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2 Département de Biologie cellulaire et de Morphologie, Université de Lausanne,
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Calreticulin exposure is required for the
immunogenicity of c-irradiation and UVC light-induced
apoptosis

Cell Death and Differentiation (2007) 14, 1848–1850; doi:10.1038/sj.cdd.4402201; published online 27 July 2007

Dear Editor,

It is commonly assumed that the only goal of anticancer
chemotherapy, like antimicrobial antibiotic therapy, is to
eradicate by direct cytotoxic effects all tumor cells. According
to this mechanism, complete and permanent cure would be
obtained by antineoplastic agents that succeed in killing all
cancer cells including cancer stem cells and micrometa-
stases.1,2 In fact, cancer has long been conceived and treated
as a cell-autonomous phenomenon, regardless of the immune
system’s contribution to the therapeutic response. Recently,
we have challenged this idea by showing that, at least in the
case of anthracyclin-mediated chemotherapy, the antitumor

immune response plays a major role in therapeutic success.
Thus, immunocompetent mice bearing CT26 colon carcino-
mas or MCA205 fibrosarcomas can be cured by intratumoral
injection of anthracyclins, whereas immunodeficient mice
lacking T cells only exhibit partial responses with a delay in
tumor growth.3–5 Detailed molecular studies revealed that
anthracyclins have the peculiar capacity of inducing immuno-
genic cell death. In contrast, many other cytotoxic agents
including agents that damage nuclear DNA (such as etopo-
side and mitomycin C), mitochondria, the endoplasmic
reticulum or lysosomes fail to induce immunogenic cell

Figure 1 Early CRT exposure is required for the immunogenic effect of g-irradiation or UVC light exposure. (a, b) Kinetics of PS exposure and cell death induced by
g-irradiation (a) or UVC light (b). CT26 colon cancer cells cultured in RPMI 1640 medium supplemented with 10% FCS, penicillin, streptomycin, 1 mM pyruvate and 10 mM
HEPES and treated by g-irradiation (75 Gy) or UVC light (100 J/cm2). After the indicated time period, cells were trypsinized and stained with FITC-labelled annexin V and
propidium iodide following standard protocols,21 and subjected to cytofluorometric analyses. Numbers in each quadrant refer to the percentage of cells (X7S.E.M. of
triplicates). (c, d) Immunofluorescence detection of CRT exposure on the cell surface in response to g-irradiation (c) or UVC light (d). Cells treated as above were stained
for the detection of surface CRT as described4 1 h after treatment. Representative cells are shown. (e, f) Kinetics of CRT exposure determined by FACS analysis after
g-irradiation (e) or UVC light (f). Cells treated as in panels a and b were trypsinized and stained for the detection of CRT on the cell surface while gating on the viable
population and excluding dead cells staining with propidium iodide. The CRT-specific staining profiles, as obtained for each time point post-treatment, are compared with
those of untreated cells. (g, h) Manipulation of CRT exposure by an siRNA and adsorption of recombinant CRT protein. Cells were transfected with a control siRNA or a
CRT-specific siRNA heteroduplex (sense strand: 50-rCrCrGrCUrGrGrGUrCrGrArAUrCrRrArATT-30). Thirty-six hours later, the cells were subjected to g-irradiation (g) or
UVC light (h), cultured for 4 h, optionally treated with recombinant CRT protein (3mg/106 cells in PBS on ice for 30 min, followed by three washes) and subjected to
immunofluorescence staining of CRT as above. (i, j) Requirement of CRT exposure for the immunogenic effect of ionizing irradiation. CT26 colon cancer cells were
transfected with the indicated siRNAs, g-irradiation (i), UV light (j) and/or recombinant CRT (as in g and h) and then injected subcutaneously (3� 106 cells) into the left
flank of BALB/c mice. One week after this vaccination, the mice were challenged with live tumor cells in the opposite flank (day 0) and the frequency of tumor-free animals
was monitored (mean7S.E.M.); n represents the absolute number of mice enrolled in each cohort. *Po0.001 (Student’s t-test)
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death.4,6 Thus, etoposide and mitomycin C exhibited an
identical therapeutic (in) efficacy in normal and athymic
mice.3 The molecular difference between immunogenic and
non-immunogenic chemotherapies turned out to reside in the
fact that immunogenic cell death is accompanied by the early,

pre-apopotic exposure of calreticulin (CRT) on the surface of
the plasmamembrane. This early CRT exposure allows tumor
cells to be efficiently engulfed by dendritic cells (DC),4,5

thereby setting the stage for efficient presentation of cancer-
specific antigen to cytotoxic T lymphocytes.7–11
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When screening for lethal stimuli that would yield immuno-
genic cell death, we found that g-irradiated CT26 cells (75Gy,
followed by 4 or 24 h culture) were not able to form tumors
when inoculated (3� 106 cells subcutaneously) into male
BALB/c mice. In contrast, such irradiated cells were highly
efficient (90%) in preventing the growth of live CT26 cells
(0.5� 106 cells) injected 7 days later into the opposite flank
(see below).4 The percentage of the cells that exhibited
phosphatidylserine (PS) on the cell surface or had lost their
viability (Figure 1a) was near to 4% after 4 h of irradiation and
10%after 24 h of irradiation. Prompted by this observation and
an ample literature suggesting that ultraviolet C (UVC) light
can induce immunogenic cell death,12–14 we decided to study
the kinetics of CRT exposure after lethal g-irradiation or UVC
light exposure. While both g-irradiation or UVC light exposure
had no or little effect on PS exposure at 1 or 4 h post-
treatment, respectively (Figures 1a and b), both resulted in a
significant (Po0.01, Student’s t-test) increase in CRT
exposure as early as 1h after treatment, as detectable by
immunofluorescence staining and microscopic (Figures 1c and d)
or cytofluorometric analyses (Figures 1e and f). Thus, CRT
exposure inducedby ionizing irradiationoccursat thepre-apoptotic
stage, in viable cells that lack PS exposure (Figures 1a and b), as
well as nuclear characteristics of apoptosis15 (Figures 1c and d).
Next, we determined the impact of CRT exposure on the

immunogenicity of tumor cells treated by g-irradiation or UVC
light. To this end, CT26 cells were treated with a small
interfering RNA (siRNA) specific for CRT or a control siRNA.
Knockdown of CRT resulted in the absence of CRT exposure
after g-irradiation or UVC light exposure, as determined 4 h
after the apoptotic insult. This defective CRT exposure could
be re-established by adsorbing recombinant CRT4,5,16,17 to
the cell surface (Figures 1g and h). Then, we determined the
capacity of g-irradiated or UVC-exposed cells to induce a
productive antitumor immune response. The cells were
washed with PBS and were then injected subcutaneously
into histocompatible immunocompetent hosts. One week
later, the mice were challenged by subcutaneous injection
of live, untreated CT26 cells into the contralateral
flank. Both g-irradiated and UVC-exposed cells exposing
CRT were strong anticancer vaccines. Depletion of CRT
with the siRNA strongly reduced the immunogenicity of
g-irradiation or UVC light exposure, and this effect could be
fully overcome by adsorption of CRT to the tumor cell surface
(Figures 1g–j). These results formally prove that CRT
exposure is critical for the immunogenicity of cell death
elicited by ionizing radiation.
Beyond the local and direct effects of g-irradiation on the

tumor itself and its stroma, there are a few indications in the
literature that anticancer radiotherapy is more efficient in
immunocompetent than in immunodeficient mice.18,19 In view
of our findings, it will be interesting to investigate the
contribution of CRT (and that of the molecular machinery
leading to its translocation to the cell surface) to the success of
radiotherapy. UVC exposure causes severe sunburn with a
rapid inflammatory response.20 It will be important to study

whether CRT exposure on cells of the basal keratinocyte layer
or of the dermis may contribute to the inflammatory reaction
and/or the phagocytic removal of damaged cells. Thus, the
data presented in this letter to the editor have direct clinical
and pathophysiological implications.
Another interesting question concerns the signal transduc-

tion pathway leading to CRT exposure. What are the
mechanisms through which diverse stimuli such as ionizing
irradiation and anthracyclins stimulate rapid CRT exposure,
while many other apoptotic insults fail to elicit this reaction?
We anticipate that responding to this question will allow us to
predict which anticancer therapies may elicit an immune
response against residual tumor cells, thereby improving the
chances of definitive cure.
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