
1

Calvin: Deterministic or Not? Free Will to Choose

Derek R. Hower, Polina Dudnik, Mark D. Hill, and David A. Wood

Computer Sciences Department

University of Wisconsin-Madison

1210 W Dayton St

Madison, WI 53706

{drh5,pdudnik,markhill ,david}@cs.wisc.edu

Abstract
Most shared memory systems maximize perfor-

mance by unpredictably resolving memory races. Un-

predictable memory races can lead to nondeterminism

in parallel programs, which can suffer from hard-to-

reproduce hiesenbugs.

We introduce Calvin, a shared memory model ca-

pable of executing in a conventional nondeterministic

mode when performance is paramount and a determi-

nistic mode when execution repeatability is important.

Unlike prior hardware proposals for deterministic ex-

ecution, Calvin exploits the flexibility of a memory con-

sistency model weaker than sequential consistency.

Specifically, Calvin logically orders memory opera-

tions into strata that are compatible with the Total

Store Order (TSO). Calvin is also designed with the

needs of future power-aware processors in mind, and

does not require any speculation support.

We develop a Calvin-MIST implementation that

uses an unordered coalescing write cache, multiple-

write coherence protocol, and delayed (timebomb)

invalidations while maintaining TSO compatibility.

Results show that Calvin-MIST can execute workloads

in conventional mode at speeds comparable to a con-

ventional system (providing compatibility) or execute

deterministically for a modest average slowdown of

less than 20% (when determinism is valued).

1. Introduction

Nondeterminism in multithreaded applications

arises from memory races that current implementations

does not control, especially for shared memory multi-

processor systems such as multicore processors. This

nondeterminism can lead to problems, such as hard-to-

find bugs that cost billions of dollars per year [38].

Recently, researchers have proposed various

hardware [11,43] and software [5,11,32] solutions to

address multithreaded nondeterminism. They have

shown that addressing the problem has the potential to

(1) increase software reliability by enhancing software

test coverage before release [43], (2) increase system

reliability through replication based fault tolerance [9],

(3) aid in multithreaded software engineering [42], and

(4) enhance security by providing a tool to analyze an

attack [13]. Many of these prior proposals either rely

on the ability to replay a previously recorded execution

[14,20,27,28,31,41,42], incur a performance overhead

that is likely too high for always-on usage [5], require

complex speculative hardware [11], or only guarantee

determinism in well behaved programs [32].

In response to these shortcomings, we propose

Calvin, a multiprocessor system model that can guaran-

tee determinism for multithreaded applications at an

acceptably low overhead (e.g., 20%). The Calvin mod-

el is fully compatible with the Total Store Order (TSO)

memory model [18,40], making it backward compati-

ble with the majority of commercially relevant archi-

tectures, including x86, SPARC, PowerPC, and ARM.

TSO defines a total memory order that is consistent

with each processor’s program order, except that stores

may be delayed provided a processor’s loads see its

own stores immediately (e.g., an implementation can

use FIFO store buffers, even without speculation).

While determinism shows great potential for de-

veloping new multithreaded software, some applica-

tions may not benefit from system-enforced determin-

ism, so those applications should not have to pay a

determinism performance penalty. For example, some

language and run-time systems provide deterministic

execution semantics on nondeterministic hardware

[2,8,16] and existing multithreaded software may al-

ready be robust to nondeterministic effects. These sys-

tems receive little or no benefit in exchange for any

overheads of system-enforced determinism.

To allow both deterministic and nondeterministic

execution, a Calvin system can execute in one of three

modes with different determinism guarantees.

• In Conventional (C) mode, a Calvin system does

not make specific guarantees about execution or-

der and behaves like a conventional TSO system.

• In Bounded Deterministic (BD) mode, a Calvin

system guarantees that an execution will be re-

peatable when run on the same Calvin hardware

implementation and given the same input.

• In Unbounded Determinism (UD) mode, a Calvin

system guarantees that an execution will be re-

peatable when run on any Calvin hardware im-

plementation and given the same input.

2

Figure 1 –Calvin execution deterministically enforces a

single valid TSO interleaving (top right) from among the sever-
al possible alternatives. Within a stratum S, all processors

logically order all loads first and then all stores in a fixed order
(e.g., processor P0’s stores before P1’s). To conform to TSO,

each load by Pi gets its value from a store by Pi before it in
program order (if any) or from the value at the end of stratum
S-1. For example, instruction i2 gets its value from i1, while i3
gets a value from stratum S-1. Strata are sequentially ordered.

As we will show in Section 2.2, the three modes of

a Calvin system offer a user-adjustable knob that can

trade off reduced performance for stronger determin-

ism guarantees. Importantly, we also show that a user

not wanting determinism does not have to incur a large

performance penalty in a Calvin system (i.e., Conven-

tional mode has comparable performance to a non-

Calvin baseline system). Depending on application

requirements, users can choose BD mode when deter-

minism is desired across different systems or UD mode

when determinism on the same system will suffice.

When the weaker guarantee of BD is sufficient, per-

formance may improve.

Hardware enforced determinism is valuable only if

it can be achieved with good performance at acceptable

power across many systems, including those that use

simple cores with little or no speculation [21,39]. To

this end, we explore the extreme position of imple-

menting Calvin with a simple, in-order non-speculative

core (and without the speculation support required by

previous deterministic systems [11]). Future work may

show that adding speculation makes performance-

power sense for some systems.

Calvin works by having all processors map memo-

ry operations into a series of global strata, (see Figure

1). Strata end when a stratum termination function

holds for all processors. The stratum termination func-

tion differs for each of the three Calvin modes. Con-

ventional mode minimizes Calvin’s performance over-

head by ending strata nearly simultaneously (e.g., by

counting cycles). BD mode considers deterministic

micro-architectural events (e.g., store buffer full) as

well as architectural events (e.g., store count). UD

mode ends strata based on architectural events only.

To this end we develop the Calvin-MIST imple-

mentation with some key micro-architectural features:

• It replaces a standard FIFO store buffer with a

simpler-to-make-larger unordered coalescing

write cache, while still maintaining TSO.

• It implements a multiple-writer coherence proto-

col, again without compromising TSO.

• The protocol adds a timebomb (T) state to the con-

ventional MSI states, hence the name “MIST,” to

plant delayed invalidations that cause blocks to

self-destruct when the current stratum ends.

We evaluate Calvin-MIST with the Parsec [6] and

Mantevo [1] workloads running on x86 Linux 2.6.26.

We simulate a 8-processor multicore with Bochs [25]

and GEMS [24] and compare against a conventional

nondeterministic system implementing an MOESI pro-

tocol. Results ask and answer two questions:

Question 1: Can Calvin-MIST avoid harm? Yes,

Calvin-MIST executes nondeterministic programs at

speeds comparable to a conventional system, thereby

maintaining functional/performance compatibility.

Question 2: Can Calvin-MIST do some good? Yes,

Calvin-MIST executes deterministic programs at a per-

formance overhead less than 20%, thereby providing a

benefit when determinism is valued.

Moreover, if record-replay is desired, Calvin’s de-

terministic execution can eliminate the need for memo-

ry race recording at reasonable overhead, because only

one memory race outcome is possible.

In our view, contributions of this paper include:

• Demonstrate a Non-Speculative Hardware Im-

plementation that shows determinism can be pro-

vided at an acceptable performance even without

the power and complexity of speculation.

• Leverage Total Store Order (TSO) Hardware

which is compatible with ARM, SPARC, Po-

werPC, and x86 systems and provides more free-

dom for optimization than sequential consistency,

assumed in previous hardware determinism sys-

tems [11,20,27,30,31,33,34,42].

Below, we present the Calvin execution model

(Section 2), describe the Calvin-MIST implementation

(Section 3), give evaluation methods (Section 4), pro-

vide experimental results (Section 5), contemplate fu-

ture work (Section 6),discuss related work (Section 7),

conclude (Section 8), and formalize (Appendix A).

2. Calvin Model

Calvin partitions an execution into strata whose

termination condition determines the execution mode.

To follow TSO terminology, we use loads/stores to

refer to the reads/writes of x86 instructions.

Stratum S

 Stratum S+1

Processor 0

 Stratum S

Processor 1

i4: ST(A) � 2

i5: R0 � LD(A)

i6: ST(B) � 3

i1: ST(B) � 1

i2: R1 � LD(B)

i3: R2 � LD(A)

T
im

e

L
o

ad
s

S
to

res

Calvin

Interleaving

R0 = 2

R1 = 1

R2 = 0

A = 2

B = 3

Other TSO

Interleavings

R0 = 2

R1 = 3

R2 = 2

A = 2

B = 3

R0 = 2

R1 = 1

R2 = 2

A = 2

B = 1

3

2.1. Strata

The Calvin execution model partitions the dynam-

ic loads and stores of a multiprocessor execution into

global strata. Operationally, each processor begins a

stratum, executes dynamic loads and stores until a stra-

tum termination condition holds, synchronizes with

other processors to ensure deterministic store order and

repeats for the next stratum. An interrupt gets deferred

until the next stratum boundary, much like how an in-

terrupt during a complex instruction awaits an instruc-

tion boundary. The system logically keeps strata in

sequence, so that all processors appear to complete

loads and stores for stratum S before they appear to

execute loads and stores for stratum S+1.

Within each stratum, execution proceeds as:

1. Each processor appears to execute its instructions,

including loads and stores, in program order, but

defers the global visibility of stores so that they

appear after all loads (e.g., with a store buffer).

2. Loads return the address’ value at the beginning of

the stratum, unless the same processor has per-

formed a store to the same address within the stra-

tum (i.e., store buffer bypassing).

3. Finally, Calvin specifies that the stores of different

processors be ordered in a predictable order. After

all loads are logically complete, processor P0’s

stores get ordered, then processor P1’s stores, etc.

Priorities should be rotated during subsequent stra-

ta to ensure fairness and avoid deadlock.

Strata rules have several consequences. First, stra-

tum execution is legal under TSO, ensuring backward

compatibility. See a proof sketch in Appendix A.

Second, stratum rules permit exactly one TSO execu-

tion, ensuring determinism within each stratum. Third,

loads and stores from different processors do not com-

municate within a stratum. In particular, each load gets

a value either from a previous store by its own proces-

sor or the value at the end of the last stratum. This con-

sequence will allow our implementation to use unor-

dered store buffers and a multiple-writer coherence

protocol.

The stratum memory ordering invariants hold for

all three Calvin execution modes. The next subsection

discusses how adjusting stratum termination deter-

mines whether the complete execution exhibits

bounded determinism, unbounded determinism, or

nondeterminism (i.e., conventional).

2.2. Stratum Termination Condition

Determines Execution Mode

A Calvin processor reaches the end of a stratum

when a stratum termination condition holds for that

particular processor, while the stratum globally com-

pletes when all processors have arrived at the stratum

boundary. Thus, stratum termination is logically a bar-

rier but does not have to be implemented as one.

The stratum termination condition determines

whether the system operates in conventional, bounded

deterministic or unbounded deterministic mode:

Conventional (C). A Calvin system executes in

conventional mode if the stratum termination function

depends on nondeterministic criteria. For example, a

stratum termination function based on cycle count pro-

duces stratum boundaries at nondeterministic execution

points, but can maximize performance by minimizing

the load imbalance of when processors end strata.

Bounded Deterministic (BD). A stratum termina-

tion condition that uses both architected and non-

architected but predictable state can provide a bounded

deterministic execution. For example, a stratum could

end either after a certain number of instructions have

completed or when a store buffer fills up. This mode

may reduce the cost of building a Calvin system com-

pared to a more robust form of determinism (discussed

next) by, for example, permitting a smaller store buffer.

Unbounded Deterministic (UD). An unbounded

deterministic execution results if the stratum termina-

tion condition depends only on architected state, e.g.,

instruction count. A UD execution is deterministic

across all implementations of the Calvin architecture.

2.3. Atomic Operations

Atomic read-modify-write operations require spe-

cial treatment in the Calvin model, just as they do in

the underlying TSO model. Atomic operations in a

TSO system obey the following rules: (a) execute all

previous load and stores, (b) perform the load and store

of the atomic operation, and (c) then execute any sub-

sequent loads and stores. Operations of other proces-

sors may interleave with (a) and (c), but not (b).

Calvin handles atomic operations by (1) ensuring

that at most one atomic executes per stratum and (2)

logically placing atomics at the end of a stratum. Cal-

vin inserts an implicit condition into all stratum termi-

nation conditions to end a stratum immediately after an

atomic, achieving condition (1) above. Second, Calvin

executes a processor’s atomic as if it were the proces-

sor’s last store of the stratum (including the read part of

a RMW). This ensures that all previous loads and

stores are ordered before the atomic (TSO rule part a).

While Calvin’s atomic rules correctly implement

TSO rules, they have an important consequence. Pro-

cessors can communicate within a stratum via atomics,

thereby violating Calvin rule 1. For example, if proces-

sor P0 stored 0, while processors P1 and P2 performed

atomic increments on the same address, the address’s

final value would be 2. Thus, both atomic increments

observe a value updated in their own stratum.

4

2.4. External Inputs

All potentially deterministic systems can only be

deterministic in response to deterministic input. This is

straightforward for programs that operate on fixed in-

put data that is available before execution begins.

Calvin also remains deterministic in the presence

of internally generated and/or asynchronous inputs.

Internally generated inputs are predictably scheduled a

predefined number of strata after a causal action (e.g.,

after initiating a DMA read). Asynchronous inputs are

made repeatable by recording the contents and logical

time of the input (e.g., an interrupt vector number and

the dynamic instruction count when the interrupt was

raised), as done by record-replay systems [42].

3. Calvin-MIST: A First Implementation

Calvin-MIST, our initial implementation of the

Calvin model, targets the multicore system illustrated

in Figure 2. Calvin-MIST replaces the conventional

ordered FIFO store buffer found in conventional TSO

systems with a set-associative, non-FIFO, unordered

coalescing write cache (Section 3.1). Our design also

implements the MIST multiple-writer coherence proto-

col (Section 3.3), which supports multiple concurrent

writers and a timebomb (T) state that causes blocks to

self destruct at the end of strata.

Calvin-MIST executes each stratum in two phases,

illustrated in Figure 3. In phase one, each processor

locally executes its instructions in program order.

Stores write their address and data into the write cache.

Loads check the write cache, bypassing their data if

present, and access the cache hierarchy otherwise. Pro-

cessors synchronize at the end of phase one using a

dedicated fast hardware barrier.

In phase two, the processors flush their write cach-

es in parallel to the cache hierarchy. Updates to exclu-

sive blocks occur locally, incurring no additional

communication beyond a conventional writeback cohe-

rence protocol. For blocks with multiple writers, the

MIST coherence protocol ensures that updates occur in

a deterministic order. Atomic operations also execute

entirely in phase two, ensuring that atomic reads re-

ceive the correct value (Section 2.3). Phase two ends

with a second fast barrier.

3.1. Write Cache

Calvin-MIST replaces a traditional store buffer

with a structure we call the write cache. Unlike a store

buffer, the write cache does not have to maintain pro-

gram order of stores and can therefore be implemented

as a set-associative cache. Like a store buffer, a proces-

sor puts all stores into the write cache and subsequent

loads bypass from it. Unlike a store buffer, stores in the

write cache can be flushed to the L1 in any order since

the MIST coherence protocol ensures that memory

operations appear in the correct Calvin order regardless

of when they are written back. Furthermore, it allows

the write cache to coalesce stores.

The write cache keeps all stores private until the

stratum’s second phase by buffering update values.

During phase two, stores move from the write cache to

update the local cache and (much less often) coordinate

with the directory in the case of a conflict. After flush-

ing the write cache, the processor synchronizes at the

second barrier and is ready to begin the next stratum.

Because the write cache is responsible for ensuring

that writes remain private in a stratum, Calvin-MIST

must handle write cache overflow carefully. In

bounded deterministic or conventional modes, it is suf-

ficient to simply end the stratum when an overflow is

about to occur since Calvin does not make any guaran-

tees about the actual stratum size in those modes.

Processor 0

text

Store Buffer

Cache

Hierarchy

Stratum S

LOADS

Processor 1

text

Store Buffer

Flush Stores

LOADS

STORES STORES

Stratum S - 1

Stratum S + 1

RR
IA

EB R

RR
IA

EB R

Atomic Ops

Atomic Ops

Flush Stores

Figure 3 - Calvin-MIST operation

Figure 2 - Base system with Calvin additions highlighted: the

write cache, a single timebomb bit per L1D cache block, and a
dedicated barrier line

5

In unbounded deterministic mode only, the stratum

termination cannot depend on the write cache capacity

(which may differ between implementations) and so we

use a simple logging technique to logically extend the

write cache size. When a store does not fit in the write

cache, it is written to a software log in the virtual ad-

dress space of an application, similarly to how values

are remembered in some transactional memory systems

[3,29,35]. Additionally, a flag in the corresponding

write cache set indicates that an overflow has occurred.

On any subsequent miss to that set, a log walk deter-

mines if the address is present and, if found, the log

entry is treated like a normal entry in the write cache.

Access to the log is performed out of band from the

standard MIST protocol (Section 3.3) to ensure that

reads/writes complete immediately.

3.2. Stratum Termination Function

In Calvin-MIST, the execution mode determines

when a processor stops executing instructions and

coordinates to terminate a stratum. Let a

STRATUM_LIMIT register hold a maximum count.

• Conventional (C) mode terminates a stratum (a)

when the number of cycles elapsed in the stratum

equals STRATUM_LIMIT, (b) a serializing in-

struction executes (e.g., atomics, I/O), or (c) a pro-

cessor resource saturates (e.g., the write cache).

• Bounded Deterministic (BD) mode terminates a

stratum (a’) when the number of instructions

elapsed in the stratum equals STRATUM_LIMIT,

(b) a serializing instruction executes, or (c) a pro-

cessor resource saturates (e.g., the write cache).

• Unbounded Determinism(UD) mode terminates a

stratum (a’) when the number of instructions

elapsed in the stratum equals STRATUM_LIMIT

or (b) a serializing instruction executes.

C mode minimizes processor idle time, but is not

deterministic. BD is deterministic on the same hard-

ware only, as it includes micro-architectural events.

UD includes architectural events only.

3.2.1. Stratum Limit Prediction.
As the results in Section 5 will show, different

workloads perform best with very different values of

STRATUM_LIMIT. Workload (phases) with fine-grain

synchronization prefer small values to decrease inter-

thread communication latency while those with more

coarse grain interaction prefer large values to better

amortize stratum termination overheads.

To avoid setting STRATUM_LIMIT a priori, Cal-

vin-MIST uses a standard two-bit predictor to vary

STRATUM_LIMIT in powers of two between two ex-

tremes (e.g, 64-4096 instructions). The predictor

decrements when a stratum ends with one or more pro-

cessors executing an atomic. Strata that end with no

atomics increment the predictor. When the predictor

saturates high (low), STRATUM_LIMIT is doubled

(halved) within the extremes. C and BD modes also

decrement the predictor for resource exhaustion.

Determining whether to increment/decrement the

predictor can be done by piggy-backing a single bit

logical-OR reduction on the stratum ending barrier,

similar to the wired-OR signal that snooping systems

use to determine ownership. The predictor is replicated

at each processor and kept in sync by updating only at

the end of a stratum.

3.3. MIST Coherence Protocol

Calvin-MIST implements a novel directory cohe-

rence protocol, called MIST, to enforce the stratum

ordering constraints of the Calvin model. The cohe-

rence protocol must ensure two things:(1) that all cache

misses return data from the end of the previous stratum

and (2) that stores by different processors to the same

cache block within the same stratum are ordered de-

terministically. Furthermore, for performance the pro-

tocol should ensure that (3) cache blocks with a single

writer should perform comparably to a conventional

writeback coherence protocol. To achieve these goals,

MIST has several features that distinguish it from more

traditional protocols:

Multiple Concurrent Writers. The MIST proto-

col supports multiple concurrent writers, since multiple

threads can store to the same address during a stratum.

To ensure deterministic execution, the MIST directory

tracks concurrent writers and ensures that their updates

are performed in a deterministic order.

Timebomb State. The timebomb state allows

readers to coexist with writers in the same stratum.

Rather than invalidate blocks when another processor

signals intent to write during phase one, the timebomb

state allows a processor to retain read permission (to

the value from the end of the previous stratum). At the

end of the current stratum, the block self-destructs and

becomes invalid. The timebomb state eliminates the

need to send explicit invalidate messages.

To support both multiple concurrent writers and

the timebomb mechanism, the Calvin-MIST protocol

interacts with an on-chip 16-cycle hardware barrier

[4,10] that communicates stratum boundaries out of

band from normal coherence request. To ensure cor-

rectness, all outstanding coherence requests must com-

plete before a processor asserts the barrier. Also, as a

consequence of allowing multiple writers, MIST im-

plements two-phase stores. Stores are placed in the

write cache during phase one and only update the cache

hierarchy in phase two. Loads execute entirely during

phase one, ensuring that they never see the effect of

another processor’s store during the same stratum.

6

3.3.1. Directory States
The directory in Calvin-MIST is split into banks at

the last level of cache (L2). It has a bit vector to keep

track of either concurrent readers or concurrent writers.

Table 1 lists the MIST directory’s five stable

states. The MM, M, S, and I states are similar to those

in a conventional MSI protocol. A block in the MS

state indicates multiple concurrent writers and plays a

key role in enforcing the Calvin stratum ordering rules.

At the end of a stratum’s phase one, the bit vector for a

block in the MS state indicates all processors that in-

tend to write the block. The directory uses this infor-

mation during phase two to determine the order in

which those stores complete (Section 2.1’s rule 3).

Directory block replacements in MIST are compli-

cated because in doing so the directory forgets which

processors are concurrent writers (if any). We add a

single replacement bit to each directory bank that is set

when any block is replaced and is cleared at the end of

phase two. When an incoming request misses in the

directory while the replacement bit is set, the directory

conservatively assumes that it has already seen and

replaced that block in the current stratum and initiates a

WhoIsWriter query. All processors check their write

cache for the block and reply either affirmative or neg-

ative. Because the query and the DRAM fetch for the

missed block occur in parallel, there is almost no laten-

cy penalty. Our observations of Calvin-MIST in action

indicate that the querying for writers occurs rarely and

so is not a concern for performance.

3.3.2. L1 Cache States
MIST is designed for write-back L1 caches in or-

der to minimize communication with the directory. L1

caches in MIST operate on five stable states and one

timebomb state, as shown in Table 2. The M, S, and I

states are like those in a conventional protocol while

the remaining are specific to MIST. Below we will

describe each of the remaining stable and timebomb

states and how they help MIST enforce the determinis-

tic memory order demanded by the Calvin model.

The Mw state differs from the M state in that it

represents a block written in the current stratum, as

opposed to one written in a previous stratum. Like M,

the Mw state indicates that there are no other writers,

allowing the write cache to update the L1 cache (in

phase two) without communicating with the directory.

The distinction between M and Mw also allows the

protocol to correctly detect whether or not a conflicting

coherence request indicates multiple writers in the

same stratum. Blocks in Mw transition to M in phase 2.

The timebomb state, Ts, corresponds to temporary

read permission for a block in the presence of one or

more other writers. Data in the Ts state may be read

until the end of the stratum, at which point the time-

bomb self-destructs and the block returns to the I state.

The timebomb allows MIST to efficiently handle situa-

tions where a processor is reading a block that will be

overwritten by another processor’s store at the end of

the stratum. Without a time-delayed invalidation me-

chanism, readers in this situation would have to be ex-

plicitly invalidated by the directory during phase two.

Blocks in Ts are anonymous because the directory bit

vector is reused to track both reader and writers; while

at least one processor is writing the block the directory

cannot keep track of the readers.

Finally, blocks in the MMw state represent data

being written by the local processor and at least one

other. Stores for blocks in the MMw state will be writ-

ten back to the directory in phase two so that the store

can be correctly ordered. After a store request com-

pletes in phase two, a block in MMw transitions to I.

3.3.3. MIST Complexity
Here we compare MIST to a conventional MESI

protocol designed for the same base system and an

MOESI protocol designed for a multi-chip CMP in an

attempt to gauge the complexity of our new protocol.

Table 3 shows the number of stable, transient, and total

states for each protocol (from Wisconsin GEMS [24]).

Results show that MIST’s state count is compara-

ble to MESI and MOESI. Thus, while MIST may seem

more complex, in part, because it is unfamiliar, it has

comparable complexity.

Table 2 – L1 Cache MIST states

State Meaning Global

Invariant

I Not Present/Invalid 0 or more readers,

0 or more writers

S Read Permission, no other

writers in the system

1 or more readers,

 0 writers

M Write permission, didn’t

write in current stratum

0 readers,

1 writer

Ts Read permission until the

end of the stratum

1 or more readers,

1 or more writers

Mw Write permission, wrote in

current stratum

0 readers,

1 writer

MMw Write permission until the

end of the stratum

0 or more readers,

2 or more writers

Table 1 – L2 Directory States in MIST.
State Meaning Global Invariant Valid at

I Not Present/Invalid
0 readers,

0 writers
Memory

S One or more readers
1 or more readers,

0 writers
L2 Cache

M Only one writer
0 or more readers,

1 writer
Processor

MM No readers/writers
0 readers,

0 writers
L2 Cache

MS Multiple writers
0 or more readers,

1 or more writers
L2 Cache

7

Table 3 – The number of states in MIST compared to

conventional MESI and MOESI protocols

 MIST MESI MOESI

Stable @ L1 6 4 7

Transient @ L1 12 6 8

Stable @ L2 5 3 13

Transient @ L2 17 14 46

Total 40 27 54

3.4. Example to “Put It All Together”

Figure 4 illustrates Calvin-MIST in action (time

goes down) for Processor P0 (left), directory (center),

and Processor P1 (right) manipulating one location

whose address is omitted.

Stratum S illustrates P1 acquiring write permission

in phase one, and then completing the store locally in

phase two. A GetM request by P1 (1) acquires write

permission and causes P0 to transition into the Ts state.

P1 transitions to Mw because it is the only writer. At

the end of phase 1, P1 issues a store (2) which transi-

tions the block into the M state. At the end of phase 2,

the block in Ts timebomb state at P0 explodes.

Stratum S+1 shows the common case where P1 al-

ready has write permission to the block in phase one,

and completes the store without communicating with

others. Processor P1 can make its intent to write (3)

known and write the data (4) without communicating

with others.

Stratum S+2 shows how MIST resolves conflicting

stores. GetM requests (5) and (6) acquire write permis-

sion for processors P0 and P1, and both end up in state

MMw. When phase 1 completes, both processors write

their data back to the directory (7), (8). At the directory

P1 is ordered after P0, so P0’s writeback applied (9),

while the writeback from P1 is nacked (10). P1 retries

the writeback (11), which is then accepted by the direc-

tory (12).

3.5. Calvin Hardware Overhead

Compared to a conventional multiprocessor sys-

tem using in-order pipelines, Calvin-MIST adds only a

small number of additional hardware structures. First,

the store buffer in a conventional system is replaced

with the write cache in Calvin-MIST. Because of Cal-

vin’s buffering requirements, the write cache will like-

ly be sized slightly larger than a store buffer in a simi-

lar conventional system, but the write cache itself is a

simpler structure because it doesn’t have to order

stores. If unbounded determinism is desired, Calvin-

MIST additionally adds a log head and tail pointer to

keep track of write cache overflows.

Calvin-MIST also adds a single bit to every L1

cache line to represent the timebomb state. A Calvin-

MIST cache must also have the ability to flash clear

this bit on the end of a stratum [17]. At each di rectory

bank, a single replacement bit is also

introduced so that the directory can know that it may

be missing information about outstanding writers (Sec-

tion 3.3.1).

Calvin-MIST adds a dedicated hardware barrier so

that stratum boundaries can be communicated quickly

[4,10]. For the predictor, a two-bit counter is added to

each core and a global wired-OR line is used to com-

municate the prediction at the end of each stratum.

3.6. Extensions

 While we have described Calvin-MIST in terms

of a specific in-order multicore system, the mechan-

isms could be extended to work with alternative base

architectures. In particular, Calvin-MIST can work

with out-of-order cores by dealing only with committed

store values. In this situation, values in the write cache

would hold non-speculative state only.

4. Evaluation Methods

We have implemented Calvin-MIST in an execu-

tion driven full system simulator based on Bochs[25]

and a modified version of Wisconsin GEMS [24]. We

model pipelined in-order x86 processors running 64-bit

Linux version 2.6.26. For comparison, we use a base

system shown in Figure 2 of Section 3 modeled after

the parameters in Table 4.

P0 L1

State

Directory

Data State Data

P1 L1

State DataState

S 42

Ts 42

Ts 42

I X

I X

I X

I X

I X

Mw 37

MMw 37

MMw 0

MMw 0

I X

I X

I X

I X

S 42

Mw 42

M 17

M 17

Mw 17

Mw 17

M 37

M 37

Ts 37

MMw 37

MMw 37

MMw 4

MMw 4

MMw 4

I X

I X

S 42

M 42

M 42

M 42

M 42

M 42

M 42

M 42

M 37

MS 37

MS 37

MS 0

MS 0

MS 4

MM 4

MM 4

P0

P0

P0

P0

P1

P1

P1

P1

P1

P1

P1

P1

P1

P1

P1

P1

GetM

Ack

Ack

Ack

GetM

WB 0

Ack

Ack

GetM

WB 4

Store 17

GetM

Store 37

WB 4

Nack

Writers

Sharers

BOOM!!!

1

2

3

4

5

6

7 8

9 10

11

12

Stratum S

Stratum S+1

Stratum S+2

Stratum S+3

Figure 4 – Calvin-MIST in action for a block

8

Table 4 - System parameters

 Base Calvin-MIST

Cores 8, 2.0 GHz in-order pipelined

Write Cache N/A 64 entry, 8 way

L1 Cache Private, Split L1 I&D, 32K 8-way, 1 cycle

Coherence

Protocol
Conventional MOESI

Multiple Writer

MIST

Barrier N/A 16-cycle latency

L2 Cache Shared, 8MB, 16-way, 8 banks, 12 cycles

Directory Distributed at the L2 banks

We ensure that interrupts appear deterministically

across runs of the same program in our simulated sys-

tem by (a) restricting interrupt injection to stratum

boundaries and (b) by ensuring that interrupts occur

after a well-defined amount of logical time has passed.

For example, when an inter-processor interrupt (IPI) is

sent from one processor to another, we ensure that the

interrupt will be received in the stratum after a set

number of instructions have completed. Similarly, we

ensure that input instructions always receive the same

value by starting the system from a checkpointed state

and by ensuring that our device models are determinis-

tic.

To help verify that Calvin-MIST does indeed en-

force a deterministic execution, we used the Racey

microbenchmark that is exceedingly sensitive to the

order of unsynchronized data accesses [19]. The Racey

program produces a signature that has a high probabili-

ty of changing under different race outcomes. We have

observed hundreds of runs of Racey on Calvin-MIST

produce the same signature, even when introducing

frequent random network delays, lending strong evi-

dence (though not proof) that our implementation is

correct.

We evaluate Calvin-MIST using the Parsec 2.0 [6]

and HPC Mantevo [1] workload suites. Some work-

loads from Parsec and Mantevo are not included in the

results due to a combination of compilation issues and

simulator constraints. For all Parsec workloads, we use

the simsmall input set.

5. Evaluation Results

These results ask and answer two questions and

then perform some sensitivity analysis.

Question 1: Can Calvin-MIST avoid harm? Yes,

Calvin-MIST executes nondeterministic programs at

speeds slightly worse than a conventional system, the-

reby maintaining performance compatibility.

Question 2: Can Calvin-MIST do some good? Yes,

Calvin-MIST executes deterministic programs at a per-

formance overhead less than 20%, thereby providing a

benefit when deterministic is valued.

5.1. Bottom Line: Calvin Performance

In Figure 5 we compare the performance of Cal-

vin-MIST to our baseline system and find that on aver-

age Calvin-MIST performs with a modest degradation

(8%) to the baseline in conventional mode and sees

around a 20% slowdown for both deterministic modes.

Calvin-MIST facilitates adoption by providing

functional and performance compatibility with nonde-

terministic workloads. There are many reasons why

Calvin-MIST could perform comparably to the base-

line system even with the overhead of a two-phase ex-

ecution. For one, Calvin-MIST reduces the impact of

false sharing by allowing multiple simultaneous writers

and by delaying reader invalidation. Delayed invalida-

tion has previously been shown to reduce the negative

impact of false sharing [12] and improve the perfor-

mance of critical sections [36]. Second, other results

(not shown) indicate that several of the Parsec work-

loads benefit from the coalescing effect of the write

cache. Third, the simple strata size predictor used by

Calvin-MIST dynamically detects application synchro-

nization and communication patterns, limiting load

imbalance within a stratum.

Figure 5 – Calvin-MIST performance using stratum limit prediction. We show the execution time normalized to our baseline for C,

BD, and UD modes. For each data point, we show the average stratum limit over the run, in number of cycles for C and number of
instructions for BD and UD, that the predictor chose. Also, the stack segments of each bar show how much time is spent in phase one

(shaded), phase two (black), and accessing the overflow log (light grey, nearly negligible).

1
3
1
2
6

8
9
8
4

5
1
3
5

1
0
7
1

1
5
2
1
5

5
7
1

5
9
4
8

1
2
1
4
8

5
4
7
6

1
2
0
6
2

4
5
8
4

1
3
6
3
8

1
2
3
5
7

1
2
0
3
4

3
2
5
7

3
1
3
2

1
5
0
3

5
4
0

3
5
6
8

1
0
5

2
5
4
2

2
5
0
2

1
9
3
8

2
3
8
6

1
2
5
4

2
8
4
9

3
0
0
1

3
1
5
3

3
2
6
9

3
1
3
2

1
4
9
7

5
3
4

3
5
7
4

1
0
4

2
8
5
5

2
5
6
0

2
3
0
7

2
4
2
6 1
4
5
3

3
3
7
8

3
0
3
5

3
2
2
9

0

0.5

1

1.5

2

. beam blck bdtr dedup epetra fluid freq hpccg minimd phpccg ray swap vips x264 mean

N
o

rm
a

li
ze

d

E
x
ec

u
ti

o
n

 T
im

e

C BD UD phase2 log

9

Some workloads perform slightly worse in con-

ventional mode Calvin-MIST. There are at least three

causes of this slowdown. First, the conservative 16-

cycle barrier we modeled in Calvin-MIST has a notice-

able impact when small stratum limits are used, such as

in Fluidanimate. Results, not shown, with a 4-cycle

barrier largely mitigates the slowdown. Second, even

though the conventional stratum termination function

tries to mitigate the impact of load imbalance, a pro-

cessor cannot enter the barrier until all outstanding

instructions have completed. Thus a cache miss on one

processor just before phase one is scheduled to end can

cause all processors to stall until it completes. Finally,

inter-thread communication through shared memory is

delayed when running in Calvin because threads cannot

communicate within a stratum. Workloads that exhibit

frequent fine-grained locking, such as Fluidanimate,

are affected by this communication delay.

The deterministic modes are somewhat slower

than conventional mode because in the deterministic

modes the speed of each stratum as a whole is limited

by the slowest running processor. Thus, if one proces-

sor is frequently missing to main memory it will slow

down the entire system. Calvin-MIST experiences an

average (geometric mean) slowdown of around 20%

over the baseline in both deterministic modes.

5.2. Execution Breakdown

Figure 5 also shows the breakdown of each execu-

tion into time spent in normal execution (phase one),

flushing the write cache (phase two), and, in the case of

unbounded deterministic mode, time spent overflowing

the write cache to the software log.

As expected, most time is spent in phase one. The

effect of flushing the write cache is small because for

data race free programs, the only store conflicts that

occur are due to false sharing in cache blocks. Thus,

most stores in phase two are L1 cache hits.

To gauge the performance impact of unbounded

determinism support, we calculated the effect of over-

flowing the write cache by charging an L1 miss (17

cycles) for each read/write to the log. We find that for

most workloads, the impact of log access is negligible.

5.3. Prediction Effectiveness

We tested the accuracy of the Calvin-MIST stra-

tum limit predictor by comparing the execution time

using the predictor to a run that uses a best-case static

stratum limit. We tested static stratum limits between

64-2048 instructions for deterministic mode and 100-

20,000 cycles for conventional mode, and then selected

the size that resulted in the best performance.

Figure 6 shows the speedup of the system using a

predictor over one using static stratum limits. The pre-

dictor performs better in all but four workloads, most

likely because the predictor is able to capture phase

behavior over the course of a run. Workloads that per-

form better with static stratum limits may exhibit pat-

terns not captured by the predictor, such as communi-

cation through a flag without the use of atomics.

5.4. Write Cache Sensitivity Analysis

Next we varied the write cache size among 16, 32,

and 64 64-bytes entries (1, 2, and 4 KB). Figure 7

shows the results of this analysis, and indicates that the

write cache does not need to be large for good perfor-

mance in our workloads. We also varied the associativ-

ity between 4 and 8 ways (not shown) and found that

associativity has a negligible effect on performance.

Our results show that systems with unbounded de-

terminism support are more sensitive to write cache

size than systems configured for bounded determinism

due to log accesses. This is illustrated by the execution

breakdown in Figure 7, in which looking at each bar

without the final stack for log accesses closely approx-

imates results for bounded determinism.

5.5. Frequency of Writeback Messages

Calvin-MIST generates extra writeback messages

whenever two or more processors write the same cache

block in the same stratum, since the directory must

Figure 7 – Write cache sensitivity analysis for UD mode.
Results are normalized to a conventional MESI protocol.

0

0.5

1

1.5

2

2.5

N
o

r
m

a
li

z
e

d
 E

x
e

c
u

t
io

n
 T

im
e

16 32 64 phase2 log

Figure 6 – Prediction Effectiveness, as compared to statically

chosen stratum limits. Higher indicates better effectiveness.

-5%

0%

5%

10%

15%

S
p

ee
d

u
p

C BD UD

10

Table 5 - HPCCG 1024 instructions/stratum, bounded de-

terminism
CPU 0 1 2 3 4 5 6 7

Insn cnt

(M)
235 235 235 235 235 235 235 235

Total

WB (K)
517 548 547 549 553 549 514 549

Extra

WB
235 328 374 294 426 357 206 292

Extra

Nacks
1 6 3 3 6 4 0 17

resolve the multiple writes in the correct order. Fortu-

nately, as Table 5 shows for a representative bench-

mark--the HPCCG benchmark running in bounded

determinism mode with 1024 instruction strata--these

extra writebacks occur rarely, three orders of magni-

tude less often than regular writebacks. And since ex-

tra writebacks are rare, the directory almost never get

nacks them (as may be necessary to ensure correct

write ordering).

These results are typical because most well-written

programs are data-race-free, and thus will not store to a

shared variable outside a critical section. Because of

how Calvin handles atomic operations, critical sections

are entered by at most one thread per stratum. Thus,

extra writebacks will generally only occur due to false

sharing, which is also relatively rare in well-

constructed software.

6. Future Work

As described so far, Calvin is applied at the system

level. With modification, Calvin can also be applied in

isolation to different domains running on the same ma-

chine, similar to how Capo virtualizes deterministic

replay [28]. For example, it could execute one virtual

machine deterministically and another conventionally

in a consolidated workload environment. Future work

will address the difficulties that could arise in a mul-

tiple-domain environment, such as making the hypervi-

sor invisible to the execution domain.

Future work may also address scalability concerns

of the Calvin-MIST implementation, particularly fo-

cusing on the barrier bottleneck. It is important to note

that although Calvin-MIST uses a barrier, it is not

strictly necessary to meet Calvin requirements.

Finally, we may investigate methods to improve

the performance of Calvin-MIST’s conventional mode.

For example, it may not be necessary to wait at a bar-

rier in conventional mode and some protocol states

could be optimized.

7. Related Work

The work most similar to Calvin is the CoreDet

compiler infrastructure by Bergen, et al. [5]. CoreDet

and Calvin both share the same insight that the TSO

memory model can be exploited to provide determin-

ism, and both execute programs as a series of multi-

phase strata. CoreDet is implemented entirely in soft-

ware, though, whereas Calvin is a hardware memory

model. Thus, the tradeoffs between the two are similar

to other proposed mechanisms that can be implemented

in either software or hardware, such as transactional

memory systems [26]. The CoreDet runtime overhead

varies between 1-11x whereas Calvin can execute with

less than 0.5x and 20% on average overhead for all

workloads.

Deterministic Shared Memory Multiprocessing

(DMP) [11] deterministically serializes execution

quanta from each processor so that only one ordering is

possible. They use Bulk’s transactional memory that

broadcasts signatures to achieve parallelism among

quanta by speculatively executing then rolling back if a

conflict occurs. While DMP posts results similar to

Calvin, they exclude privileged instructions from their

evaluation, which we found to be a significant impact

on performance.

Kendo [32] proposes a software-only solution for

achieving weak determinism, in which a program is

repeatable only if it is data-race-free. Kendo uses a

custom library for locks that ensures locks are always

acquired in the same order, and experiences a 16%

performance overhead. Calvin provides strong deter-

minism at a similar performance cost but requires

hardware support.

Other work in determinism has focused on a two-

phase record/replay approach [13,20,27,30,31,34,42].

These proposals supply hardware support for recording

inputs and memory race outcomes to a log that is used

later to replay an execution verbatim. Calvin does not

require a recording phase, and instead guarantees that

only one outcome exists given a program and inputs.

Strata [30] is a proposal for deterministic

record/replay, which, as the name suggests, bears simi-

larities to Calvin’s stratified execution. Strata is de-

signed for a system with sequential consistency, whe-

reas Calvin can take advantage of the implementation

optimizations afforded by TSO.

Programming languages exist [7,15] that guarantee

deterministic execution by limiting how actors com-

municate. A Calvin system can run a program determi-

nistically regardless of the language or communication

pattern.

The UltraSPARC IV [22] contained a unit called

the write cache that served as a coalescing buffer in the

memory system. The UltraSPARCIV’s write cache was

between the L1 and L2, though, and would only place

blocks into the cache once they were globally ordered.

Calvin’s write cache, on the other hand, sits between

the processor and the L1 and inserts blocks before they

are ordered in the memory system.

11

The Wisconsin Wind Tunnel [37] was a discrete

event simulator that used a concept resembling Cal-

vin’s strata called a quantum. Two threads could not

communicate in a quantum, which allowed for perfor-

mance optimizations. However, WWT could only si-

mulate a sequentially consistent execution and, because

it was fundamentally cycle accurate simulator, did so

considerably slower than Calvin.

The timebomb state in Calvin-MIST resembles the

concept of tear-off blocks proposed by Lebeck and

Wood [23]. However, blocks in the timebomb state are

invalidated deterministically whereas tear-off blocks

are not. Two groups have also previously made the

observation that delaying an invalidation for a small

amount of time can actually improve performance by

reducing the effect of false sharing [12] and by leading

to better lock behavior under high contention [36]. Un-

like Calvin, neither delays the invalidation by a deter-

ministic amount of time.

8. Conclusions

We propose Calvin, a system that can execute in

one of three modes: conventional nondeterministic,

bounded deterministic, and unbounded deterministic.

Depending on application requirements, Calvin imple-

mentations can switch among modes by adjusting the

stratum termination condition. We show that Calvin

running in conventional mode has minimal overhead

compared to the baseline and may outperform the base-

line. Calvin systems execute deterministically with low

performance overhead and no speculation.

9. Acknowledgements

We thank Dan Gibson, Mike Swift, the Wisconsin

Multifacet group, the anonymous reviewers, and the

Wisconsin Computer Architecture Affiliates for their

comments and/or proofreading. Finally we thank the

Wisconsin Condor project and the UW CSL for their

assistance.

This work is supported in part by the National

Science Foundation (CNS-0551401, CNS-0720565 and

CNS-0916725), Sandia/DOE (#MSN123960/

DOE890426), and University of Wisconsin (Kellett

award to Hill). The views expressed herein are not nec-

essarily those of the NSF, Sandia or DOE. Hill and

Wood have a significant financial interest in Microsoft.

Dudnik is now at Google.

10. References
[1] Mantevo Project. https://software.sandia.gov/mantevo/.

[2] Allen, M.D., Sridharan, S., and Sohi, G.S. Serialization sets: a

dynamic dependence-based parallel execution model. Proceed-

ings of the 14th ACM SIGPLAN symposium on Principles and

practice of parallel programming, ACM (2009), 85-96.

[3] Ananian, C.S. et al. Unbounded Transactional Memory. The

11th International Symposium on High-Performance Computer

Architecutre (HPCA), (2005).

[4] Beckmann, C.J. and Polychronopoulos, C.D. Fast barrier syn-

chronization hardware. Proceedings of the 1990 ACM/IEEE

conference on Supercomputing, IEEE Computer Society Press

(1990), 180-189.

[5] Bergan, T. et al. CoreDet: a compiler and runtime system for

deterministic multithreaded execution. Proceedings of the fif-

teenth edition of ASPLOS on Architectural support for pro-

gramming languages and operating systems, ACM (2010), 53-

64.

[6] Bienia, C. et al. The PARSEC benchmark suite: characteriza-

tion and architectural implications. Proceedings of the 17th in-

ternational conference on Parallel architectures and compila-

tion techniques, ACM (2008), 72-81.

[7] Bocchino Jr, R.L. et al. A type and effect system for determi-

nistic parallel Java. ACM SIGPLAN Notices 44, 10 (2009), 97–

116.

[8] Bocchino, R.L. et al. Parallel Programming Must Be Determi-

nistic by Default. HotPar-1: First USENIX Workshop on Hot

Topics in Parallelism, (2009).

[9] Bressoud, T.C. and Schneider, F.B. Hypervisor-based Fault

Tolerance. SOSP '95: Proceedings of the fifteenth ACM sympo-

sium on Operating Systems Principles, (1995).

[10] Culler, D.E. and Singh, J. Parallel Computer Architecture: A

Hardware/Software Approach. Morgan Kaufmann Publishers,

Inc., 1999.

[11] Devietti, J. et al. DMP: Determinisitc Shared Memory Multi-

processing. ASPLOS '09: Proceeding of the 14th international

conference on Architectural support for programming lan-

guages and operating systems, (2009), 85--96.

[12] Dubois, M. et al. Delayed consistency and its effects on the

miss rate of parallel programs. Proceedings of the 1991

ACM/IEEE conference on Supercomputing, ACM (1991), 197-

206.

[13] Dunlap, G.W. et al. ReVirt: Enabling Intrusion Analysis

through Virtual-Machine Logging and Replay. OSDI '02: Pro-

ceedings of the 5th symposium on Operating systems design

and implementation, (2002), 211-224.

[14] Dunlap, G.W. et al. Execution Replay on Multiprocessor Vir-

tual Machines. International Conference on Virtual Execution

Environments (VEE), (2008).

[15] Edwards, S.A., Vasudevan, N., and Tardieu, O. Programming

Shared Memory Multiprocessors with Deterministic Message-

Passing Concurrency: Compiling SHIM to Pthreads. Proc. of

the Conference on Design, Automation, and Test in Europe,

(2008), 1498-1503.

[16] Frigo, M. Multithreaded programming in Cilk. Proceedings of

the 2007 international workshop on Parallel symbolic compu-

tation, ACM (2007), 13-14.

[17] Hammond, L. et al. The Stanford Hydra CMP. IEEEMICRO

20, 2 (2000), 71-84.

[18] Hangal, S. et al. TSOtool: A Program for Verifying Memory

Systems Using the Memory Consistency Model. .

[19] Hill, M.D. and Xu, M. Racey: A Stress Test for Deterministic

Execution. .

[20] Hower, D.R. and Hill, M.D. Rerun: Exploiting Episodes for

Lightweight Race Recording. ISCA '08: Proceedings of the

35th International Symposium on Computer Architecture,

(2008), 265-276.

[21] Kongetira, P., Aingaran, K., and Olukotun, K. Niagara: A 32-

Way Multithreaded Sparc Processor. IEEEMICRO 25, 2

(2005), 21-29.

[22] Krewell, K. UltraSPARC IV Mirrors Predecessor.

MICROREPORT, (2003), 1-3.

[23] Lebeck, A.R. and Wood, D.A. Dynamic Self-Invalidation:

Reducing Coherence Overhead in Shared-Memory Multipro-

cessors. Proceedings of the 22nd annual international sympo-

sium on Computer architecture, (1995), 48-59.

12

[24] Martin, M.M.K. et al. Multifacet's General Execution-driven

Multiprocessor Simulator (GEMS) Toolset. Computer Archi-

tecture News, (2005), 92-99.

[25] Mihocka, D. and Swartsman, S. Virtualization without direct

execution - designing a portable VM. The 1st Workshop on

Architectural and Microarchitecrual Support for Binary Trans-

lation, (2008).

[26] Moir, M. Hybrid Transactional Memory. 2006.

[27] Montesinos, P., Ceze, L., and Torrellas, J. DeLorean: Record-

ing and Deterministically Replaying Shared-Memory Multipro-

cessor Execution Efficiently. .

[28] Montesinos, P. et al. Capo: A Software-Hardware Interface for

Practical Determinisitic Multiprocessor Replay. ASPLOS '09:

Proceeding of the 14th international conference on Architec-

tural support for programming languages and operating sys-

tems, (2009), 73--84.

[29] Moore, K.E. et al. LogTM: Log-Based Transactional Memory.

Twelfth IEEE Symposium on High-Performance Computer Ar-

chitecture, (2006), 258-269.

[30] Narayanasamy, S., Pereira, C., and Calder, B. Recording

Shared Memory Dependencies Using Strata. Proceedings of the

12th international conference on Architectural support for pro-

gramming languages and operating systems, (2006), 229-240.

[31] Narayanasamy, S., Pokam, G., and Calder, B. BugNet: Conti-

nuously Recording Program Execution for Deterministic Rep-

lay Debugging. Proceedings of the 32nd annual international

symposium on Computer Architecture, (2005), 284-295.

[32] Olszewski, M., Ansel, J., and Amarasinghe, S. Kendo: Efficient

Deterministic Multithreading in Software. Proceeding of the

14th international conference on Architectural support for pro-

gramming languages and operating systems, (2009).

[33] Prvulovic, M. CORD: Cost-effective (and nearly overhead-

free) Order Recording and Data race detection. .

[34] Prvulovic, M. and Torrellas, J. ReEnact: Using Thread-Level

Speculation Mechanisms to Debug Data Races in Multith-

readed Codes. Proceedings of the 30th Annual International

Symposium on Computer Architecture, (2003), 110-121.

[35] Rajwar, R., Herlihy, M., and Lai, K. Virtualizing Transactional

Memory. Proceedings of the 32nd annual international sympo-

sium on Computer Architecture, (2005).

[36] Rajwar, R., Kägi, A., and Goodman, J.R. Improving the

Throughput of Synchronization by Insertion of Delays. Proc. of

the 6th International Symposium on High-Performance Com-

puter Architecture (HPCA), (2000), 168-179.

[37] Reinhardt, S.K. et al. The Wisconsin Wind Tunnel: Virtual

Prototyping of Parallel Computers. Proceedings of the 1993

ACM SIGMETRICS conference on Measurement and modeling

of computer systems, (1993), 48-60.

[38] RTI. The Economic Impacts of Inadequate Infrastructure for

Software Testing. 2002.

[39] Seiler, L. et al. Larrabee. ACM Transactions on Graphics 27, 3

(2008), 1.

[40] Weaver, D.L. and Germond, T., eds. SPARC Architecture Ma-

nual (Version 9). PTR Prentice Hall, 1994.

[41] Xu, M., Bodik, R., and Hill, M.D. A Regulated Transitive

Reduction (RTR) for Longer Memory Race Recording. 49-60.

[42] Xu, M., Bodik, R., and Hill, M.D. A “Flight Data Recorder” for

Enabling Full-system Multiprocessor Deterministic Replay.

Proceedings of the 30th annual international symposium on

Computer architecture, (2003), 122-133.

[43] Yu, J. and Narayanasamy, S. A case for an interleaving con-

strained shared-memory multi-processor. SIGARCH Comput.

Archit. News 37, 3 (2009), 325-336.

Appendix A Proof of Calvin-TSO Com-

patibility

For ease of presentation, we discuss only loads and

stores and ignore fairness.

TSO. Weaver and Germond formally define the TSO

memory model in their Appendix D [18,40] using the

following notation: La and Sa represent a load and a

store, respectively, to address a. Orders <p and <m

define program and global memory order, respectively.

For TSO:

(1) Each of P processors inserts its loads and stores

into global memory order <m preserving program

order <p between two loads, two stores, and a load

then a store (but not necessarily a store then a

load).

The value returned by each load La is given by:

(2) Value(La) = Value (Max<m { S | Sa < m La or Sa

<p La })

Intuitively, this dense equation means that load La gets

its value from the last store that has updated coherent

memory “Sa <m La” unless there is a later store that

the load will bypass from the processor’s store buffer

“Sa <p La”.

Calvin. Calvin logically constructs a global memory

order <m by partitioning the loads and stores in pro-

gram order <p into strata using the following rule:

(a) For each stratum S, all memory operations in stra-

tum S are ordered in <m, such that they are after

all the memory operations of stratum S -1 and be-

fore all the memory operations of stratum S +1.

Moreover, Calvin orders memory operations within

each stratum S as follows:

(b) Each processor i inserts its loads into global mem-

ory order <m preserving program order <p and or-

dered after all loads from processor i-1 and before

all loads from processor i+1,

(c) Processor 1 inserts its stores into global memory

order <m ordered after all loads from processor P.

(d) Each processor i inserts its stores into global

memory order <m preserving program order <p

and ordered after all stores from processor i-1 and

before all stores from processor i+1.

Thus, Calvin constructs a global memory order <m

compatible with TSO Rule (1). Since Calvin also im-

plements store buffer bypassing, it implements TSO

Rule (2). Therefore, Calvin is compatible with TSO.

