
This paper is included in the Proceedings of the
13th USENIX Conference on

File and Storage Technologies (FAST ’15).
February 16–19, 2015 • Santa Clara, CA, USA

ISBN 978-1-931971-201

Open access to the Proceedings of the
13th USENIX Conference on

File and Storage Technologies
is sponsored by USENIX

CalvinFS: Consistent WAN Replication
and Scalable Metadata Management for

Distributed File Systems
Alexander Thomson, Google; Daniel J. Abadi, Yale University

https://www.usenix.org/conference/fast15/technical-sessions/presentation/thomson

USENIX Association 	 13th USENIX Conference on File and Storage Technologies (FAST ’15)  1

CalvinFS: Consistent WAN Replication and Scalable Metadata Management

for Distributed File Systems

Alexander Thomson

Google†

agt@google.com

Daniel J. Abadi

Yale University

dna@cs.yale.edu

Abstract
Existing file systems, even the most scalable systems

that store hundreds of petabytes (or more) of data across

thousands of machines, store file metadata on a single

server or via a shared-disk architecture in order to ensure

consistency and validity of the metadata.

This paper describes a completely different approach

for the design of replicated, scalable file systems, which

leverages a high-throughput distributed database system

for metadata management. This results in improved

scalability of the metadata layer of the file system, as

file metadata can be partitioned (and replicated) across

a (shared-nothing) cluster of independent servers, and

operations on file metadata transformed into distributed

transactions.

In addition, our file system is able to support stan-

dard file system semantics—including fully linearizable

random writes by concurrent users to arbitrary byte off-

sets within the same file—across wide geographic areas.

Such high performance, fully consistent, geographically

distributed files systems do not exist today.

We demonstrate that our approach to file system de-

sign can scale to billions of files and handle hundreds of

thousands of updates and millions of reads per second—

while maintaining consistently low read latencies. Fur-

thermore, such a deployment can survive entire datacen-

ter outages with only small performance hiccups and no

loss of availability.

1 Introduction

Today’s web-scale applications store and process increas-

ingly vast amounts of data, imposing high scalability re-

quirements on cloud data storage infrastructure.

The most common mechanism for maximizing avail-

ability of data storage infrastructure is to replicate all data

†This work was done while the author was at Yale.

storage across many commodity machines within a data-

center, and then to keep hot backups of all critical system

components on standby, ready to take over in case the

main component fails.

However, natural disasters, configuration errors,

hunters, and squirrels sometimes render entire datacen-

ters unavailable for spans of time ranging from minutes to

days [13, 15]. For applications with stringent availability

requirements, replication across multiple geographically

separated datacenters is therefore essential.

For certain classes of data storage infrastructure, sig-

nificant strides have been made in providing vastly scal-

able solutions that also achieve high availability via WAN

replication. For example, replicated block stores, where

blocks are opaque, immutable, and entirely independent

objects are fairly easy to scale and replicate across data-

centers since they generally do not need to support multi-

block operations or any kind of locality of access span-

ning multiple blocks. NoSQL systems such as Cassan-

dra [12], Dynamo [8], and Riak [2] have also managed

to achieve both scale and geographical replication, albeit

through reduced replica consistency guarantees. Even

some database systems, such as the F1 system [19] which

Google built on top of Spanner [7] have managed to scal-

ably process SQL queries and ACID transactions while

replicating across datacenters.

Unfortunately, file systems have not achieved the same

level of scalable, cross-datacenter implementation. While

many distributed file systems have been developed to

scale to clusters of thousands of machines, these systems

do not provide WAN replication in a manner that allows

continuous operation in the event of a full datacenter fail-

ure due to the difficulties of providing expected file sys-

tem semantics and tools (linearizable operations, hierar-

chical access control, standard command-line tools, etc.)

across geographical distances.

1

2  13th USENIX Conference on File and Storage Technologies (FAST ’15)	 USENIX Association

In addition to lacking support for geographical repli-

cation, modern file systems—even those known for

scalability—utilize a fundamentally unscalable design

for metadata management in order to avoid high syn-

chronization costs necessary to maintain traditional file

system semantics for file and directory metadata, includ-

ing hierarchical access control and linearizable writes.

Hence, while they are able to store hundreds of petabytes

of data (or more) by leveraging replicated block stores

to store the contents of files, they rely on an assumption

that the average file size is very large, while the number

of unique files and directories are comparatively small.

They therefore run into problems handling large numbers

of small files, as the system becomes bottlenecked by the

metadata management layer [20, 27].

In particular, most modern distributed file systems use

one of two synchronization mechanisms to manage meta-

data access:

• A special machine dedicated to storing and managing

all metadata. GFS, HDFS, Lustre, Gluster, Ursa Mi-

nor, Farsite, and XtreemFS are examples of file sys-

tems that take this approach [10, 21, 18, 1, 3, 4, 11].

The scalability of such systems are clearly fundamen-

tally bottlenecked by the metadata management layer.

• A shared-disk abstraction that coordinates all concur-

rent access. File systems that rely on shared disk

for synchronization include GPFS, PanFS, and xFS

[17, 26, 22]. Such systems generally replicate data

across multiple spindles for fault tolerance. However,

these typically rely on extremely low (RAID-local or

rack-local) synchronization latencies between repli-

cated disks in order to efficiently expose a unified disk

address space. Concurrent disk access by multiple

clients are synchronized by locking, introducing per-

formance limitations for hot files [17]. Introducing

WAN latency synchronization times into lock-hold

durations would significantly increase the severity of

these limitations.

In this paper, we describe the design of a distributed

file system that is substantially different from any of

the above-cited file systems. Our system is most distin-

guished by the metadata management layer which hor-

izontally partitions and replicates file system metadata

across a shared-nothing cluster of servers, spanning mul-

tiple geographic regions. File system operations that po-

tentially span multiple files or directories are transformed

into distributed transactions, and processed via a transac-

tion scheduling and replication management layer of an

extensible distributed database system in order to ensure

proper coordination of linearizable updates.

Due to the uniqueness of our design, our system, which

we call CalvinFS, has a different set of advantages and

disadvantages relative to traditional distributed file sys-

tems. In particular, our system can handle a nearly un-

limited number of files, and can support fully lineariz-

able random writes by concurrent users to arbitrary byte

offsets within a file that is consistently replicated across

wide geographic areas—neither of which is possible in

the above-cited file system designs. However, our system

is optimized for operations on single files. Multiple-file

operations require distributed transactions, and while our

underlying database system can handle such operations

at high throughput, the latency of such operations tend to

be larger than in traditional distributed file systems.

2 Background: Calvin

As described above, we horizontally partition metadata

for our file system across multiple nodes, and file oper-

ations that need to atomically edit multiple metadata el-

ements are run as distributed transactions. We extended

the Calvin database system to implement our metadata

layer, since Calvin has proven to be able to achieve con-

sistent geo-replicated and linear distributed transaction

scalability to hundreds of thousands of transactions per

second across hundreds of machines per replica, even un-

der relatively high levels of lock contention [24]. The

remainder of this section will provide a brief overview of

Calvin’s architecture and execution protocol.

A Calvin deployment consists of three main compo-

nents: a transaction request log, a storage layer, and a

scheduling layer. Each of these components provides a

clean interface and implementations that can be swapped

in and out. The log stores a global totally-ordered se-

quence of transaction requests. Each transaction request

in the log represents a read-modify-write operation on the

contents of the storage layer; the particular implementa-

tion of the storage layer plus any arguments logged with

the request define the semantics of the operation. The

scheduling layer has the job of orchestrates the (concur-

rent) execution of logged transaction requests in a man-

ner that is equivalent to a deterministic serial execution in

exactly the order they appear in the log.

For each of these three components, we describe here

the specific implementation of the component that we

used in the metadata subsystem of CalvinFS.

Log

The log implementation we used consists of a large col-

lection of “front-end” servers, an asynchronously- repli-

cated distributed block store, and a small group of “meta-

log” servers. Clients append requests to the log by send-

ing them to a front-end server, which batches it with other

incoming requests and writes the batch to the distributed

2

USENIX Association 	 13th USENIX Conference on File and Storage Technologies (FAST ’15)  3

block store. Once it is sufficiently replicated in the block

store (2 out of 3 replicas have acked the write, say), the

front-end server sends the batch’s unique block id to a

meta- log server. The meta-log servers, which are typ-

ically distributed across multiple datacenters, maintain

a Paxos-replicated “meta-log” containing a sequence of

block ids referencing request batches. The state of the

log at any time is considered to be the concatenation of

batches in the order specified by the “meta- log”.

Storage Layer The storage layer encapsulates all knowl-

edge about physical datastore organization and actual

transaction semantics. It consists of a collection of “stor-

age nodes”, each of which runs on a different machine

in the cluster and maintains a shard of the data. Valid

storage layer implementations must include (a) read and

write primitives that execute locally at a single node, and

(b) a placement manager that determines at which storage

nodes these primitives must be run with given input argu-

ments. Compound transaction types may also be defined

that combine read/write primitives and arbitrary deter-

ministic application logic. Each transaction request that

appears in the log corresponds to a primitive operation or

compound transaction. Primitives and transactions may

return results to clients upon completion, but their behav-

ior may not depend any inputs other than arguments that

are logged with the request and the current state of the

underlying data (as determined by read primitives) at ex-

ecution time.

The storage layer for CalvinFS metadata consists of a

multiversion key-value store at each storage node, plus

a simple consistent hashing mechanism for determin-

ing data placement. The compound transactions imple-

mented by the storage layer are described in Section 5.1.

Scheduler

Each storage node has a local scheduling layer compo-

nent (called a “scheduler”) associated with it which drives

local transaction execution.

The scheduling layer takes an unusual approach to pes-

simistic concurrency control. Traditional database sys-

tems typically schedule concurrent transaction execution

by checking the safety of each read and write performed

by a transaction immediately before that operation oc-

curs, pausing execution as needed (e.g., until an earlier

transaction releases an already-held lock on the target

record). Each Calvin scheduler, however, examines a

transaction before it begins executing at all, decides when

it is safe to execute the whole transaction based on its

read-write sets (which can be discovered automatically

or annotated by the client), and then hands the transac-

tion request to the associated storage node, which is free

to execute it with no additional oversight.

Calvin’s scheduler implementation uses a protocol

called deterministic locking, which resembles strict two-

phase locking, except that transactions are required to re-

quest all locks that they will need in their lifetimes atomi-

cally, and in the relative order in which they appear in the

log. This protocol is deadlock- free and serializable, and

furthermore ensures that execution is equivalent not only

to some serial order, but to a deterministic serial execu-

tion in log order.

All lock management is performed locally by a sched-

uler, and schedulers track lock requests only for data that

resides at the associated storage node (according to the

placement manager). When transactions access records

spanning multiple machines, Calvin forwards the entire

transaction request to all schedulers guarding relevant

storage nodes. At each participating scheduler, once the

transaction has locked all local records, the transaction

proceeds to execute using the following protocol:

1. Perform all local reads. Read all records in the

transaction’s read-set that are stored at the local stor-

age node.

2. Serve remote reads. Forward each local read result

from step 1 to every other participant.

3. Collect remote read results. Wait to receive all mes-

sages sent by other participants in step 21.

4. Execute transaction to completion. Once all read

results have been received, execute the transaction

to completion, applying writes that affect records in

the local storage node, and silently dropping writes to

data that is not stored locally (since these writes will

be applied by other participants).

Upon completion, the transaction’s locks are released

and the results are sent to the client that originally sub-

mitted the transaction request.

A key characteristic of the above protocol is the lack of

a distributed commit protocol for distributed transactions.

This is a result of the deterministic nature of process-

ing transactions—any failed node can recover its state by

loading a recent datat checkpoint and then replaying the

log deterministically. Therefore, double checking that no

node failed over the course of processing the transaction

is unnecessary. The lack of distributed commit protocol,

combined with the deadlock-free property of the schedul-

ing algorithm greatly improves the scalability of the sys-

tem and reduces latency.

1If all read results are not received within a specified timeframe,

send additional requests to participants to get the results. If there is

still no answer, also send requests to other replicas of the unresponsive

participant.

3

4  13th USENIX Conference on File and Storage Technologies (FAST ’15)	 USENIX Association

2.1 OLLP

Certain file system operations—notably recursive moves,

renames, deletes, and permission changes on non-empty

directories—were implemented by bundling together

many built-in transactions into a single compound trans-

action. It was not always possible to annotate these com-

pound transaction requests with their full read- and write-

sets (as required by Calvin’s deterministic scheduler) at

the time the recursive operation was initiated. In these

cases, we made use of Calvin’s Optimistic Lock Loca-

tion Prediction (OLLP) mechanism [24] as we describe

further in Section 5.2.

With OLLP, an additional step is added to the trans-

action execution pipeline: all transaction requests go

through an Analyze phase before being appended to the

log. The purpose of the Analyze phase is to determine

the read- and write-sets of the transaction. Stores can im-

plement custom Analyze logic for classes of transac-

tions whose read- and write-sets can be statically com-

puted from the arguments supplied by the client, or the

Analyze function can simply do a “dry run” of the

transaction execution, but not apply any writes. In gen-

eral, this is done at no isolation, and only at a single

replica, to make it as inexpensive as possible.

Once the Analyze phase is complete, the transac-

tion is appended to the log, and it can then be scheduled

and executed to completion. However, it is possible for

a transaction’s read- and write-sets to grow between the

Analyze phase and the actual execution (called the Run

phase) due to changes in the contents of the datastore.

In this case, the worker executing the Run phase notices

that the transaction is attempting to read or write a record

that did not appear in its read- or write-set (and which

was therefore not locked by the scheduler and cannot be

safely accessed). It then aborts the transaction and re-

turns an updated read-/write-set annotation to the client,

who may then restart the transaction, this time skipping

Analyze phase.

3 CalvinFS Architecture

CalvinFS was designed for deployments in which file

data and metadata are both (a) replicated with strong con-

sistency across geographically separated datacenters and

(b) partitioned across many commodity servers within

each datacenter. CalvinFS therefore simultaneously ad-

dresses the availability and scalability challenges de-

scribed above—while providing standard, consistent file

system semantics.

We engineered CalvinFS around certain additional

goals and design principles:

Main-memory metadata store. Current metadata en-

tries for all files and directories must be stored in main-

memory across a shared-nothing cluster of machines.

Potentially many small files. The system must handle

billions distinct files.

Scalable read/write throughput. Read and write

throughput capacity must scale near-linearly and must

not depend on replication configuration.

Tolerating slow writes. High update latencies that ac-

commodate WAN round trips for the purposes of consis-

tent replication are acceptable.

Linearizable and snapshot reads. When reading a file,

clients must be able to specify one of three modes, each

with different latency costs:

• Full linearizable read. If a client requires fully lin-

earizable read semantics when reading a file, the read

may be required to go through the same log-ordering

process as any update operation.

• Very recent snapshot read. For many clients, very

low-latency reads of extremely recent file system

snapshots are preferable to higher-latency lineariz-

able reads. We specifically optimize CalvinFS for

this type of read operation, allowing for up to 400ms

of staleness. (Note that this only applies to read-

only operations. Read-modify-write operations on

metadata—such as permissions checks before writing

to a file—are always linearizable.)

• Client-specified snapshot read. Clients can also

specify explicit version/timestamp bounds on snap-

shot reads. For example, a client may choose to limit

staleness to make sure that a recent write is reflected

in a new read, even if this requires blocking until all

earlier writes are applied at the replica at which the

read is occurring. Or a client may choose to per-

form snapshot read operations at a historical times-

tamp for the purposes of auditing, restoring a backup,

or other historical analyses. Since only current meta-

data entries for each file/directory are pinned in mem-

ory at all times, it is acceptable for historical snap-

shot reads to incur additional latency when digging

up now-defunct versions of metadata entries.

Hash-partitioned metadata. Hash partitioning of file

metadata based on full file path is preferable to range-

or subtree-partitioning, because it typically provides bet-

ter load balancing and simplifies data placement track-

ing. Nonetheless, identifying the contents of a directory

should only require reading from a single metadata shard.

Optimize for single-file operations. The system should

be optimized for operations that create, delete, modify, or

4

USENIX Association 	 13th USENIX Conference on File and Storage Technologies (FAST ’15)  5

read one file or directory at a time2. Recursive metadata

operations such as directory copies, moves, deletes, and

owner/permission changes must be fully supported (and

should not require data block copying) but the metadata

subsystem need not be optimized for such operations.

CalvinFS stores file contents in a non-transactional dis-

tributed block store analogous to the collection of chunk

servers that make up a GFS deployment. We use our ex-

tension of Calvin described above to store all metadata,

track directory namespaces, and map logical files to the

blocks that store their contents.

Both the block store and the metadata store are repli-

cated across multiple datacenters. In our evaluation, we

used three physically separate (and geographically dis-

tant) datacenters, so our discussion below assumes this

type of deployment and refers to each full system replica

as being in its own datacenter. However, the replication

mechanisms discussed here can just as easily be used in

deployments within a single physical datacenter by divid-

ing it into multiple logical datacenters.

As with GFS and HDFS, clients access a CalvinFS de-

ployment not via kernel mounting, but via a provided

client library, which provides standard file access APIs

and file utils [10, 21]. No technical shortcoming prevents

CalvinFS from being fully mountable, but implementa-

tion of this functionality remains future work.

4 The CalvinFS Block Store

Although the main focus of our design is metadata man-

agement, certain aspects of CalvinFS’s block store affect

metadata entry format and therefore warrant discussion.

Most of these decisions were made to simplify the tasks

of implementing, benchmarking, and describing the sys-

tem; other designs of scalable block stores would also

work with CalvinFS’s metadata architecture.

4.1 Variable-Size Immutable Blocks

As in many other file systems, the contents of a Calv-

inFS file are stored in a sequence of zero or more blocks.

Unlike most others, however, CalvinFS does not set a

fixed block size—blocks may be anywhere from 1 byte

to 10 megabytes. A 1-GB file may therefore legally con-

sist of anywhere from one hundred to one billion blocks,

although steps are taken to avoid the latter case.

Furthermore, blocks are completely immutable once

written. When appending data to a file, CalvinFS does

not append to the file’s final block—rather, a new block

containing the appended data (but not the original data)

is written to the block store, and the new block’s ID and

size are added to the metadata entry for the file.
2Note that this still involves many distributed transactions. For ex-

ample, creating or deleting a file also updates its parent directory.

4.2 Block Storage and Placement

Each block is assigned a globally unique ID, and is as-

signed to a block “bucket” by hashing its ID. Each bucket

is then assigned to a certain number of block servers

(analogous to GFS Chunkservers [10]) at each datacen-

ter, depending on the desired replication factor for the

system. Each block server stores its blocks in files on its

local file system.

The mapping of buckets to block servers is main-

tained in a global Paxos-replicated configuration file and

changes only when needed due to hardware failures, load

balancing, adding new machines to the cluster, and other

global configuration changes. Every CalvinFS node also

caches a copy of the bucket map. This allows any ma-

chine to quickly locate a particular block by hashing its

GUID to find the bucket, then checking the bucket map

to find what block servers store that bucket. In the event

where a configuration change causes this cached table to

return stale data, the node will fail to find the bucket at

the specified server, query the configuration manager to

update its cached table, then retry.

In the event of a machine failure, each bucket assigned

to the failed machine is reassigned to a new machine,

which copies its blocks from a non-failed server that also

stored the reassigned bucket.

To avoid excessive fragmenting, a background process

periodically scans the metadata store and compacts files

that consist of many small blocks. Once a compacted

file is asynchronously re-written to the block store using

larger blocks, the metadata is updated—as long as the file

contents haven’t changed since this compaction process

began. If that part of the file has changed, the newly writ-

ten block is discarded and the compaction process restarts

for the file.

5 CalvinFS Metadata Management

The CalvinFS metadata manager logically contains an

entry for every version (current and historical) of ev-

ery file and directory to appear in the CalvinFS deploy-

ment. The metadata store is structured as key- value store,

where each entry’s key is the absolute path of the file or

directory that it represents, and its value contains the fol-

lowing:

• Entry type. Specifies whether the entry represents a

file or a directory3.

• Permissions. CalvinFS uses a mechanism to support

POSIX hierarchical access control that avoids full file

system tree traversal when checking permissions for

3Although we see no major technical barrier to supporting linking in

CalvinFS, adding support for soft and hard links remains future work.

5

6  13th USENIX Conference on File and Storage Technologies (FAST ’15)	 USENIX Association

an individual file by additionally storing all ances-

tor directories’ permissions (up through the / direc-

tory) values in tree- ascending order in each metadata

entry.

• Contents. For directories, this is a list of files and

sub-directories immediately contained by the direc-

tory. For files, this is a mapping of byte ranges in the

(logical) file to byte ranges within specific (physical)

blocks in the block store. For example, if a file’s con-

tents are represented by the first 100 bytes of block

X followed by the 28 bytes starting at byte offset 100

of block Y, then the contents would be represented as

[(X, 0, 100), (Y, 100, 28)]4.

To illustrate this structure, consider a directory fs

in user calvin’s home directory, which contains

the source files for, say, an academic paper. The

calvinfs-ls util (analogous to ls -lA) yields the

following output:

$ calvinfs-ls /home/calvin/fs/

drwxr-xr-x calvin users ... figures

-rw-r--r-- calvin users ... ref.bib

-rw-r--r-- calvin users ... paper.tex

The CalvinFS metadata entry for this directory would be:

KEY:

/home/calvin/fs

VALUE:

type: directory

permissions: rwxr-xr-x calvin users

ancestor-

permissions: rwxr-xr-x calvin users

rwxr-xr-x root root

rwxr-xr-x root root

contents: figures ref.bib paper.tex

We see that the entry contains permissions for the di-

rectory, plus permissions for three ancestor directories:

/home/calvin, /home, and /, respectively. Since the

path (in the entry’s key) implicitly identifies these direc-

tories, they need not explicitly named in the value part of

the field.

Since permissions checks need not access ancestor

directory entries and the contents field names all

files and subdirectories contained in the directory, the

calvinfs-ls invocation above only needed to read

that one metadata entry. Note that unlike POSIX-style

ls -lA, however, the command above did not show the

sizes of each file. To output those, additional metadata

entries have to be read. For example, the metadata entry

for paper.tex looks like this:

4This particular example might come about by the file being cre-

ated containing 128 bytes in block Y, then having the first 100 bytes

overwritten with the contents of block X.

KEY:

/home/calvin/fs/paper.tex

VALUE:

type: file

permissions: rw-r--r-- calvin users

ancestor-

permissions: rwxr-xr-x calvin users

rwxr-xr-x calvin users

rwxr-xr-x root root

rwxr-xr-x root root

contents: 0x3A28213A 0 65536

0x6339392C 0 65536

0x7363682E 0 34061

Since paper.tex is a file rather than a directory,

its contents field contains block ids and byte offset

ranges in those blocks. We see here that paper.tex

is about 161 KB in total size, and its contents are a

concatenation of byte ranges [0,65536), [0,65536), and

[0,34061) in three specified blocks in the block store.

Storing all ancestor directories’ permissions in each

metadata entry eliminates the need for distributed per-

missions checks when accessing individual files, but

comes with a tradeoff: when modifying permissions for a

nonempty directory, the new permission information has

to be atomically propagated recursively to all descendents

of the modified directory. We discuss our protocol for

handling such large recursive operations in Section 5.2.

5.1 Metadata Storage Layer

As mentioned above, the metadata management system

in CalvinFS is an instance of Calvin with a custom stor-

age layer implementation that includes compound trans-

actions as well as primitive read/write operations. It im-

plements six transaction types:

• Read(path) returns the metadata entry for speci-

fied file or directory.

• Create{File,Dir}(path) creates a new empty

file or directory. This updates the parent directory’s

entry and inserts a new entry for the created file.

• Resize(path, size) a file. If a file grows as a

result of a resize operation, all bytes past the previous

file length are by default set to 0.

• Write(path, file offset, source,

source offset, num bytes) writes a speci-

fied number of bytes to a file, starting at a specified

offset within the file. The source data written must be

a subsequence of the contents of a block in the block

store.

• Delete(path) removes a file (or an empty direc-

tory). As with the file creation operation, the parent

directory’s entry is again modified, and the file’s entry

is removed.

6

USENIX Association 	 13th USENIX Conference on File and Storage Technologies (FAST ’15)  7

• Edit permissions(path, permissions)

of a file or directory, which may include changing the

owner and/or group.

Each of these operation types also takes as part of its

input the user and group IDs of the caller, and performs

the appropriate POSIX-style permissions checking be-

fore applying any changes. Any POSIX-style file system

interaction can be emulated by composing of multiple of

these six built-in operations together in a single Calvin

transaction.

Three of these six operations (read, resize, write) ac-

cess only a single metadata entry. Creating or deleting a

file or directory, however, touches two metadata entries:

the newly created file/directory and its parent directory.

Changing permissions of a directory may involve many

entries, since all descendants must be updated, as ex-

plained above. Since entries are hash-partitioned across

many metadata stores on different machines, the create,

delete, and change permissions (of a non-empty direc-

tory) operations necessarily constitute distributed trans-

actions.

Other operations, such as appending to, copying, and

renaming files are constructed by bundling together mul-

tiple built-in operations to be executed atomically.

5.2 Recursive Operations on Directories

Recursive metadata operations (e.g., copying a directory,

changing directory permissions) in CalvinFS use Calvin’s

built-in OLLP mechanism. The metadata store first runs

the transaction at no isolation in Analyze mode to dis-

cover the read set without actually applying any muta-

tions. This determines the entire collection of metadata

entries that will be affected by the recursive operation by

traversing the directory tree starting at the “root” of the

operation—the metadata entry for the directory that was

passed as the argument to the procedure.

Once the full read/write set is determined, it is added

as an annotation to the transaction request, which is re-

peated in Runmode, during which the directory tree is re-

traversed from the operation to check that the read/write

set of the operation has not grown (e.g., due to a newly

inserted file in a subtree). If the read- and write-sets

have grown between the Analyze and Run steps, OLLP

(deterministically) aborts the transaction, and restarts it

again in Run mode with an appropriately updated anno-

tation.

6 The Life of an Update

To illustrate how CalvinFS’s various components work

together in a scalable, fault-tolerant manner, we present

the end-to-end process of executing a simple operation—

creating a new file and writing a string to it:

echo "import antigravity" >/home/calvin/fly.py

The first step is for the client to submit the request to a

CalvinFS front-end—a process that runs on every Calv-

inFS server and orchestrates the actual execution of client

requests, then returns the results to the client.

Write File Data

After receiving the client request, the front-end begins by

performing the write by inserting a data block into Calv-

inFS’s block store containing the data that will be written

to the file. The first step here is to obtain a new, globally

unique 64-bit block id β from a block store server. β is

hashed to identify the bucket that the block will belong to,

and the front-end then looks up in its cached configura-

tion file the set of block servers that store that bucket, and

sends a block creation request interface node now sends

a block write request (β → import antigravity)
to each of those block servers.

Once a quorum of the participating block servers (2 out

of 3 in this case) have acknowledged to the front- end that

they have created and stored the block, the next step is to

update the metadata to reflect the newly created file.

Construct Metadata Operation

Since our system does not provide a single built-in op-

eration that both creates a file and writes to it, this op-

eration is actually a compound request specifying three

mutations that should be bundled together:

• create file /home/calvin/fly.py

• resize the file to 18 bytes.

• write β : [0,18) to byte range [0,18) of the file

Once this compound transaction request (let’s call it α)

is constructed, the front-end is ready to submit it to be

applied to the metadata store.

Append Transaction Request to Log

The first step in applying metadata mutation is for the

CalvinFS front-end to append α to the log. The Calv-

inFS front-end sends the request to a Calvin log front-

end, which appends α to its current batch of log entries,

which has some globally unique id γ . When batch γ fills

up with requests (or after a specified duration), it is writ-

ten out another asynchronously replicated block store.

Again, the log front-end waits for a majority of block

servers to acknowledge its durability, and then does two

things: (a) it submits the batch id γ to be appended to

the Paxos- replicated metalog, and (b) it goes through the

batch in order, forwarding each transaction request to all

metadata shards that will participate in its execution.

7

8  13th USENIX Conference on File and Storage Technologies (FAST ’15)	 USENIX Association

Apply Update to Metadata Store

Each Calvin metadata shard is constantly receiving trans-

action requests from various Calvin log front- ends—

however it receives them in a completely unspecified or-

der. Therefore, it also reads new metalog entries as they

are successfully appended, and uses these to sort the

transaction requests coming in from all of the log front-

ends, forming the precise subsequence of the log con-

taining exactly those transactions in whose execution the

shard will participate. Now, the sequencer at each meta-

data storage shard can process requests in the correct or-

der.

Our example update α reads and modifies

two metadata records: /home/calvin and /

home/calvin/fly.py. Suppose that these are

stored on shards P and Q, respectively. Note that each

metadata shard is itself replicated multiple times—once

in each datacenter in the deployment—but since no

further communication is required between replicas to

execute α , let us focus on the instantiations of P and Q

in a single datacenter (P0 and Q0 in datacenter 0, say).

Both P0 and Q0 receive request α in its entirety

and proceed to perform their parts of it. At P0,

α requests a lock on record /home/calvin from

the local scheduler; at Q0, α requests a lock on

/home/calvin/fly.py. At each machine, α only

starts executing once it has received its local locks.

Before we walk through the execution of α at P0 and

Q0, let us first review the sequence of logical steps that

the request needs to complete:

1. Check parent directory permissions. Abort trans-

action if /home/calvin does not exist or is not

writable.

2. Update parent directory metadata. If fly.py is

not contained in /home/calvin’s contents, add it.

3. Check file permissions. If the file exists and is not a

writable file, abort the transaction.

4. Create file metadata entry. If no metadata entry ex-

ists for /home/calvin/fly.py, create one.

5. Resize file metadata entry. Update the metadata en-

try to indicate a length of 18 bytes. If it was pre-

viously longer than 18 bytes, this truncates it. If it

was previously shorter (or empty), it is extended to

18 bytes, padded with zeros.

6. Update file metadata entry’s contents.

Write β : [0,18) to the byte range [0,18) of

/home/calvin/fly.py, overwriting any

previously existing contents in that range.

Note that steps 1 and 2 involve the parent directory meta-

data entry at P0, while steps 3, 4, 5, and 6 involve only

the new file’s metadata at Q0. However, steps 4 through

6 depend on the outcome of step 1 (as well as 3), so P0

and Q0 do need to coordinate in their handling of this

mutation request. The two shards therefore proceed as

follows:
P0 Q0

Check parent dir

permissions (step 1).

Send result (OK

or ABORT) to Q0.

If result was OK,

update parent dir

metadata (step 2).

Check file permissions;

abort if not OK (step 3).

Receive parent directory

permissions check

result from P0.

If received result is OK,

perform steps 4 through 6.

Both shards begin with permissions checks (step 1 for

P0 and step 3 for β). Suppose that both checks succeed.

Now α sends an OK result message to β . β receives the

result message, and now both shards execute the remain-

der of the operation with no further coordination.

Note that we were discussing datacenter 0’s P and

Q metadata shards. Metadata shards (P1,Q1), (P2,Q2),
etc., in other datacenters independently follow these same

steps. Since each shard deterministically processes the

same request sequence from the log, metadata state re-

mains strongly consistent: import antigravity is

written to /home/calvin/fly.py identically at every

datacenter.

7 Performance Evaluation

CalvinFS is designed to address the challenges of (a)

distributing metadata management across multiple ma-

chines, and (b) wide area replication for fault tolerance.

In exploring the scalability and performance character-

istics of CalvinFS, we therefore chose experiments that

explicitly stressed the metadata subsystem to its limits.

WAN replication. All results shown here used deploy-

ments that replicated all data and metadata three ways—

across datacenters in Oregon, Virginia, and Ireland.

Many small data blocks. In order to test the perfor-

mance of CalvinFS’s metadata store (as opposed to the

more easily scalable block storage component), we fo-

cused mainly on update-heavy workloads in which 99.9%

of files were 1KB or smaller. Obviously, most real world

file systems typically deal with much larger files; how-

ever, by experimenting on smaller files we were able to

test the ability of the metadata store to handle billions

of files while keeping the cluster size affordably small

enough for our experimental budget. Obviously, larger

files would require additional horizontal scalability of the

block store; however this is not the focus of our work.

8

USENIX Association 	 13th USENIX Conference on File and Storage Technologies (FAST ’15)  9

We use this setup to examine CalvinFS’s memory usage,

throughput capacity, latency, and fault tolerance.

7.1 Experimental Setup

All experiments were run on EC2 High-CPU Extra-Large

instances5. Each deployment was split equally between

AWS’s US-West (Oregon), US-East (Virginia), and EU

(Ireland) regions. Block and metadata replication factors

were set to 3, and buckets, metadata shards, and Paxos

group members were placed such that each object (meta-

data entries, log blocks, data blocks, and Paxos log and

metalog entries) would be stored once in each datacenter.

Each machine served as (a) a block server (contain-

ing 30 buckets), (b) a log front-end, and (c) a metadata

shard. In addition, one randomly selected machine from

each datacenter participated in the Paxos group for the

Calvin metalog. We ran our client load generation pro-

gram on the same machines (but it did not use any knowl-

edge about data or metadata placement when generating

requests, so very few requests could be satisfied locally,

especially in large deployments).

We ran each performance measurement on deploy-

ments of seven different sizes: 3, 6, 18, 36, 75, 150,

and 300 total machines. As mentioned above, we had

a limited budget for running experiments, so we could

not exceed 300 machines. However, we were able to

store billions of files across these 300 machines by lim-

iting the file size. Our results can be translated directly

to larger clusters that have more machines and larger files

(and therefore the same total number of files to manage).

We compare our findings directly to HDFS performance

measurements published by Yahoo researchers [20].

7.2 File Counts and Memory Usage

After creating each CalvinFS deployment, we created 10

million files per machine. File sizes ranged from 10 bytes

to 1MB, with an average size of 1kB. 90% of files con-

tained only one block, and 99.9% of files had a total size

of under 1kB. Most file names (including full directory

paths) were between 25 and 50 bytes long.

We found that total memory usage for metadata was

approximately 140 bytes per metadata entry—which is

closely comparable to the per-file metadata overhead of

HDFS [28]. Unlike HDFS, however, the metadata shards

did not store an in-memory table of block placement

data, since Calvin uses a coarser-grained bucket place-

ment mechanism instead. We would therefore expect

an HDFS-like file system deployment (with ˜1 block per

5Each EC2 High-CPU Extra-Large instance contains 7 GB of mem-

ory, 20 EC2 Compute Units (8 virtual cores with 2.5 EC2 Compute

Units each with the equivalent CPU capacity of a 1.0-1.2 GHz 2007

Opteron or 2007 Xeon processor), and 1690 GB of instance storage

file) to require approximately twice the amount of total

memory to store metadata (assuming the same level of

metadata replication). Of course, by partitioning meta-

data across machines, CalvinFS requires far less memory

per machine.

Our largest deployment—300 machines—held 3 bil-

lion files (and therefore 9 billion total metadata entries)

in a total of 1.3 TB of main memory. This large number

of files is far beyond what HDFS can handle [27].

7.3 Throughput Capacity

Next, we examined the throughput capacity (Figure 1)

and latency distributions (Figure 2) of reading files, writ-

ing to files, and creating files in CalvinFS deployments of

varying sizes. For each measurement, we created client

applications that issued requests to read files, create files,

and write to files—but with different frequencies. For ex-

periments on read throughput, 98% of all client requests

were reads, with 1% of operations being file creations

and 1% being writes to existing files. Similarly, for write

benchmarks, clients submitted 98% write requests, and

for append benchmarks, clients submitted 98% append

requests. For all workloads, clients chose which files to

read, write, and create using a Gaussian distribution.

Once key feature of CalvinFS is that throughput is to-

tally unaffected by WAN replication (and the latencies

of message passing between datacenters). This is be-

cause once a transaction is replicated to all datacenters by

the Calvin log component (which happens before request

execution begins), no further cross-datacenter communi-

cation is required to execute the transaction to comple-

tion. Therefore, we only experiment with the three dat-

acenter case of Oregon, Virginia, and Ireland for these

set of experiments—changing datacenter locations (or

even removing WAN replication entirely) has no effect

on throughput results. Latency, however, is affected by

the metalog Paxos agreement protocol across datacenters,

which we discuss in Section 7.4 below.

Read Throughput

For many analytical applications, extremely high read

throughput is extremely important, even if it comes at

the cost of occasionally poor latencies for reads of spe-

cific files. On the other hand, being able to rely on

consistent read latencies vastly simplifies the develop-

ment of distributed applications that face end-users. We

therefore performed two separate read throughput exper-

iments: one in which we fully saturated the system with

read requests, resulting in “flaky” latency, and one at only

partial load that yields reliable (99.9th percentile) latency

(Figures 1a and 1b). Because each datacenter stores a

full, consistent replica of all data and metadata, each read

9

10  13th USENIX Conference on File and Storage Technologies (FAST ’15)	 USENIX Association

Figure 1: Total and per-machine read (a,b) and update

(c,d) throughput, and maximum per-file update through-

put (e), for WAN-replicated CalvinFS deployments.

request is routed only to the relevant machine(s) in the

same datacenter as the client.

Specifically, we observed that under very heavy load,

occasional background tasks such as LSM tree com-

pactions and garbage collection could cause a large num-

ber of concurrent read requests to stall, introducing oc-

casional latency spikes and some completely failed reads

that then had to be retried. Median and 90th percentile la-

tencies, however, were comparable to those observed for

the “partial load” experiments described below.

For our partial load experiments, we reduced the num-

ber of clients as far as necessary to completely remove

latency spikes. Typically running the system at 50% of

the maximum load accomplished this. For our largest de-

ployments, we had to reduce the load to about 45% of

maximum throughput to accomplish this 6.

Figures 1a and 1b) show that CalvinFS is able to

achieve linear scalability for read throughput, even as

millions of files are read per second. At machine count 3,

there is only one machine per datacenter, so all reads can

be satisfied locally, which yields very high throughput.

Starting with machine count 6, however, the probability

of at least one non-local access increases rapidly (already

at machine count 6 there is a 75% probability that either

the file metadata or the file data itself will be non-local).

We include in Figure 1a the upper bound of read re-

quest throughput for HDFS, as reported by Yahoo re-

searchers in 2010[20]. Specifically, this corresponds to

block location lookups by the NameNode. It was found

that the HDFS metadata store can serve no more than

126,119 block location lookups per second. Since read

requests involve more metadata operations than just a sin-

gle block location lookup—such as other metadata entry

lookups to check file existence, permissions, and block

IDs, not to mention possibly having to look up multiple

block locations if the file spans multiple blocks—this is

strictly an upper bound. We also assume here that the

metadata management layer is the only bottleneck for

reads, which in HDFS would certainly not be the case

for small deployments. It is fair to expect actual HDFS

read throughput to be considerably lower than the upper

bound plotted in Figure 1a.

Update Throughput

Next, we measured the total number of file creation and

append operations that each CalvinFS deployment could

perform (Figures 1c and 1d). Append throughput scaled

very nearly linearly with the number of machines in the

cluster, reaching about 40,000 appends per second with a

300- machine cluster.

However, file creation throughput scaled slightly less

smoothly. This is because each file creation operation is

implemented as a distributed transaction (since metadata

entries had to be modified for both the parent directory

and the newly-created file)—requiring coordination be-

tween metadata shards to complete. As more machines

6The problems of performance isolation between processes and mit-

igating tail latencies have been studied extensively, and many tech-

niques have been developed that could be applied to CalvinFS to safely

increase CPU utilization and improve performance, but these are out-

side the scope of this paper.

10

USENIX Association 	 13th USENIX Conference on File and Storage Technologies (FAST ’15)  11

are added, the likelihood increases that at any given time

at least one machine will “fall behind,” delaying other

machines’ progress involved in distributed transactions

accessing data at that node. This effect is similar to

that observed running TPC-C and other OLTP bench-

marks using the Calvin framework [24]. Despite slightly

sub-linear scaling, file creation capacity in CalvinFS still

scales very well overall—far better than alternatives that

do not scale metadata management across multiple ma-

chines.

We include in Figure 1c the observed HDFS through-

put upper bound of 5600 new blocks per second [20]. In

our benchmark, each file creation and write involved cre-

ating a block, then performing one or more other meta-

data updates. We therefore expect actual HDFS update

throughput of this type to be considerably lower than

5600 operations per second, but this figure serves as a

proven upper bound.

Concurrent Writes to Contended Files

Many distributed systems do not perform well when a

large number of clients concurrently attempt to write to

the same file—such as heavy traffic of simultaneous ap-

pends to a shared log file. The systems that provide the

best performance for this situation often forgo consistent

replication and strong linearizability guarantees to do so.

CalvinFS, however, supports high concurrent write

throughput to individual files without sacrificing lineariz-

ability. To demonstrate this, we performed an experiment

in which we chose one file for every three machines in

the full deployment (so 1 file for the 3-machine deploy-

ment and 100 files for the 300 machine deployment) and

had 100 independent clients per file repeatedly send re-

quests to either append data to that file or perform a ran-

dom write within the file. Figure 1e shows the resulting

per-file throughput. Small-cluster CalvinFS deployments

sustained rates of 250 writes or appends per second on

each file. Our largest deployments sustained 130 writes

or appends per second on each file.

7.4 Latency Measurements

Next, we examined the latency distribution for file read,

write, and file creation operations for deployments of 36

and 300 machines (Figures 2a and 2b). Latencies are

measured from when a client submits a request until the

operation is completed and it receives a final response.

Read Latencies

Our measurement of read latencies was taken under

“non-flaky” load, which is about half of maximum read

throughput. In all cases, read requests are served by the

nearest metadata shard and block server within the same

datacenter.

We broke reads down into three categories: (a) reads of

files that contain no data in the block store (this includes

ls operations on directories, since each directory’s con-

tents are listed in its metadata entry), reads of files that

contain a single block, and reads of multi-block files.

There are several interesting features to note in these

plots. First, in the 36-machine deployment, the median

latency to read a non-empty file is about 3ms and the

99th percentile latency is about 80ms, while at 300 ma-

chines, median latency is about 5 ms, and 99th percentile

latency is about 120ms. Although adding more machines

to a distributed system invariably introduces performance

variabilities, we deemed this a reasonable latency price

for nearly an order of magnitude of scaling.

Second, when reading zero-block files in the 36-

machine deployment (which has 12 machine per data-

center), about 1 read in 12 is extremely fast—less than

100 microseconds—because 1 in 12 metadata lookups

happen to occur on the same machine as the interface

node handling the client’s request, requiring no network

round trips. The same effect is visible for one 100th

of metadata-only reads in the 300-machine deployment

(which, likewise, has 100 machines per datacenter). LAN

round-trip times within a datacenter were 1 ms—about

the latency of most non-local metadata-only reads. Simi-

larly, 1-block reads generally incur 2 round trips, while

2+ block reads incur 3 or more. Because of the non-

uniform distribution of files read, around 85% of blocks

could be served directly from block servers’ OS memory

cache, without needing to go to disk; only 15% of 1-block

reads incur disk I/O costs; among reads of multi-block

files, the frequency of I/O latencies appearing is higher.

Although these benchmarks may not be very indicative

of real-world usage patterns for distributed file systems

(which would likely include many more large files, and

in some cases worse cache locality for reads), we chose

them to highlight the specific sources of latency that are

introduced by components other than the block store.

Therefore, one can know what to expect if a CalvinFS-

style metadata subsystem were coupled with an off-the-

shelf block store whose performance and scalability was

already well-documented for petabyte-scale data volumes

and much larger individual block sizes.

Update Latencies

Latencies for file creation and write/append requests are

dominated by WAN round-trip times. Creating a file typ-

ically incurs approximately two non-overlapping round

trip latencies: one for the log front-end to write its re-

quest batch out to a majority of datacenters, and one to

append the entry to the Paxos metalog.

Although we saw above that CalvinFS achieves more

11

12  13th USENIX Conference on File and Storage Technologies (FAST ’15)	 USENIX Association

Figure 2: Latency distributions for read, write/append,

and create operations for WAN-replicated CalvinFS de-

ployments of (a) 36 machines and (b) 300 machines.

impressive throughput for writes and appends to existing

files than for file creation, the latency for writes/appends

is higher—one additional non- overlapping WAN round

trip is necessary to replicate the newly created data blocks

before requesting the metadata update.

7.5 Fault Tolerance

Since we designed CalvinFS’s WAN replication mecha-

nism with the explicit goal of high availability, we now

test our system in the presence of full datacenter fail-

ure. In our next experiment, we killed all CalvinFS

processes in the Virginia datacenter while a 36-machine

CalvinFS deployment the system was running under a

mixed read/create/write load. Specifically, we deployed

1000 clients—one third constantly reading files, one third

constantly creating new files, and one third constantly ap-

pending to files. This saturates the file system’s maxi-

mum file creation throughput capacity (which is limited

by lock contention) and represents approximately 50%

read load and 20% append load.

Figure 3 shows throughput (a) and median and 99th-

percentile latency (b) for the 30 seconds immediately pre-

ceding and following the datacenter “failure”. In order

to clearly show what effects this had on CalvinFS’s core

operation capacities, we immediately redirected all new

client requests that would have been routed to Virginia

to either Oregon or Ireland, rather than requiring clients

to wait for timeouts before resuming (which would have

“unfairly” given the system time to recover from its sud-

den involuntary reconfiguration).

We see here that total read, create, and write/append

throughput capacity is only reduced by a small amount,

Figure 3: Throughput (a) and latency (b) for the time win-

dow preceding and following a datacenter failure.

median read latency remains unchanged, and 99th-

percentile read latency only increases by about 30%. File

creation and write/append latency, however, roughly dou-

ble. The reason for this is that the non-overlapping por-

tions of WAN latencies goes from being around 100ms

(round trip between either Oregon and Virginia or Vir-

ginia and Ireland—each of which pair forms a quorum)

to nearly 200ms (round trip between Oregon and Ireland,

which now represent the only quorum). No file is at any

time unavailable for reading or writing.

In summary, we found that CalvinFS tolerated an un-

planned datacenter outage with exceptional grace.

8 Related Work

CalvinFS builds on a long history of research on the scal-

ability and reliability of distributed file systems.

We modeled certain aspects of the CalvinFS design

after GFS/HDFS. In particular, our decision to concen-

trate all metadata in the main memory of a specific meta-

data component is based on the success of this tactic in

GFS/HDFS. CalvinFS’ block store is also a simplifica-

tion of the GFS/HDFS model that uses consistent hash-

ing to simplify block metadata. Our implementation

of CalvinFS’ novel features—scalable metadata man-

agement and consistent WAN replication—was designed

12

USENIX Association 	 13th USENIX Conference on File and Storage Technologies (FAST ’15)  13

to illuminate a path that a GFS-/HDFS-like file system

could take towards eliminating the single metadata mas-

ter as both a scalability bottleneck and availability hazard

[10, 21, 20].

In 2009, Google released a retrospective on the scala-

bility, availability, and consistency challenges that GFS

had faced since its creation, attributing many difficul-

ties to its single-master design. The interview also de-

scribes a new distributed-master implementation of GFS

that stores metadata in Bigtable [10, 14, 6]. Since

Bigtable supports neither multi-row transactions nor syn-

chronous replication, it is unclear how (or if) this new

GFS implementation supports strongly consistent seman-

tics and linearizable file updates while maintaining high

availability—particularly in the case of machine failures

in the metadata Bigtable deployment.

The Lustre file system resembles GFS in that it uses a

single metadata server (MDS), but it does not store per-

block metadata, reducing MDS dependence in the block

creation and block-level read paths. The latest release

of Lustre allows metadata for specific directory subtrees

to be offloaded to special “secondary” MDSs for out-

ward scalability and load balancing. Lustre supports only

cluster-level data replication [18].

Tango provides an abstraction of a distributed, transac-

tional data structure backed by a replicated, flash-resident

log, and is designed for use in metadata subsystems. Like

in the CalvinFS metadata manager, a Tango deployment’s

state is uniquely determined by a single serialized log

of operation requests. Tango transactions use optimistic

concurrency control, however: they log a commit entry as

the final execution step (readers of the log are instructed

to ignore any commit entry that turns out to be preceded

by a conflicting one). To avoid high optimistic abort

rates under contention, this mechanism requires a log im-

plementation with very low append latency. Since syn-

chronous geo-replication inherently incurs high latencies,

Tango is only suited to single-datacenter deployments [5].

IBM’s GPFS distributes metadata using a shared-disk

abstraction and allows multiple machines to access it con-

currently protected by a distributed locking mechanism.

When multiple clients access the same object, however,

distributed locking mechanisms perform poorly. File sys-

tems that store metadata using shared-disk arrays depend

on low-latency network fabrics to mitigate these issues

[17].

Gluster distributes and replicates both data blocks and

file metadata entries using an elastic hashing algorithm.

However, adding replicas to a Gluster deployment signif-

icantly hinders write throughput. Furthermore, Gluster’s

implementation of copy and rename operations forces

data blocks as well as metadata to be copied between stor-

age shards, which can easily become too expensive [1].

The Ceph file system scales metadata management by

dynamically partitioning metadata by directory subtree

(and hashing “hotspot” directories across multiple meta-

data servers). Ceph is optimized for single- datacenter

deployments, however; its metadata replication mecha-

nism relies heavily on low latencies between replicas to

avoid introducing update-contention bottlenecks [25].

The Panasas File System colocates file metadata with

file data on Object-based Storage Devices (OSDs), each

of which manages (RAID-based) data replication inde-

pendently. OSDs optimize caching for high-throughput

concurrent reads. Clients cache a global mapping of file

system objects to OSDs, updates to which require global

synchronization [26].

The Ursa Minor Storage System uses subtree-

partitioning to distribute metadata but takes a different

approach to outwardly scalable metadata management:

any time an atomic operation would span multiple par-

titions, instead of using a distributed transaction, it repar-

titions the metadata data, migrating all entries that need

to be atomically updated to the same partition [3].

The Farsite file system is designed to unite a collec-

tion of “desktop” computers rather than datacenters full

of rack servers. Early versions Farsite relied on a sin-

gle metadata server, but Farsite now supports dynamic

subtree-partitioning as well, but no metadata replication

[4].

Frangipani and xFS are shared-disk distributed file sys-

tems. xFS implemented a “serverless” file system, dis-

tributing file data and metadata across a collection of

disks, using a globally replicated mapping of file system

object locations. All implementation logic is executed

by clients, using on-disk state for synchronization. Some

currently popular shared-disk-based file systems appear

to be loosely based on the xFS design [23, 22].

Panache approaches file system scalability from a dif-

ferent direction—providing scalable caching of both data

and metadata for a traditional (and less scalable) file sys-

tem. Although Panache does not provide a full replace-

ment for a file system’s metadata component, it effec-

tively removes some bottlenecks, particularly from the

read path, via partitioning and replication [9].

Like CalvinFS, Giga+ uses hash partitioning to dis-

tribute metadata for across many servers within a data-

center. However Giga+’s distributed operations are even-

tually consistent and rely on clever handling of stale

client-side state [16].

13

14  13th USENIX Conference on File and Storage Technologies (FAST ’15)	 USENIX Association

9 Conclusions

CalvinFS deployments can scale on large clusters of com-

modity machines to store billions of files and process

hundreds of thousands of updates and millions of reads

per second—while maintaining consistently low read la-

tencies. Furthermore, CalvinFS deployments can survive

entire datacenter outages with only minor performance

consequences and no loss of availability at all.

References

[1] Glusterfs. Gluster Community, http://gluster.org/.

[2] Riak. Basho, http://basho.com/riak.

[3] M. Abd-El-Malek, W. V. Courtright II, C. Cranor, G. R.

Ganger, J. Hendricks, A. J. Klosterman, M. P. Mesnier,

M. Prasad, B. Salmon, R. R. Sambasivan, et al. Ursa mi-

nor: Versatile cluster-based storage. In FAST, volume 5,

2005.

[4] A. Adya, W. J. Bolosky, M. Castro, G. Cermak,

R. Chaiken, J. R. Douceur, J. Howell, J. R. Lorch,

M. Theimer, and R. P. Wattenhofer. Farsite: Federated,

available, and reliable storage for an incompletely trusted

environment. ACM SIGOPS Operating Systems Review,

36(SI):1–14, 2002.

[5] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu, V. Prab-

hakaran, M. Wei, J. D. Davis, S. Rao, T. Zou, and A. Zuck.

Tango: Distributed data structures over a shared log. In

SOSP, 2013.

[6] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wal-

lach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber.

Bigtable: A distributed storage system for structured data.

TOCS, 2008.

[7] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,

J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,

P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,

A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quin-

lan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,

R. Wang, and D. Woodford. Spanner: Google’s globally-

distributed database. In Proc. of OSDI, pages 251–264,

2012.

[8] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,

A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,

and W. Vogels. Dynamo: amazon’s highly available key-

value store. SIGOPS Oper. Syst. Rev., 41(6):205–220, Oct.

2007.

[9] M. Eshel, R. L. Haskin, D. Hildebrand, M. Naik, F. B.

Schmuck, and R. Tewari. Panache: A parallel file system

cache for global file access. In FAST, 2010.

[10] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google

file system. In Proc. of SOSP, 2003.

[11] F. Hupfeld, T. Cortes, B. Kolbeck, J. Stender, E. Focht,

M. Hess, J. Malo, J. Marti, and E. Cesario. The xtreemfs

architecture: a case for object-based file systems in grids.

Concurrency and computation, 20(17), 2008.

[12] A. Lakshman and P. Malik. Cassandra: a decentralized

structured storage system. SIGOPS Oper. Syst. Rev., 2010.

[13] P. I. LLC. National survey on data center outages. 2010.

[14] M. K. McKusick and S. Quinlan. Gfs: Evolution on fast-

forward.

[15] R. McMillan. Guns, squirrels, and steel: The many ways

to kill a data center. Wired, 2012.

[16] S. Patil and G. A. Gibson. Scale and concurrency of giga+:

File system directories with millions of files. In FAST,

2011.

[17] F. B. Schmuck and R. L. Haskin. Gpfs: A shared-disk file

system for large computing clusters. In FAST, volume 2,

2002.

[18] P. Schwan. Lustre: Building a file system for 1000-node

clusters. In Proceedings of the 2003 Linux Symposium,

2003.

[19] J. Shute, R. Vingralek, B. Samwel, B. Handy, C. Whipkey,

E. Rollins, M. O. K. Littlefield, D. Menestrina, S. E. J.

Cieslewicz, I. Rae, et al. F1: A distributed sql database

that scales. Proceedings of the VLDB Endowment, 6(11),

2013.

[20] K. Shvachko. Hdfs scalability: the limits to growth. 2009.

[21] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The

hadoop distributed file system. In MSST, 2010.

[22] A. Sweeney, D. Doucette, W. Hu, C. Anderson, M. Nishi-

moto, and G. Peck. Scalability in the xfs file system. In

USENIX Annual Technical Conference, volume 15, 1996.

[23] C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani: a

scalable distributed file system. SIGOPS Oper. Syst. Rev.,

1997.

[24] A. Thomson, T. Diamond, S. chun Weng, K. Ren, P. Shao,

and D. J. Abadi. Calvin: Fast distributed transactions for

partitioned database systems. In SIGMOD, 2012.

[25] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long,

and C. Maltzahn. Ceph: a scalable, high-performance dis-

tributed file system. In OSDI, 2006.

[26] B. Welch, M. Unangst, Z. Abbasi, G. A. Gibson,

B. Mueller, J. Small, J. Zelenka, and B. Zhou. Scalable

performance of the panasas parallel file system. In FAST,

volume 8, 2008.

[27] T. White. The small files problem. Cloudera

Blog, blog.cloudera.com/blog/2009/02/the-small-files-

problem/.

[28] T. White. Hadoop: The Definitive Guide. 2nd edition,

2010.

14

