
of the higher driving force of solidification. Figure-4.10 shows a cross section of the
developed microstructure of RUN421 and RUN422. For RUN421, the segregation indices
are SIndex_C = 0.2 and SIndex_Cr = 0.0029, and for RUN422, they are SIndex_C =
0.3277 and SIndex_Cr = 0.0041. In the case of the higher undercooling, the solutes

segregate more at the boundary of the microstructure.
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Figure-4.10: (a) a cross section of the developed microstructure of RUN421 (low
undercooling), and (b) a cross section of the developed microstructure of RUN422 (high
undercooling).

As a result, the growth of a dendrite with a higher undercooling is faster than a dendrite
with a lower undercooling. Similarly, the solutes segregation of a solidification with a
higher undercooling is more severe than the solidification with a lower undercooling. The
reason is that more undercooling increases the driving force of the solidification, and the

microstructure deviates more from the equilibrium composition.

4.3 The effect of cooling rate

Increasing cooling rate increases the growth rate and produces more fractal microstructure.
In addition, increasing cooling rate deviates the composition of microstructure more from
the equilibrium that increases the segregation. The model is used to predict the effect of
different cooling rates. Four different simulation-runs with the same parameters and

different cooling rates are investigated in this section. The used simulation parameters are
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nominal alloy composition 16 wt% of Cr and 0.08 wt% of C, initial temperature =1504 °C,

Gibbs-Thomson coefficient I' = 177 K - m, and anisotropy coefficient equal to 0.2.

Different cooling rates are used for each run where RUN431 has cooling rate equal to 50

°C/s, RUN432 has cooling rate equal to 100 °C/s, RUN433 has cooling rate equal to 200

°C/s, and RUN434 has cooling rate equal to 500 °C/s. Their developed microstructures are

shown in Figure-4.11.
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Figure-4.11: The microstructure morphology of (a) RUN431, (b) RUN432, (c)

RUN433, and (d) RUN434.



The solidification time and solute segregations of simulation-runs shown in Figure-4.11

are listed below:

e RUN431: solidification time=0.0061 sec, SIndex_C = 0.35, SIndex_Cr = 0.0017.

e RUN432: solidification time=0.0060 sec, SIndex_C = 0.38, SIndex_Cr = 0.0017.

e RUN433: solidification time=0.0057 sec, SIndex_C = 0.4, SIndex_Cr = 0.0019.

e RUN434: solidification time=0.0050 sec, SIndex_C = 0.47, SIndex_Cr = 0.0021.

The results presented in Figure-4.11 show that as the cooling rate increases the
microstructure becomes finer and more dendritic, forming more secondary and tertiary
arms. For example, comparing the window-box in Figure-4.11d and 4.10c, the secondary
arms spacing in the case of the higher cooling rate (Figure-4.11d) is smaller than the case
of the lower cooling rate (Figure-4.11c). This indicates that the microstructure in Figure-
4.11d is finer than the one in Figure-4.11c, as described in section-1.7. In addition, the
solutes segregation increases as the cooling rate increases, as estimated by the segregation

indices.

4.4 Solidification of Duplex Steels

The microstructures of duplex stainless steels consist of austenitic and ferritic phases. They
have good as-welded mechanical properties and excellent corrosion resistance properties
[68]. In order to obtain a duplex microstructure, the nominal alloy composition should be

located in the tie-triangle area as shown in Figure-4.12a. Two simplifications are
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considered in this study; The zone of FCC-BCC (Figure4.12a) is ignored, and the tie-
triangle is divided into two zones by a boundary line, as shown in Figure-4.12b. Thus, if a
state is initially located to the right of the boundary line is considered to be in the L-BCC
zone, and the state is in the L-FCC-BCC zone if it is located to the left of the boundary line.
Using CALPHAD allows the algorithm to predict the solidifying phases, which can be
liquid-ferrite or liquid-austenite. This simplification is physically reasonable since the
nucleation needs some undercooling, and it is considered that crossing the boundary line

provides the required undercooling for nucleation.
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Figure-4.12: A sifnplifying éssufnption for isotherms.
To investigate the solidification of a duplex microstructure, an alloy with initial
composition Cr 8%wt — C 0.5%wt is used. According to the used thermodynamics
database, the state of the alloy is L-BCC at T=1469.5 °C and L-FCC at T=1469.1 °C, as
shown in Figure-4.13. Two simulation-runs with different cooling rates are used for this

study: RUN441 with 10 °C/s cooling rate and RUN442 with 100 °C/s cooling rate.
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Figure-4.13: For (Cr 8%wt — C 0.5%wt) alloy, the thermodynamics state is (a) L-BCC,
and (b) L-FCC.

Figure-4.14 shows the growing microstructure of RUN441, and the simulation estimates
that the fraction of solid is 96% ferrite and 4% austenite. The developed microstructure is
almost ferritic with some trace of austenite phase at the diagonal directions of the dendrite.
Some cells at the dendrite diagonals have high and concave curvatures which cool down

the solid and favor the austenite phase thermodynamically.
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Figure-4.14: The duplex microstructure cooling rate = 10 °C/s. [RUN441]

Simulation-run RUN422 has the same simulation parameters as RUN421 but with a higher

cooling rate that is equal to 100 °C/s. Figure-4.15 shows the developed duplex
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microstructure, and it is found that the developed microstructure is around 4.1% ferrite and

95.9% austenite.
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Figure-4.15: The duplex microstructure cooling rate = 100 °C/s. [RUN442]

In Figure-4.15 the core of the developed microstructure is ferrite because the initial alloy
composition was located in the L-BCC zone (Figure-4.13a). As the temperature decreases,
austenite becomes more stable and starts to form. Therefore, for an alloy with a nominal
composition of Cr 8%wt — C 0.5%wt, a higher cooling rate produces more austenite in the
final duplex microstructure. This is because with the higher cooling rate, the
thermodynamics state will cross the boundary line between L-FCC and L-BCC faster that
produces more austenitic phase. It is expected that the fraction of austenite phase will
increase if the simulation time is extended. Figure-4.16 shows the carbon distribution in
solid for a duplex microstructure with low cooling rate and high cooling rate. For RUN441

(Figure-4.16a) the segregation indices are SIndex_C = 0.286 and SIndex_Cr = 0.0141.
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Similarly, for RUN442 (Figure-4.16b), the segregation indices are SIndex_C = 0.349 and

SIndex_Cr = 0.0113.
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Figure-4.16: The carbon distribution in solid for (a) 10 °C/s cooling rate [RUN441] and

(b) 100 °C/s cooling rate [RUN442].

The solutes segregation in solid of RUN442 is higher than the segregation of RUN441,

because RUN442 has a higher cooling rate and produces more austenite fraction. The

developed microstructure in Figure-4.16b is a duplex one in which the core is ferritic phase

surrounded by austenitic phase.

4.5 The Effect of Curvature Calculation Models on a Microstructure Evolution

This section investigates the constrained dendritic growth. Four simulations are

investigated all of which have the same parameters (i.e. nominal alloy composition 18 wt%

of Cr and 0.08 wt% of C, initial temperature =1504 °C, cooling rate =50 °C/s, Gibbs-

Thomson coefficient I' = 177 K - m) but different curvature calculation model. The first

simulation-run (RUN451) uses the cell-count method (Equation-3.21), the second
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simulation-run (RUN452) uses the level-set method with averaging of the solid fractions
(Equation-3.4), the third simulation-run (RUN453) uses the level-set method with the
optimum averaging (section-3.3.4.2), and the fourth simulation-run (RUN454) uses the
level-set method with the optimum averaging and a reduced Gibbs-Thomson coefficient.

All of the simulation runs have the same initial S/L interface configuration as shown in

Figure-4.17.
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Figure-4.17: The initial S/L interface for RUN451, RUN452, RUN453, and RUN454.

The initial morphology, as shown in Figure-4.17, is a flat S/L interface with a small nucleus
in the middle with 0.75 um width and 0.5 pm height. The purpose of the nucleus is to
produce a convex interface that reduces the liquidus temperature and enhances the growth.
If a flat interface is used without the nucleus, the initial flat interface will advance without
producing a dendrite. Figure-4.18 shows the dendrite produced in RUN451, and Figure-

4.19 shows the dendrite produced produced in RUN452.
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Figure-4.18: (a) the developed microstructure of RUN451 that uses cell-count method,
and (b) a cross section of the solid fraction through x-axis. [RUN451]

When a cell-count method is used (Figure-4.18), a main dendrite is developed in the middle
of the computational domain and some smaller dendrites are produced within the
computational domain. The main dendrite is developed from the initial nucleus, and the
other dendrites are grown from disturbances produced on the initially flat S/L interface.
The disturbances occur because of the cell-count method that impose some uncontrolled
numerical noise in the curvature computation. This noise starts from the initial nucleus
surrounding and propagates through the domain disturbing the flat S/L interface and
produces smaller perturbations. Eventually, the perturbations grow and form full columnar

dendrites as shown in Figure-4.20.
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Figure-4.19: The developed microstructure of RUN452 that uses level-set method, and
(b) a cross section of the solid fraction through x-axis. [RUN452]

Figure-4.19 shows the resulting microstructure using the level-set method with averaging
weights, as describe in section-3.3.4.2. In comparison to cell-count method, level-set
method does not produce strong numerical noise and does not disturb the initial flat S/L
interface. As a result, one dendrite is grown from the initial nucleus and develops secondary

and some tertiary arms.

Figure-4.20a shows the initial disturbances of the S/L interface, and Figure-4.20c shows
the initial perturbations. These perturbations act as nuclei and produce dendrites as shown

in Figure-4.20d.
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Figure-4.20: The disturbance of the initial S/L interface due to cell-count method at (a)
0.0011 sec, (b) 0.0022 sec, (c) 0.0033 sec, and (d) 0.0045 sec.

Figure-4.21 shows the dendrite produced in RUN453, and Figure-4.22 shows the dendrite

produced in RUN454.
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Figure-4.21: The developed microstructure of RUN453 that uses level-set method with
optimum averaging, and (b) a cross section of the solid fraction through x-axis.
[RUN453]
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Figure-4.21 shows the resulting dendrite when the level-set method with optimum weights
averaging is used. In contrast to the dendrite shown in Figure-4.19, the developed dendrite

with optimum weights averaging is smoother and less fractal. This is so because the
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curvature calculation using optimum averaging values is more accurate, as predicted by the
sphere test (section-3.3.5), which reduces the numerical noise. Therefore, a simple and
smooth shape is maintained for a longer time, and the structure will be fractal eventually if

a larger computational domain is used.

Figure-4.22 shows the resulting dendrite of RUN454, when the level-set method with
optimum weights averaging is used and the value of /™ is reduced by half, soI’ = 0.577 K -
m. Gibbs-Thomson coefficient enhances the effect of surface energy so that a lower value
of it reduces the action of the surface energy. Since the surface energy tends to flatten or
smoothen the S/L interface (as described in section-1.7.1), it is expected that a smaller
value of /7 will produce more fractal dendrite, in comparison to the case when a higher

value of /" is used as in RUN453.
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Figure-4.22: The developed microstructure of RUN454 that uses level-set method with

optimum averaging and I’ = 0.577 K - m, and (b) a cross section of the solid fraction
through x-axis. [RUN454]
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The growth of the columnar, or smooth, structure is slower than the dendritic structure. For
example, the simulation time for RUN452 (dendritic) was equal to 0.0098 sec and the
simulation time for RUN453 (columnar) was equal to 0.0126 sec. This is for the same
reason as the case of spherical growth (section-4.1) in which smoother S/L interface has a
smaller total area for diffusion with a slower diffusion process. As a result, the solutes

removal from the S/L interface is slower and so the growth rate.

4.6 Dendrite Growth Simulations Including Heat Diffusion Solver

The heat diffusion is not solved for all previous simulation runs because the isothermal
case is considered with a uniform temperature within the computational domain. In this
section two simulation runs (RUN461 and RUN462) are investigated in which the heat
diffusion is solved as described in section-3.3.5. Both runs have the same simulation
parameters with nominal alloy composition 16 wt% of Cr and 0.05 wt% of C, initial
temperature =1508 °C, anisotropy coefficients 0.25, and Gibbs-Thomson coefficient I =
177 K - m. Since the heat diffusion equation will be solved, more alloy properties are
needed which are thermal conductivity k., = 43/100 J/K - m3, latent heat of fusion
Lh =17.2 X 10 J/m3, heat capacity Cp = 3.1 x 10”7 J/K-m3 and density p =

6800 kg /m3.

Periodical thermal boundary conditions are used for all sides of the computational domain.
In addition, an insulated boundary condition is assigned to the top of the domain, and a

temperature gradient equal to 0.1 °C/um is assigned to the bottom of the domain to add the
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cooling effect. For solute transport, periodical boundary conditions are used for side

surfaces of the domain, and isolated boundaries are used for the top and the bottom of the
domain.

Although both simulation-runs have the same simulation parameters, they have different
initial S/L interface configurations as shown in Figure-4.23, wherein RUN461 has one
initial nucleus at the middle of the computational domain and RUN462 has a rough initial
S/L interface. The computation time of these simulations is the longest because the used
iteration technique to account for the thermal diffusion performs 5 to 10 interpolation

calculations for each interfacial cell at every time step, as described in section-3.3.5.
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Figure-4.23: (a) the initial S/L interface of RUN461, and (b) the initial S/L interface of
RUN462.

Figure-4.23a shows the initial S/L interface of RUN 461 in which one small nucleus (0.75
um width and 0.5 um height) is located at the center of the domain to promote the growth

of the dendrite. Unlikely, Figure-4.23b shows the case when the initial S/L interface is
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microscopically rough, i.e. four thousand initial nuclei with different size are randomly
distributed. The induced roughness will change the curvature of the initial S/L interface

that promotes many dendrites to grow from different locations.

The next figures (Figure-4.24, 4.25, 4.26) show the growing microstructure for RUN461

at times equal to 0.0078, 0.019, and 0.027 sec respectively.
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Figure-4.24: For RUN461 at t=0.0078sec, (a) the growth dendrite, (b) the rejected
heat, (c) the rejected solute (carbon), and (d) the capillarity undercooling at a cross
section.

Figure-4.24a shows a growth of a dendrite from the initial nucleus at time equal to 0.0078
sec. The initial S/L interface starts to be disturbed because the cell-count method is used.

Figure-4.24b shows the temperature distribution within a cross section through the
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computational domain, and it shows how the releasing of latent heat increases the
temperature around the dendrite tip. The maximum and minimum temperature are equal to
1508.1 °C and 1507.75 °C respectively. In addition, the temperature is minimum at the
bottom of the domain since a cooling boundary condition is assumed there. Figure-4.24c
shows the concentration of carbon in liquid, which is formed due to the solute rejection
process. Well-defined layers of solutes are formed around the growing dendrite, and the
rest of the domain is at the initial solute concentration. Finally, Figure-4.24d shows the
calculation of capillarity undercooling (dTr) at a cross section of the computational domain

in which the range of dTr is -0.1°C to 0.25 °C.
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Figure-4.25: For RUN461 at t=0.019sec, (a) the growth dendrite, (b) the rejected heat,
(c) the rejected solute (carbon), and (d) the capillarity undercooling at a cross section.
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Figure-4.25 shows the growth of the dendrite at time equal to 0.019 sec. The dendrite
becomes longer and grows secondary arms, and some perturbations start to form nuclei.
Figure-4.25b and ¢ show the temperature distribution and the carbon concentration around
the growing dendrite respectively. Finally, Figure-4.25d shows that the absolute values of

dTr are increased since the dendrite becomes more fractal.
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Figure-4.26: For RUN461 at t=0.027sec, (a) the growth dendrlte (b) the reJ jected heat,
(c) the rejected solute (carbon), and (d) the capillarity undercooling at a cross section.

Figure-4.26a shows the developed dendrite at the end of the simulation, at time equal to
0.027sec. The dendrite is well developed with many secondary arms and a parabolic tip. In

addition, some columnar dendrites grow from the formed nuclei due to the produced
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numerical noise. Figure-4.26b shows the temperature distribution and the released latent
heat around the dendrite. Figure-4.26¢ shows the solute concentration around the dendrite
which indicates that the diffusion process promotes the growth. Finally, Figure-4.26d
shows that the value of dTr is increased up to 1°C, because the dendrite shape becomes

more complex and acquires sharp features.

Figure-4.27 shows the result of RUN462 in which the initial S/L interface is rough (see
Figure-4.23b). It is expected for such initial configuration that many dendrites will start to
grow and few of them will survive because of the competitive growth. Figure-4.27a shows
that many columnar dendrites are developed at the end of the simulation (at t=0.03 sec),
and Figure-4.27b shows a cross section of the solid fraction field. The width of one
columnar dendrite is approximately equal to 3 um, and no secondary arms are developed
because there are many columnar dendrites within the domain. Figure-4.27c¢ illustrates the
temperature distribution and shows that the temperature at the solidification front is higher
due to the release of the latent heat. Meanwhile, the temperature decreases as we approach
the bottom of the domain due to cooling effect. In addition, the temperature distribution
becomes uniform as we go far from the solidification front. Figure-4.27d illustrates the
solute concentration in liquid that shows a layer with a high solute concentration is formed
around each columnar. The developed concentration layers interact with each other, this is
called soft impingement, affecting the microstructure evolution due to the competitive

growth.
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Figure-4.27: The results of RUN462 at t=0.03 sec. (a) the developed microstructure,
(b) a cross section of the solid fraction field, (c) the temperature distribution, (4) the
rejected solute.

Figure-4.28 shows four different stages of the microstructure evolution of RUN462. In
order to study the competitive growth, a MATLAB code is written to count the number of
dendrites at any time. It is found that the number of surviving dendrites decreases with time
because some of them will grow at the expense of others. For example, there were 399
dendrites at t=0.0078 sec, 206 dendrites at t=0.0156 sec, 161 dendrites at t=0.0234 sec, and
68 dendrites at t=0.03 sec, as shown in Figure-4.28. By comparing the two circular-

windows in Figure-4.28c and Figure-4.28d, there are fewer dendrites in Figure-4.28d. As
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a result, the primary arm spacing (section-1.7) increases in Figure-4.28d since the number
of columnar dendrites decreases. It is expected that even fewer dendrites will survive and

they will grow at the expense of the others after a longer simulation time.

C)]

n  Some smaller dendrties
8 awill stop growing

© ' = @ = el
Figure-4.28: The developed microstructure at (a) T=0.0078 sec, (b) T=0.0156 sec, (c)
T=0.0234 sec, and (d) T=0.0234 sec. [RUN462]

The initial configuration and state of the system are artificial one that does not represent
the steady state. Therefore, the system goes through a transient state at the beginning of the
simulation trying to reach the steady state. Eventually, the heat and mass distribution
become steady and also the growth velocity. There is one steady state configuration for any
specific solidification system with specific solidification parameters regardless to the initial
S/L interface configuration. The steady state determines the microstructure properties such

as grain density and segregation.
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Figure-4.29 shows the temperature profile along a line located at the center of the
computational domain of RUN462 and extended from the bottom to the top. Initially the
temperature is constant and uniform (1508 °C), so the temperature profile is as shown by
the dotted line in the figure. Figure-4.29a shows the temperature profile after 1000 time
step (0.0039 sec) which is changed due to the heat diffusion. The temperature at the bottom
(point-A) is less than the initial temperature (approximately equal to 1507.8 °C) since the
heat is extracted from the bottom. On the other hand, the temperature at the top of the
domain (point-B) is yet not changed. The difference in temperature from the bottom and

the top of the domain derives the heat diffusion process.
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Figure-4.29: The temperature profile at (a) 1000 time step (0.0039 sec), (b) 2000 time
step (0.0078 sec), (c) 5000 time step (0.019 sec), and (d) 8000 time step (0.031 sec).
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Figure-4.29b shows the temperature profile at time step 2000 (0.0078 sec) on which the
heat is accumulated forming a hump in the temperature profile. This temperature hump is
due to the releasing of the latent heat at the solidification front, and the temperature
decreases until it becomes equal to the initial temperature. At the time step 2000, the
maximum temperature of the temperature hump is equal to 1508.01 °C, which slightly
above the initial temperature. As the solidification process continue more heat is released
and so more heat is accumulated, and the temperature hump becomes higher and wider, as
shown in Figure-4.29¢c. At this stage (time step 5000 and 0.019 sec), the maximum
temperature is equal to 1508.1 °C. Figure-4.29d shows the temperature profile at the end of
simulation in which the solidification front reaches the top of the control volume. The
temperature profile becomes smoother and some interaction with the boundary condition
at the top of the domain occurs (point-B). The result shows that the releasing of latent heat
increases the maximum temperature at the solidification front by 0.12 °C. It is expected
that this value will decrease if the used thermal conductivity is not reduced. Therefore, the
effect of latent heat releasing is not significant for this simulation, and a simple temperature
profile can be imposed on the computational domain without solving the heat diffusion

equation.
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Chapter-5: Predicting the Microstructure of the Fusion Zone

This chapter describes how the current CA-CALPHAD model can be used to predict the
microstructure of the fusion zone of weld joints. The macro/micro coupling of a
temperature field and CA-CALPHAD model for a Bead-On-Plate weld joint and the effect
of welding parameters on the solidification microstructure are investigated. The
temperature history of the weld joint is obtained using VrWeld® [69], and specific points
on the weld pool boundary are picked for which the CA-CALPHAD solidification model
is run. VrWeld® can analyze a given weld joint design and calculate the macroscopic
thermal field and thermal stress [70, 71], fatigue life [72], the macroscopic microstructure
for low alloy steels [73], the solid-state microstructure phase transition based on the phase-
field modeling [4], and the microstructure of the fusion zone based on the phase diagram

linearization [3].

In this study, three types of steel alloys are investigated for the same weld joint geometry
and welding procedure: 430 ferritic stainless steel, 410 martensitic stainless steel, and a
duplex steel with Cr 8%wt — C 0.5%wt. Stainless steel alloys are chosen because the
available CA solidification models that are based on the linearization approach cannot
study them. In addition, stainless steels are practical alloys which are being used in many
industrial applications. Stainless steels have high strength and corrosion resistance at high

temperatures, so they are suitable for marine and energy applications. Generally, the
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stainless steels are readily weldable [74], but the weldability decreases as the carbon

content increases.

One main problem with welding stainless steels is the weld decay or the weld sensitization.
It is an intergranular corrosion in which chromium carbides form around the grain
boundaries depleting grain boundaries of chromium. Since chromium carbides can form at
a specific chromium and carbon concentration, estimating the ratio of carbon concentration
to chromium concentration (C/Cr) can characterize the tendency to carbide formation and

chromium depletion.

5.1 Coupling Macroscopic Welding Case to Microscopic Solidification Model

Figure-5.1 shows a Bead-On-Plate weld joint, as giving by [75]. The welding parameters
are the welding volt is 11.2V, the welding current is 160A, and the welding speed is 140
mm/min. The material properties of 316L stainless steel are used for the macroscopic
thermal analysis. The double ellipsoid model [76] is used for the weld pool (Figure-5.1b),
and the weld joint design is shown schematically in Figure-5.1a. Using VrWeld®, the

cooling curve (T-t) at any point in the weld joint can be obtained from the FE analysis.
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Figure-5.1: The used welding joint for macroscopic temperature calculation.
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Figure-5.2, for example, shows the cooling curve at point Py (shown in Figure-5.1b), and
the cooling rate at this point at the onset of solidification can be obtained as a corresponding
dT/dt value. However, to simplify the calculation, a secant slope is used to calculate dT/dt.
For example, on the cooling curve of Py, a point at the melting temperature (Tm) and a
point with a temperature value slightly above it (T2) are used to calculate the slope or the

cooling rate, as shown in Figure-5.2b.
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Figure-5.2: (a) the cooling curve at Py, (b) the cooling rate at Po.

The cooling rate of any point on the weld pool boundary can be calculated using the same

procedure.
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tusion line (FL)
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Figure-5.3: The variations of cooling rate and temperature gradient around the weld

pool. [9], page-201.
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Figure-5.3a shows the variations of growth velocity and temperature gradient around the
weld pool. Figure-5.3b lists the cooling rates (Rc) and the temperature gradients (TG) at
some specific points on the weld pool boundary. The maximum growth velocity is at point
Py and the minimum growth velocity is at P,.. Reversely, the minimum temperature gradient
is at Pg and the maximum is at P,, as described in section-1.5.2. Once the cooling rate at

any point is obtained, the temperature gradient at the point can be calculated as following:

temperature gradient cooling rate
dr dT/dt dx _
at = Tﬂdt T Vwera " sSinf  Eqg5.1

where, V014 18 the velocity of welding and 8 is the angle between the fusion line and the
weld pool boundary at a point on the weld pool perimeter and the fusion line as shown in
Figure-5.3a. By writing a MATLAB code to calculate Equation-5.1, the cooling rate (Rc)
and temperature gradient (TG) for some points are calculated as listed in Figure-5.3b. The
initial configuration for all simulation-runs in this chapter is the same as shown in Figure-

4.17.

5.2 The Microstructure Evolution of the Weld Pool Boundary

Referring to Figure-5.3b, the microstructure development at point Py is studied in RUNS511,
and the microstructure development at point P> is studied in RUNS512. Both runs use the
same simulation parameters and the cell-count method. The used simulation parameters
are nominal alloy composition Cr16%wt — C0.08%wt, initial temperature = 1504 °C,

anisotropy coefficients = 0.2, and Gibbs-Thomson coefficient = 1~7 K - m. In addition, a
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linear temperature profile is assumed within the computational domain in which the
temperature at the bottom is equal to the initial temperature and increases with the
corresponding temperature gradient and cooling rate through the computational domain.
This approach is described in section-3.3.2 and investigated in section-4.6. The
microstructure of RUNS11 is shown in Figure-5.4a. The microstructure is dendritic with a
main large dendrite in the middle of the computational domain and secondary arms with
some tertiary ones. In addition, smaller dendrites are developed within the domain because

the cell-count method is used, as discussed in section-4.5. The minimum temperature in

°C, due to the cooling rate.

the domain is equal to 1503.707 °C which is slightly below the initial temperature, 1504
160
140 1503.707368
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0
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Figure-5.4: (a) the developed microstructure of Po (RUNS511) at t=0.01 sec, and (b) the
resulting temperature gradient in °C. [RUNS511]
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Figure-5.5: (a) the dlstrlbutlon of carbon in solid, and (b) the C/Cr ratio. [RUNS511]

Figure-5.5 shows the segregation of carbon in the developed dendrite and the C/Cr ratio of
RUNS11. More carbon segregation is at the dendrite boundary, especially at the secondary
arms. The segregation indices for RUNS511 are SIndex_C = 0.6235, Sindex_Cr =
0.0034, and (C/Cc)max = 0.0015. It can be shown from Figure-5.5b that the grain
boundary of the secondary arms has higher C/Cr ratios, which indicates they are more

prone to weld decay.
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Figure-5.6: (a) the mlcrostructure of P> (RUNS512) at t=0.01 sec, and (b) the resulting
temperature gradient in °C. [RUNS512]
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Figure-5.6 shows the microstructure of the point P, (RUNS512) at t=0.01 sec and the
resulting temperature gradient. The microstructure is dendritic with a main large dendrite
with secondary and tertiary arms. The other dendrites are due to the uncontrolled numerical
noise of cell-count method. The minimum temperature is at the bottom of the control
volume and equal to 1503.765 °C. Figure-5.7 shows the segregation of carbon in the
dendrite and the C/Cr ratio at t=0.01 sec of RUN512. The carbon segregates more at the
secondary arms boundary which causes higher values of C/Cr ratios. The segregation
indices for RUN512 are SIndex_C = 0.612, SIndex_Cr = 0.0034, and (C/C¢)max =
0.0015. The segregation index of carbon of RUNS511 is larger than RUNS512 because the

cooling rate of RUNS511 is higher, but the maximum C/Cr ratios are almost equal.
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Figure-5.7: (a) the distribution of carbon in solid, and (b) the C/Cr ratio. [RUN512].

Two more simulation-runs are investigated for the point Py as shown in Figure-5.3b:
RUNS513 and RUNS514. Both runs use the same simulation parameters as RUNS511 and

RUNS512, but RUNS513 uses the level-set with averaging, and RUNS514 uses the level-set
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with the optimum averaging for curvature calculations, Equation-3.2.2. It is expected that
one dendrite will be grown from the initial nucleus without any smaller dendrites as in
RUNSI111 and RUN512, because the level-set method does not disturb the initial flat S/L
interface, as described in section-4.5. In addition, using the level-set method with the
optimum averaging as in RUN514 will produce columnar and smooth dendrite, because

the optimum averaging is more accurate and less sensitive to the numerical noise.
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Figure-5.8: (a) the microstructure of RUN513 at t=0.011 sec, and (b) the carbon
distribution in liquid. [RUNS513]

Figure-5.8a shows just one dendrite in the domain with secondary and tertiary arms. This
is expected since the level-set method was used. The extensive lateral growth of the
dendrite arms at the bottom of the domain is due to the temperature gradient, because the
bottom is colder than the top. Figure-5.8b shows the concentration of carbon in liquid in
which a thin layer of solute is formed around the developed dendrite. In addition, the carbon
concertation in liquid is higher at the bottom of the domain because temperature is lower,

and the dendrite arms are larger at the bottom that rejects and traps more solute atoms.
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Figure-5.9 shows the carbon distribution in liquid and the C/Cr ratios of RUNS513. Carbon
segregates at the dendrite boundary, and the core of the dendrite primary arm and secondary
arms have less carbon concentration. The distribution of C/Cr ratios follow the same
pattern, so the boundary of the dendrite is more prone to weld decay. The maximum C/Cr
ratio is equal to 0.0059 which is four times bigger than the predicted value by using the
cell-count method in RUNS512. This result shows that the method of curvature computation

strongly affects the microstructure composition.
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Figure-5.9: (a) the distribution of carbon in solid, and (b) the C/Cr ratio. [RUN513].

Figure-5.10a shows the dendrite of the point PO when the optimum averaging of the level-
set is used. The dendrite is smooth, as expected, because of using the optimum averaging
with level-set method. The carbon distribution in liquid (Figure-5.10b) consists of many
layers surrounding the developed solid phase. Figure-5.11 shows the segregation of carbon

and the distribution of C/Cr ratio of RUNS514.
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Figure-5.10: (a) the microstructure of RUN514 at t=0.012 sec, and (b) the carbon
distribution in liquid. [RUNS514]
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Figure-5.11: (a) the distribution of carbon in solid, and (b) the C/Cr ratio. [RUN514]

Figure-5.11a predicts a low carbon concentration in the core of the dendrite and more

segregation at the boundary. Accordingly, the boundary of the dendrite is more prone to
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weld decay. The segregation indices for RUNS514 are SIndex_C = 0.32, SIndex_Cr =
0.0019, and (C/Cc¢)max = 0.0011. The segregation index of carbon of RUN514 is less

than RUN513 and RUNS512 because the growth rate of RUN514 is the slowest.

In summary, the simulation-runs in this section show two key points. First, the
microstructure around the weld pool boundary varies because of the different thermal
conditions, as shown in Figure-5.3. Second, the curvature calculation method is important
for the microstructure prediction accuracy. The dendrite morphology, the segregation
pattern, and the growth rate are affected significantly by the used method. Therefore,
improving the accuracy of the curvature calculation method is important to improve the

overall prediction accuracy of the model.

5.3 The Microstructure Evolution with a Duplex Structure

To investigate the development of a duplex microstructure, the point Py (as shown in
Figure-5.2b) is investigated in RUNS521. The used simulation parameters are nominal alloy
composition Cr8%wt — C0.5%wt, initial temperature = 1469.5 °C, cooling rate = 56 °C/s,
anisotropy coefficients = 0.2, and Gibb-Thomson coefficient 177 K - m. In addition, a
linear temperature profile is assumed within the computational domain in which the
temperature at the bottom is equal to the initial temperature and increases with the
corresponding temperature gradient (TG=0.075 °C/um) through the computational domain.

According to the thermodynamic database this alloy solidifies with ferritic microstructure
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at 1469.5 °C, but it is expecting to develop some austenitic phase at temperature equal to

1469.1 °C, as shown in Figure-4.13.
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Figure-5.12: (a) the microstructure of RUNS521, and (b) a cross section through the x-
axis. [RUN521]

Figure-5.12a shows the microstructure of RUNS521 and a cross section through the x-axis.
The dendrite composes of just one dendrite on a flat S/L interface with secondary and
tertiary arms, since the level-set method was used. All cells inside the dendrite in Figure-
5.12b have fraction of solids equal to one, and the cells at the boundary of the dendrite have
solid fractions less than one because they are in the mushy state. The dendrite arms at the
bottom of the domain have more lateral growth than the arms at the top because of the

temperature gradient.

Figure-5.13 show the duplex microstructure of RUNS521. The core of the dendrite is
composed of a ferrite phase, because the nominal alloy composition solidifies into a ferritic

solid. However, as the temperature decreases due to the cooling, an austenite phase starts
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to grow around the grown ferrite. Therefore, the cooling rate is important in determining
the fraction of ferrite and austenite in a duplex microstructure solidification. The produced
fraction of austenite would increase if the cooling rate increases. The fraction of ferrite is
equal to 0.67 and the fraction of austenite is equal to 0.33. The simulation time was equal
to 0.0124 sec, and it is expected that the fraction of austenite will increases if the simulation

continues.
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Figure-5.13: (a) the produced ferrite phase, (b) the produced austenite phase, and (c) the
developed duplex microstructure. [RUNS21]
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The same investigation of microstructure can be repeated for any point at the weld pool
boundary. The results would be affected by the cooling rate and the temperature gradient
that are vary according to the used heat input and the weld joint design. Decreasing the
heat input (i.e. increase the welding speed or decrease the welding power) would increase
the cooling rate and temperature gradient. Therefore, the developed dendrite would be
more dendritic and fractal, the solute segregation would increase, and the microstructure
would be more prone to weld decay. Increasing the thickness of the weld joint would result
in the same effect. On the other hand, increasing the heat input would decrease the cooling

rate and temperature gradient which has the opposite effect.

179



Chapter-6: Conclusions

A CA-CALPHAD model was successfully developed by coupling the CALPHAD method
with the cellular automata (CA) microstructure solidification model. The model assumes
that the interfacial cells are at a thermodynamic equilibrium and assigns the equilibrium
information to the interfacial cells during the simulation. Since the S/L interface is at
equilibrium, the values of phase fractions and solute concentrations in phases at a given
temperature and an average composition in the cell are calculated by CALPHAD and
assigned to the S/L interfacial cells. Mathematically, the discontinuity between the liquid
domain and the solid domain is treated as Dirichlet’s boundary conditions to which the
equilibrium information is assigned. The CA-CALPHAD model overcomes the limitation
of the linearization approach used in other CA models available in the literature, in which
the liquidus and solidus curves are considered as straight lines with constant slopes.
Therefore, a wide range of practical alloys such as stainless steels can be investigated.
Another advantage of the model is the possibility to model solidification producing
different solid phases in the same alloy at different temperatures. The model validity is
confirmed by comparing the results with the published CA model results and with the

experimentally observed dendritic growth features presented in the literature.

In order to couple CALPHAD calculations with the CA model, an efficient lookup table

with tie lines interpolation scheme was developed. The thermodynamic information was
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pre-calculated and stored in the table so that the required information was interpolated
during the simulation. The table stores the information of the solidus and liquidus curves
for many temperature values. Therefore, the required information including the phase
fractions and the concentration of solutes in each phase can be interpolated. The size of the
stored data required for the simulation of solidification in a Fe-Cr-C alloy is an order of
one MB and the interpolation for a single point equilibrium is 300 times faster than the

CALPHAD calculation.

The capillarity effect was taken into account using two different approaches: the cell-count
method and the level-set method. The results demonstrate that each method predicts a
different dendrite morphology, solute segregation, and dendrite growth rate. A comparison
study for the two method was conducted, and it was found that the cell-count method is
less accurate and has a higher numerical noise that can disturb a flat S/L interface having
just one nucleus at the center. As a result, the dendrite morphology and the solute
segregation are affected significantly. In contrast, the level-set method is more accurate
and has a lower numerical noise, and its accuracy increases as the mesh size decreases.
Moreover, the level-set method is less sensitive to the mesh anisotropy. The accuracy of
the level-set method was improved by averaging the solid fraction field with optimized

weights.

The simulations of a free and constrained dendritic growth demonstrated that the

segregation of chromium was less pronounced than the segregation of carbon, since the
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distribution coefficient of chromium was bigger. In addition, the solutes segregated at the
boundary of the evolving dendrite more than at its core, and the solute segregation increases
as the cooling rate increased. The simulations predicted that increasing the cooling rate
produced more fractal dendrite (with more secondary and tertiary arms) and a finer grain
size. Similarly, increasing the initial undercooling increased the segregation and the growth

rate and produced a finer grain size.

The solidification of a duplex steel was investigated by using a nominal alloy composition,
which was composed of both the ferrite and austenite phases. It was found that the austenite
phase was formed around the ferrite phase, and more austenite phase fraction was obtained
by increasing the cooling rate. This occurred because, as the temperature was lowered due

to a higher cooling rate, a larger austenite fraction was produced.

A competitive growth of dendrites was investigated by initializing a rough initial S/L
interface. Initially, many dendrites started to grow and, eventually, few of them survived
due to the competitive growth. This suggests that a steady growth state was established
after some time of the simulation regardless of the initial state configuration and solute

distribution.

In order to investigate the microstructure of the weld, the model was successfully coupled
with VrWeld®, a computational welding mechanics software. The microstructure within
the weld pool varies because of the variation in the thermal condition. At the rear-most

point of the weld pool on the fusion line the cooling rate is maximum and the temperature
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gradient is minimum. Correspondingly, the solute segregation and the C/Cr ratio are
maximum, and the microstructure is finer. Therefore, the locations with high values of the
cooling rate are more prone to the weld decay, since high C/Cr ratios are predicted there.
Finally, with a constant arc power, increasing the welding speed or increasing the weld

joint transverse thickness will increase the cooling rate and affect the microstructure.

Contribution to Knowledge

e Coupling CALPHAD method with a cellular automata microstructure solidification
modeling was successfully accomplished, and the limitation of the phase diagram
linearization was overcome.

e An efficient data structure and interpolation scheme to store and interpolate the
thermodynamic information were developed.

e The performances of the cell-count and level-set methods were compared, and the
level-set method with an optimized accuracy was developed.

e The developed coupled model CA-CALPHAD can be used to investigate stainless steel
alloys because the linearized approach to phase diagrams is overcome.

e The effects of cooling rates and temperature gradients on the dendrite size and
morphology as well as the segregation pattern were predicted.

e The microstructure variations around the weld pool boundary was investigated for a
practical stainless steel weld joint in response to realistic welding parameters.

e The microscopic solidification of a duplex steel and the potential of the weld decay

were investigated for a practical weld joint and welding parameters.

183



Future Work

1)

2)

3)

4)

Adding a nucleation algorithm based on CALPHAD to the model. A nucleation density
function can be assumed, and the feasibility of nucleation can be determined by
thermodynamics. In addition, the type of the nucleated phase (ferrite, austenite) can be
determined by thermodynamics. Such algorithm is useful in studying the columnar-to-

equiaxed transition.

Modifying the anisotropy function and the capturing rule to allow for grain growth
orientations. This addition produces grain with arbitrary orientation which is useful

when nucleation algorithm is used.

Developing an implicit solver to solve the heat diffusion equation in the computational
computational domain. In this case, the same time step can be used for the heat

diffusion and the mass diffusion equations.

Developing more efficient and general interpolation scheme for thermodynamics

information.
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