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Abstract

Background: Angiogenesis plays an important role in a wide range of physiological processes, and many diseases are
associated with the dysregulation of angiogenesis. Radix Astragali is a Chinese medicinal herb commonly used for treating
cardiovascular disorders and has been shown to possess angiogenic effect in previous studies but its active constituent and
underlying mechanism remain unclear. The present study investigates the angiogenic effects of calycosin, a major
isoflavonoid isolated from Radix Astragali, in vitro and in vivo.

Methodology: Tg(fli1:EGFP) and Tg(fli1:nEGFP) transgenic zebrafish embryos were treated with different concentrations of
calycosin (10, 30, 100 mM) from 72 hpf to 96 hpf prior morphological observation and angiogenesis phenotypes
assessment. Zebrafish embryos were exposed to calycosin (10, 100 mM) from 72 hpf to 78 hpf before gene-expression
analysis. The effects of VEGFR tyrosine kinase inhibitor on calycosin-induced angiogenesis were studied using 72 hpf
Tg(fli1:EGFP) and Tg(fli1:nEGFP) zebrafish embryos. The pro-angiogenic effects of calycosin were compared with raloxifene
and tamoxifen in 72 hpf Tg(fli1:EGFP) zebrafish embryos. The binding affinities of calycosin to estrogen receptors (ERs) were
evaluated by cell-free and cell-based estrogen receptor binding assays. Human umbilical vein endothelial cell cultures
(HUVEC) were pretreated with different concentrations of calycosin (3, 10, 30, 100 mM) for 48 h then tested for cell viability
and tube formation. The role of MAPK signaling in calycosin-induced angiogenesis was evaluated using western blotting.

Conclusion: Calycosin was shown to induce angiogenesis in human umbilical vein endothelial cell cultures (HUVEC) in vitro
and zebrafish embryos in vivo via the up-regulation of vascular endothelial growth factor (VEGF), VEGFR1 and VEGFR2 mRNA
expression. It was demonstrated that calycosin acted similar to other selective estrogen receptor modulators (SERMs), such
as raloxifene and tamoxifen, by displaying selective potency and affinity to estrogen receptors ERa and ERb. Our results
further indicated that calycosin promotes angiogenesis via activation of MAPK with the involvement of ERK1/2 and ER.
Together, this study revealed, for the first time, that calycosin acts as a selective estrogen receptor modulator (SERM) to
promote angiogenesis, at least in part through VEGF-VEGFR2 and MAPK signaling pathways.
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Introduction

Angiogenesis is the establishment of the mature blood vessel

network through expansion and remodeling of the pre-existing

vascular primordium. Blood vessel formation through angiogenesis

involves the induction of new sprouts, coordinated and directed

endothelial cell migration, proliferation, sprout fusion (anastomo-

sis) and lumen formation [1]. It is a process tightly regulated by a

variety of pro-angiogenic factors such as the estrogen receptors

(ERs). ERs are a group of transcriptional factors that belong to the

nuclear receptor superfamily and are activated by estrogen. In

addition to its reproductive function, ER also plays an important

role in the cardiovascular system [2]. Previous studies have

demonstrated that ER expressed in endothelial cells mediates

angiogenesis through both classical genomic, and rapid non-

genomic, mechanisms [3,4,5]. Ligands of ER such as 17b-estradiol

(E2), estradiol and raloxifene have been shown to induce

endothelial cells proliferation and migration [6,7]. Meanwhile,

PLoS ONE | www.plosone.org 1 July 2010 | Volume 5 | Issue 7 | e11822



some isoflavonoids possessing estrogenic properties that are

regarded as selective estrogen receptor modulators (SERMs), also

provide cardiovascular benefits, including regulation of endothelial

cells proliferation, differentiation, adhesion, migration and kinase

activation through interacting with ER [8,9].

Natural products, such as certain Chinese medicines, contain a

variety of angiogenic compounds. It has been demonstrated that

Rg1 and Rb1, the two prevalent saponins of Ginseng, have opposing

effects in modulating angiogenesis [10]. Another Chinese medicine

Radix Astragali, which is rich in isoflavonids, is often used either as a

single herb or in combination with other Chinese medicines as

formula for treating myocarditis [11], heart failure [12], myocardial

infarction [13], pulmonary hypertension [14,15,16,17], chronic

hepatitis [18], diabetes [19,20] and systemic lupus erythematosus

[21] among others. Danggui buxue tang (DBT), a Chinese herbal

concoction composed of Radix Astragali and Angelica sinensis, is

commonly prescribed to treat menopausal irregularity and

menstrual disorders [22,23,24]. DBT triggered specific phosphor-

ylations of ERa and ERK1/2 in the cultured human breast cancer

cell line, MCF-7 [25].

Despite Radix Astragali have been shown to stimulate angiogen-

esis in some studies, the mechanism underlying its angiogenic

activity remains unclear [26]. The major bioactive constituents of

Radix Astragali are saponins and flavonoids, including astragaloside

(I,VIII), calycosin, formononetin, ononin and their glucosides

[27,28]. Among these isoflavonoids, calycosin is the candidate with

most potential to develop as a small-molecule angiogenic agent,

due to its benefits upon endothelial cells [29]. Calycosin protects

HUVECs from hypoxia-induced barrier impairment by increasing

intracellular energetic sources and promoting regeneration of

cAMP levels, as well as improving cytoskeleton remodeling. Our

previous study illustrated that Radix Astragali extract (RAE)

possesses pro-angiogenic effects upon human umbilical vein

endothelial cells (HUVECs), which involve the VEGF-VEGFR2

and PI3K-Akt-eNOS pathways [30]. HPLC chromatography

revealed that the compositions of formononetin, calycosin, (6aR,

11aR)-9,10-dimethoxy-3-hydroxypterocarpan and saponins (astra-

galoside I, II and IV) in the RAE were 8.15%, 0.77%, 0.01% and

0.88% of the whole extract, respectively. In regards to the

preliminary screening of the angiogenic effects of these constitu-

ents, calycosin was found to be the most potent pro-angiogenic

agent among all. This present study examines whether calycosin

acts on ER and promotes angiogenesis in HUVEC cultures in vitro

and a transgenic zebrafish model in vivo.

Results

Pro-angiogenic effect of calycosin in zebrafish
In zebrafish, angiogenic vessel development does not begin until

20 hpf (hours-post fertilization), and changes in subintestinal vein

vessels (SIVs) are detected after 72 hpf. Fig. 1A shows that the

SIVs of Tg(fli1:EGFP) zebrafish line treated with 0.1% DMSO at

96 hpf developed as a smooth basket-like structure. Following

calycosin treatment (10, 30, 100 mM) from 72 hpf to 96 hpf, the

diameter of SIVs increased in a dose-dependent manner (Fig. 1B–

D). Quantitative analysis confirmed a significant (P,0.05 and

P,0.001) dose-dependent effect of calycosin on diameter of SIVs

compared with the control group (Fig. 1E).

In order to determine whether the change of blood vessel

phenotype (Fig. 1B–D) involves merely a transient vasodilation

effect, or genomic action on stimulating endothelial cells

proliferation, Tg(fli1:nEGFP) zebrafish embryos were used to

demonstrate the angiogenic effect of calycosin. Tg(fli1:nEGFP) fish

were engineered similarly to Tg(fli1:EGFP) except that Tg(fli1:

nEGFP) harbor nuclear-localized GFP expression, permitting real-

time in vivo analysis of individual endothelial cells [31]. These

results show that calycosin treated (10, 30, 100 mM) SIVs

contained significantly (P,0.01 and P,0.001) more endothelial

cells (Fig. 2B–D) throughout the SIV region than the control group

(Fig. 2A). Quantitative analysis indicates that calycosin induced an

approximately 1.5 times increase in endothelial cells population

compared with the control (Fig 2E).

Detection of mRNA expression in calycosin treated
zebrafish
In order to identify molecular targets of the angiogenic effects of

calycosin in zebrafish, mRNAs from different groups were isolated

and reverse transcribed to cDNA, and relative gene expression

determined using real-time PCR. VEGFA is a fundamental

mediator of physiological and pathophysiological angiogenesis

[32], and acts through tyrosine kinase receptors. VEGFR2 (fetal

liver kinase, also known as KDR and Flk-1) has a higher affinity

for VEGF and is a major transducer of the VEGF signal in

endothelial cells [33,34].

The bar charts in Fig. 3 represent the gene expression of

VEGFA after treatment with 100 mM calycosin for 6 h. There was

an increase trend of mRNA expression level compared to the

control (1.2-fold at 100 mM), and calycosin caused a significant

increase in mRNA expression of VEGFR1 (1.1-fold at 100 mM;

P,0.001), Flk1A (0.8-fold at 100 mM; P,0.001) and Flk1B (0.9-

fold at 100 mM; P,0.001). Hence, these results suggest that the

up-regulation of expression of these genes caused by calycosin

could contribute to the pro-angiogenic effects of calycosin

observed in zebrafish.

VEGFRs are important in calycosin-induced angiogenic
effects
VEGFR tyrosine kinase inhibitor II (VTKI, VRI), a pyridinyl-

anthranilamide compound that displays both antiangiogenic and

antitumor properties, has been shown to potently inhibit the kinase

activities of VEGFR1 and VEGFR2 [35]. We found that VRI,

when in high concentration (1 mg/ml), caused significant

(P,0.001) defects in angiogenesis in zebrafish embryonic devel-

opment (Fig. 4E). Indeed, a lower concentration of VRI (100 ng/

ml), which itself had no effect (Fig. 4C), caused significant

(P,0.001) defects in calycosin-induced angiogenesis in zebrafish

embryonic development (Fig. 4D). Quantitative analysis confirmed

that a low concentration of VRI (100 ng/ml) was sufficient to

reverse the calycosin-induced angiogenic effects to control levels

(Fig. 4F & 4G). This indicates that, in exerting its effect, calycosin

interacts with VEGF receptors (VEGFRs), further confirming that

calycosin-induced angiogenesis, at least in part, involves the

VEGF- VEGFR2 signaling pathway.

Calycosin acts directly but differentially with ERa and ERb
Since ERs are potential targets of calycosin [25], its binding

affinities to ERa and ERb were evaluated by fluorescent

polarization competitive binding assay. 17-b-estradiol (E2), a native

agonist for both ERa and ERb, was used as a positive control. In

this study, E2 displayed strong binding affinity for ERa and ERb

(ERa: IC50=2.086 nM, Fig. 5A–i; ERb: IC50=1.484 nM, Fig. 5A–

ii). Calycosin displaced FluormoneTM ES2 and bound to ERa and

ERb in a dose-dependent manner (Fig. 5A–i & Fig. 5A–ii). The

binding affinities of calycosin to ERa and ERb were not as strong as

that of E2, with an IC50 value approximately 104-fold higher than

that of E2 and its lower maximum displacement. On the other

hand, the IC50 value of calycosin at ERa (IC50=58.123 mM,

Calycosin is Pro-Angiogenic
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Fig. 5A–i) was very similar to that at ERb (IC50=32.428 mM,

Fig. 5A–ii).

To further examine the transcriptional agonistic/antagonistic

action of calycosin on ERs, GeneBLAzer b-lactamase reporter-

gene experiments were performed. Calycosin showed weak

agonistic activities at both ERa and ERb (maximum activity was

14.6% and 8.6%, respectively, Fig. 5B–i). In contrast, the

antagonistic activities of calycosin against E2 at ERa and ERb

Figure 1. The effects of calycosin treatment on blood vessel formation in SIVs of Tg(fli1:EGFP) zebrafish embryos. (A) Control: embryo
treated with 0.1% DMSO at 96 hpf, SIVs appear as a smooth basket-like structure. (B–D) Calycosin: embryo treated with 10, 30, 100 mM calycosin at
72 hpf for 24 h, leads to enlarged SIV basket stretching into the posterior yolk extension. (a–d) Enlarged SIV region (64.5) of A–D respectively. White
arrows indicating the enlarged vessels, yellow and red arrows indicate sprouting and intersectioning branches respectively. (E) Calycosin increases SIV
diameter in a dose-dependent manner. Data are plotted as mean6SEM, (n = 3), *P,0.05, #P,0.001.
doi:10.1371/journal.pone.0011822.g001
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were significant (maximum inhibition was 46% and 82%,

respectively; P,0.01; Fig. 5B–ii). Thus, our results suggest that

calycosin is a partial agonist/antagonist for both ERa and ERb.

Calycosin also displayed receptor-selective potency and efficacy in

the reporter gene assay. In the agonist activity assay, calycosin

showed ERa selectivity with a 2-fold reduction in EC50 value and a

2-fold increase in maximal activation compared with ERb (Fig. 5B–

i). However, calycosin was more potent and efficacious at ERb than

at ERa in the antagonist activity assay, showing a 2-fold reduction in

IC50 value and a 2-fold increase in maximal inhibition (Fig. 5B–ii).

Figure 2. The effects of calycosin on endothelial cells population in SIVs of Tg(fli1:nEGFP) zebrafish embryos. Each green light point
represents one endothelial cell (GFP+). (A) Control: embryo treated with 0.1% DMSO at 96 hpf. (B–D) Calycosin: embryo treated with 10, 30, 100 mM
calycosin at 72 hpf for 24 h, leads to an increase in endothelial cells. (a–d) Enlarged SIV region (64.5) of A–D respectively. (E) Calycosin increases the
number of endothelial cells in the SIV region in a dose-dependent manner. Data are plotted as mean6SEM, (n = 3), **P,0.01, #P,0.001.
doi:10.1371/journal.pone.0011822.g002
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Comparison of angiogenic effects of calycosin with other

classical SERMs in zebrafish embryos.

Raloxifene is a SERM approved for clinical use in osteoporosis,

and has been suggested to induce cardioprotection in women at

high risk of coronary heart disease [36]. Another example of a

SERM is tamoxifen, which is an antagonist of the estrogen

receptor and is used in treating breast cancer [37]. E2 represents

the major estrogen in humans, which modulates various vascular

functions, including inflammation, wound healing, and angiogen-

esis [38,39,40]. As shown in Fig. 6, only calycosin exhibited a

significant angiogenic effect in SIVs (Fig. 6e, thick arrow), while no

obvious changes were observed in the raloxifene (10 mM),

tamoxifen (3 mM) and 17-bEstradiol (10 mM) groups (Fig. 6b–d,

arrows) at their highest non-toxic doses in zebrafish embryos.

Calycosin promotes angiogenesis in HUVEC in vitro
The effect of calycosin on HUVEC proliferation was evaluated

using an XTT assay. Following a 24 h starvation, HUVECs were

cultured in low serum medium supplemented with calycosin

(1 mM–100 mM; 48 h). Cell viability was estimated by determining

the amount of formazon product formed in the cell culture

medium. As shown in Fig. 7A, calycosin promoted cell

proliferation in a dose-dependent manner. The maximum increase

of cell viability induced by calycosin was 36% at 100 mM,

compared to vehicle control. A significant (P,0.05) increase in cell

proliferation was also observed in VEGF-treated cells (77%),

which served as the positive control.

The process of angiogenesis is complex, and typically consists of

proliferation and alignment to form tubular structures [41]. To test

the ability of calycosin to induce HUVEC capillary tube

formation, a Matrigel model was used. When HUVECs were

cultured on Matrigel – a solid gel of mouse basement membrane

proteins – cells aligned easily and formed hollow, tube-like

structures. Fig. 7B shows that a very low level of tube formation

was observed when HUVECs were plated on Matrigel in low-

serum medium, whereas morphological changes were observed

after treatment with calycosin. Quantitative analysis indicates that

calycosin stimulated HUVECs to form more branching points

(Fig. 7B). The number of branching points increased in a dose-

dependent manner and reached its maximum (71%) at a calycosin

concentration of 100 mM. A significant (P,0.05) increase in

branching points was also observed in VEGF-treated cells (71%),

which served as the positive control.

Calycosin induces angiogenesis via activation of MAPK
signaling pathway
ERK1/2, one of the major targets of the MAPK signaling

pathway, has been implicated in the regulation of angiogenesis for

different functions including cell proliferation, migration and

survival [41,42]. To evaluate the rapid activation of these kinases,

western blotting was used to examine the phosphorylation of

ERK1/2 following calycosin treatment.

Firstly, phospho-ERK1/2 and total-ERK1/2 were detected

following treatment with calycosin after different time durations.

Calycosin stimulated the phosphorylation of ERK1/2 in a time-

dependent manner (Fig. 8A–i), which reached a plateau at 30–

60 min, and rapidly declined thereafter. However, the total

protein levels of ERK1/2 remained unaffected throughout the

course of these experiments. Furthermore, phosphorylation of

ERK1/2 in HUVECs was enhanced in a dose-dependent manner

after incubating with different concentrations of calycosin (Fig. 8A–

i). The phosphorylation of ERK1/2 reached its maximum at a

calycosin concentration of 100 mM, consistent with the results of

the XTT assay. These data demonstrate that calycosin stimulated

rapid activation of ERK1/2 in a time- and dose-dependent

manner.

To further confirm the involvement of ERK1/2 in calycosin-

mediated angiogenesis, a specific blocker was applied to examine

its effect on calycosin-induced proliferation. HUVEC proliferation

was significantly (P,0.05) increased after incubating with

calycosin, but this was significantly (P,0.05) inhibited after pre-

treatment with ERK activation inhibitor peptide II (Fig. 8B–i).

Altogether, these results indicate that ERK1/2-dependent path-

ways are involved in calycosin-induced HUVEC proliferation.

Calycosin induces HUVEC proliferation via interaction
with ER
To confirm whether ER is involved in the angiogenic activity of

calycosin, the effects of ER inhibitors on calycosin-induced

Figure 3. Gene expression of calycosin treated zebrafish. Data are expressed as mean 6SEM from three individual experiments. **P,0.01,
#P,0.001 vs control group; P,0.01 vs calycosin group.
doi:10.1371/journal.pone.0011822.g003
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HUVEC proliferation, and ERK1/2 activation, were examined.

Fig. 9A demonstrates that calycosin significantly promoted the

HUVEC proliferation by 67% (P,0.05), while the ER inhibitor

(IVI182, 780) significantly reduced the proliferation by 40%

(P,0.05). Western blotting revealed that expression of phospho-

ERK1/2 was markedly enhanced in calycosin-treated HUVECs,

whereas ICI182, 780 (30 mM) suppressed phosphorylation of

ERK1/2 to control levels (Fig. 9B). Total ERK1/2 protein levels

were unaffected by these treatments. Altogether, these results show

that the effects of calycosin on HUVEC proliferation and ERK1/2

activation could be reversed by ER inhibition.

Discussion

Proliferation of endothelial cells is a key process in angiogenesis

[43]. The present study demonstrates that calycosin enhances

endothelial cells proliferation in HUVECs in vitro, and in zebrafish

embryos in vivo. Both blood vessel diameter and number of

endothelial cells increased following calycosin treatment of

transgenic zebrafish. Thus, these findings suggest that calycosin

possesses pro-angiogenic activity.

Furthermore, these results show that the calycosin-induced

phenotypic change in zebrafish involved activation of angiogene-

sis-related signaling pathways. Changes in mRNA expression levels

of several angiogenesis-specific markers were determined. VEGF,

also known as vascular permeability factor (VPF), was originally

described as an EC-specific mitogen, a potent angiogenic factor

[44], as well as an essential growth factor for vascular ECs.

Formation of new blood vessels is orchestrated by a plenitude of

different proteins, including cell adhesion molecules, ECM

components and VEGFRs. Gene targeting experiments have

provided insights into the functions of VEGFRs [45,46]. Although

inactivation of each individual VEGFR can cause embryonic

lethality at mid-gestation, they have different functions [47,48].

VEGFR2 is the receptor that initiates the main signaling pathways

activated by VEGF. The main function of VEGFR1 appears to be

in regulating binding between VEGF and VEGFR2 [49]. In this

investigation, the results of real-time PCR illustrate that calycosin

Figure 4. The effects of VEGFR tyrosine kinase inhibitor on calycosin-induced angiogenesis in zebrafish embryos. (A) Control: embryo
treated with 0.1% DMSO at 96 hpf. (B) Calycosin: embryo treated with calycosin (100 mM) at 72 hpf for 24 h. (C & E) VRI: embryo treated with low
concentration (100 ng/ml, C) and high concentration (1 mg/ml, E) of VRI at 72 hpf for 24 h. (D) VRI and calycosin: embryo treated with both VRI
(100 ng/ml) and calycosin (100 mM) at 72 hpf for 24 h. (a–e) Enlarged SIV region (64.5) of A–E respectively. (F) Effects of calycosin and/or VRI on the
diameter of SIV compared with the control group. Data are plotted as mean6SEM, (n = 3), #P,0.0001. (G) Effects of calycosin and/or VRI on the
number of endothelial cells in SIV region compared with the control group. Data are plotted as mean6SEM, (n = 3), *P,0.05, #P,0.001.
doi:10.1371/journal.pone.0011822.g004
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extract increased VEGF expression, as well as having a tendency to

upregulate expression of VEGFR1 and VEGFR2. Moreover,

VKRI, an inhibitor of VEGFR1 and VEGFR2, was shown to

potently inhibit the kinase activities of these two proteins [35]. These

data confirmed the predominant involvement of these angiogenesis-

specific targets in calycosin-induced increases in endothelial cell

number and blood vessel diameter at SIVs in zebrafish, and further

supported the hypothesis that these clear phenotypic changes were

as a result of angiogenesis stimulation.

Menopausal women suffer from many health problems such as

hot flushes, sweating and mood swings; they are also more prone

to cardiovascular disease, bone density reduction and osteoporosis.

These problems are mainly due to deficiencies of ovarian

hormones, especially estrogen. Therefore, hormone replacement

therapy (HRT) is often applied to relieve such menopausal

symptoms, and offer protection against osteoporosis and cardio-

vascular diseases [50]. However, recent epidemiological studies,

and randomized trials, have revealed that women who used HRT

had an increased risk of developing breast cancer, strokes and

thromboembolisms [50,51]. These reports contributed to the

development of SERM, which is defined as molecules binding with

ER and producing a change in the biological activities of the

receptor with cell, or tissue, specificity.

Cell-free and cell-based estrogenic assays both revealed that

calycosin competitively bound with ERa and ERb. In addition,

calycosin also displayed selective potency and affinity to ERa and

ERb in reporter-gene assays. Clinical and animal studies have

suggested multiple benefits of SERM, and several SERMs have

already been clinically approved, including raloxifene and

tamoxifen. Recent findings have demonstrated the beneficial

effects of these two classical SERMs upon the vascular system

[52,53,54,55]. Since raloxifene and tamoxifen share the same/

similar antagonistic action with calycosin at ERb, we compared

the angiogenic effects of the three compounds in zebrafish

embryos. Of the three, only calycosin promoted significant

angiogenic development in the SIVs of zebrafish embryos.

A previous study investigated the activities of compounds

demonstrated to be active in zebrafish embryo bioassays, in both

zebrafish and mammalian cell lines [56]. Interestingly, only half

of the 14 compounds were shown to be active in both embryos

and either one of the cell lines, revealing that they exerted direct

action upon cells. In our results, calycosin not only promoted

angiogenesis in zebrafish but also enhanced endothelial cells

proliferation and tube formation in HUVECs in vitro, both of

which are standard tests for angiogenesis. Although no study has

been carried out to identify bioequivalent doses between cell

Figure 5. Cell-free and cell-based estrogenic assays. (A) Dose-response curves for competitive binding assay. Calycosin and 17-b-estradiol (E2)
at the concentrations shown competitively bind with (i) ERa and (ii) ERb, which caused displacement of FluormoneTM ES2 from ER; (B) Dose-response
curves for GeneBLAzer b-lactamase reporter-gene assay. (i) Agonistic activities and (ii) antagonistic activities of calycosin at ERa and ERb were
determined in ERa-UAS-bla GripTiteTM and ERb-UAS-bla GripTiteTM cell lines respectively. Results are presented as mean6SEM. (n$2 independent
experiments), P,0.01 between different ER subtypes followed by two-way ANOVA.
doi:10.1371/journal.pone.0011822.g005
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cultures and zebrafish, our results suggest that calycosin, at least

in part, exerts direct action upon endothelial cells. Thus, we can

further investigate the mechanism of action of calycosin in cell

culture.

Many studies have shown that MAPK signaling pathway

activation plays a vital role in the proliferation, migration and

morphogenesis of endothelial cells induced by pro-angiogenic

factors [57,58]. To further elucidate the mechanism of the

Figure 6. The effects of calycosin, raloxifene and tamoxifen in SIVs of Tg(fli1:EGFP). (A) Controls: were treated with 0.1% DMSO at 96 hpf,
showing no effect on vessel formation (B–E) were treated with 10 mM raloxifene, 3 mM tamoxifen, 10 mM 17-b-Estradiol and 100 mM calycosin at
72 hpf for 24 h. (a–e) Enlarged SIV region (64.5) of A–E respectively. Abnormal phenotype of blood vessel formation in SIVs was indicated by white
arrow, showing slight increase in vessel diameter. Significant increase in vessel diameter was indicated by thick white arrow.
doi:10.1371/journal.pone.0011822.g006

Calycosin is Pro-Angiogenic
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angiogenic activity of calycosin, activation of MAPK signaling was

detected. It was shown that calycosin stimulated ERK1/2

activation rapidly in HUVECs (Fig. 8A). In addition, an ERK1/

2-specific inhibitor effectively reversed calycosin-induced HUVEC

proliferation (Fig. 8B). Thus, these results indicate that calycosin

promotes angiogenesis via activation of MAPK with the

involvement of ERK1/2.

Since calycosin selectively modulates ER transcriptional activa-

tion, as well as promoting angiogenesis, to further elucidate the

relationship between these two activities, the effects of ER inhibitor

ICI182, 780 on calycosin-induced HUVEC proliferation and the

expression of phospho-ERK1/2 were examined. In vitro and in vivo

studies have demonstrated that estrogen and ER agonists promote

angiogenesis in endothelial cells via ERs [3,59]. It has also been

shown that inhibition of ER reduces angiogenesis induced by an ER

agonist [5]. Here, we showed that ICI182, 780 significantly

(P,0.05) decreased calycosin-induced HUVEC proliferation

(Fig. 9A). Moreover, recent studies indicate that 17-b-estradiol

stimulates ERK1/2 phosphorylation through ERa activation in

endothelial cells [60]. In this sense, our data revealed that calycosin-

stimulated ERK1/2 activation was also abrogated by ER inhibition

(Fig. 9B). Altogether, our data suggest that calycosin stimulates

activation of ER and MAPK signaling pathways, which may

contribute to the pro-angiogenic activity of calycosin.

In conclusion, this present study provides evidence that calycosin

from Radix Astragali acts as a novel SERM, since calycosin was

shown to competitively bind with ERa and ERb, as well as

selectively modulate ER transcriptional activities. We also show that

calycosin treatment promotes several features of angiogenesis in

HUVECs in vitro. Our studies elucidate the mechanism of the

angiogenic activity of calycosin on HUVEC cells, where it promotes

angiogenesis through activation of ER and the MAPK signaling

pathway to play multiple roles in regulating cell proliferation and

morphogenesis. Finally, our findings provide inspiration for further

development of Radix Astragali and calycosin as therapeutic agents

for the treatment of problems associated with estrogen deficiency,

such as cardiovascular diseases in post-menopausal women.

Materials and Methods

Ethics Statement
All animal experiments were conducted according to the ethical

guidelines of ICMS, University of Macau and the protocol was

approved by ICMS, University of Macau.

Chemicals and reagents
Kaighn’s modification of Ham’s F12 medium (F-12K), fetal

bovine serum (FBS), phosphate-buffered saline (PBS), charcoal-

stripped fetal bovine serum (CS-FBS), penicillin-streptomycin (PS),

0.25% (w/v) trypsin/1 mM EDTA and nitric oxide indicators

DAF-FM diacetate were all purchased from Invitrogen (Carlsbad,

CA, USA). Endothelial cell growth supplement (ECGS), heparin,

gelatin, ER antagonist ICI182, 780, 17b-estradiol, Raloxifene

hydrochloride, Tamoxifen, SNP and wortannin were supplied by

Sigma (St Louis, MO). Growth factor reduced (GFR) MatrigelTM

basement membrane matrix was obtained from BD Biosciences

(Bedford, MA). ERK activation inhibitor peptide II was obtained

from Biocalchem (Darmstadt, Germany). Vascular endothelial

growth factors (VEGF) were obtained from R&D Systems

(Minneapolis, MN). Anti-p-ERK1/2 antibody, anti-ERK1/2

antibody and goat anti-rabbit IgG HRP-conjugated antibody

were all purchased from Cell Signaling Technology (Berverly,

MA). Dimethyl sulfoxide (DMSO) was acquired from SIGMA and

the calycosin($99%) was extracted at our laboratory. Calycosin

was dissolved in DMSO to form a 100 mM solution. VEGFR

tyrosine kinase inhibitor II (VTKI) was purchased from Calbio-

chem Company/EMD Chemicals Inc (Cat. No. 676481) and was

dissolved in DMSO to form a 1 mg/ml solution.

Maintenance of zebrafish and its embryos
EGFP is expressed in all endothelial cells and each nucleus of

Tg(fli-1:EGFP) and Tg(fli-1:nEGFP) zebrafish embryos. All types of

zebrafish were maintained as described in the Zebrafish Handbook

[61].

Embryo collection and drug treatment
Zebrafish embryos were generated by natural pair-wise mating

(3–12 months old) and were raised at 28.5uC in embyro water.

Healthy, hatched zebrafish were picked out at 3 dpf and

distributed into a 12-well microplate with 10 to 15 fish in each

well. Different concentrations (10, 30, 100 mM) of calycosin,

raloxifene or tamoxifen solutions were then added to wells and

incubated at 28uC for 24 h. Embryos receiving DMSO (0.1%)

served as vehicle controls and were equivalent to no treatment.

Each experiment was repeated at least three times, with 30

embryos per group. VTKI was dissolved in DMSO as stock.

Zebrafish embryos, Tg(fli-1:EGFP) and Tg(fli-1:nEGFP), were

treated with inhibitor dissolved in embryo water from 3 dpf at

the concentration indicated, controlled by DMSO treated

embryos. Embryos were maintained using standard methods.

Morphological observation of zebrafish
At 96 hpf, zebrafish were removed from microplates and

observed for viability and gross morphological changes under a

fluorescence microscope (Olympus IX81 Motorized Inverted

Microscope, Japan) equipped with a digital camera (DP controller,

Soft Imaging System, Olympus). Images were analyzed with

Axiovision 4.2 and Adobe Photoshop 7.0.

Assessment of vascular changes
Three random points in SIVs of Tg(fli1:EGFP) zebrafish

embryos were chosen for vessel diameter measurement using

AxiovisionLE 4.1. Numbers of endothelial cells in SIVs of

Tg(fli1:nEGFP) zebrafish embryos were assessed by direct counting

of the total number of green light points. Each green light point

represents one endothelial cell (GFP+).

Total RNA extraction, reverse transcription, and real-time
PCR
Zebrafish embryos at 72 hpf were treated with calycosin for 6 h.

Total RNA was extracted from 30 zebrafish embryos of each

treatment group using the RNeasy Mini Kit (Qiagen, USA) in

Figure 7. The effects of calycosin on HUVECs in vitro. (A) Effects of calycosin on proliferation of HUVEC by XTT assay. HUVECs were seeded in
96-well plates and incubated with calycosin at different concentrations. Cell proliferation was assessed using XTT assay; (B) Tube formation of
calycosin-treated HUVECs on Matrigel. HUVECs cultured on 3-dimensional Matrigel in treatment of calycosin (3 mM, 10 mM, 30 mM and 100 mM). Cells
receiving 0.1% DMSO served as vehicle control. Number of branching points in different concentrations of calycosin-treated HUVECs was calculated
by computer software (Metamorph). Results are expressed as percentage of control (100%) in mean6SEM (n$3 independent experiments), *P,0.05
versus control.
doi:10.1371/journal.pone.0011822.g007
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accordance with the manufacturer’s instructions. RNA was reverse

transcribed to single-strand cDNA using SuperScriptTM III First-

Strand Synthesis System for RT–PCR (InvitrogenTM, USA),

followed by real-time PCR using the TaqManH Universal PCR

Master Mix and 250 nM custom TaqMan primers for zebrafish

Flk1A, Flk1B, VEGFR1, VEGFA2 (Applied Biosystems, USA) in

the ABI 7500 Real-Time PCR System (Applied Biosystems). The

expression of Flk1A, VEGFA2 mRNA was normalized to the

amount of bactin1, using the relative quantification method

described by the manufacturer.

The zebrafish bactin1 primers were 59-CAAGATTCCATACC-

CAGGAAGGA-39 (F) and 59-CAAGATTCCATACCCAGGAA-

GGA-39(R) (Applied Biosystems, USA).

The zebrafish Flk1A (kdrl) primers were 59- GACCATAAAA-

CAAGTGAGGCAGAAG-39 (F) and 59- CTCCTGGTTTGA-

CAGAGCGATA-39(R) (Applied Biosystems, USA).

Figure 8. Role of MAPK signaling in calycosin-induced angiogenesis. (A) Effects of calycosin on ERK1/2 activation. HUVEC were incubated
with calycosin (100 mM) at indicated time or with calycosin in different concentrations for 30 min. Expressions of phospho-ERK1/2 and total-ERK1/2
were analyzed by western blotting and quantified by densitometry. The values indicate the relative densitometric units. Results are represented as
mean6SEM (n= 3 independent experiments), * P,0.05 versus control. (B) Effect of ERK activation inhibitor peptide II on calycosin-induced HUVEC
proliferation. HUVECs were pre-treated with 0.5 mM ERK activation inhibitor peptide II (ERK inhibitor II) for 1 h before the addition of calycosin
(100 mM). Changes in HUVEC proliferation were determined 48 h later by XTT assay. 20 ng/ml VEGF was used as the positive control in this
experiment. ‘‘cal’’ is the abbreviation of calycosin. Results are expressed as percentage of vehicle control (100%) in mean6SEM (n$3 independent
experiments), *P,0.05 versus vehicle control, # P,0.05 versus calycosin.
doi:10.1371/journal.pone.0011822.g008
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The zebrafish Flk1B (kdr) primers were 59- CAAGTAA-

CTCGTTTTCTCAACCTAAGC-39 (F) and 59-GGTCTGCTAC-

ACAACGCATTATAAC-39(R) (Applied Biosystems, USA).

The zebrafish FLT1 primers were 59-AACTCACAGAC-

CAGTGAACAAGATC-39 (F) and 59-GCCCTGTAACGTGTG-

CACTAAA-39(R) (Applied Biosystems, USA).

The zebrafish VEGFA2 primers were 59-GATGTGAT-

TCCCTTCATGGATGTGT-39 (F) and 59-GGATACTCCTG-

GATGATGTCTACCA-39 (R) (Applied Biosystems, USA).

HUVEC culture
Human umbilical vein endothelial cells (ATCC, Manassas) were

cultured in F-12K medium with 2 mM L-glutamine, 1.5 g/l

sodium bicarbonate, 100 mg/ml heparin, 30 mg/ml endothelial

cell growth supplement and 10% FBS at 37uC in a humidified

atmosphere of 5% CO2. Tissue culture flasks, 96-well plates and 6-

well plates were pre-coated with 0.1% gelatin. Cells were exposed

to culture medium with 10% CS-FBS instead of normal FBS for at

least 1 day before experiments. Cultures were then starved with

low-serum medium (contain 0.5% CS-FBS) for either 24 h in cell

proliferation assays, or overnight in other assays. All assays were

conducted using low cell passage cells (2–5 passages).

ER fluorescence polarization competitive binding assay
The binding affinity of calycosin to ER-a and b was evaluated

by the commercially available competitor assay (Invitrogen,

Carlasbad, CA) according to the manufacturer’s instructions.

In brief, ER was added to fluorescently tagged ER ligand

(FluormoneTM ES2) to form ER/FluormoneTM ES2 complexes

with a high fluorescent polarization value. Displacement of

fluorescently tagged ligands by unlabeled ligands decreased

fluorescent polarization, resulting in a low value. In this system,

changes in intensity of polarization reflect displacement of

fluorescently tagged ligands. In 96-well plates, serial dilution of

calycosin (1 nM to 36105 nM) or the ER agonist 17-b-estradiol

(104 nM to 1022 nM) were added to ER/FluormoneTM ES2

complexes to compete with ES2 for binding to ER. Plates were

incubated at room temperature for 2 h and fluorescent polariza-

tion values measured using a Multilabel Counter (Perkin Elmer,

Singapore). Results were expressed as percentages of maximum

displacement induced by 17-b-estradiol (10 mM).

Cell-based ER transcriptional response by GeneBLAzer
b-lactamase reporter-gene assay
Assays were preformed by Invitrogen (USA) as described in

literature [62]. Briefly, GeneBLAzer b-lactamase reporter-gene

assays were performed to measure the agonistic or antagonistic

activities of calycosin at ER. For ER agonist activity assay, 4 ml of

a 106serial dilution of 17-b-estratiol served as the control agonist

(starting concentration 10 mM, 3-fold dilute manner), or calycosin

(starting concentration 300 mM, 3-fold dilute manner), was added

to the appropriate wells of a 384-well plate. 32 ml of cell suspension

and 4 ml of Assay Media were added to each well to bring the final

volume to 40 ml. Plates were incubated for 16–24 h, then 8 ml of

1 mM substrate loading solution was added to each well, and plates

incubated for another 2 h at room temperature. For the antagonist

activity assay, cells were grown and prepared as above. 4 ml of a

106serial dilution of 4-hydroxytamoxifen (starting concentration

Figure 9. Role of ER in calycosin-induced angiogenesis. (A) Effects of ICI182, 780 on calycosin-induced HUVEC proliferation. HUVECs were pre-
treated with ICI182, 780 (30 mM) before the addition of calycosin (100 mM). Data are expressed as percentage of vehicle control (100%) in mean6SEM
(n = 3 independent experiments), *P,0.05 versus control,#P,0.05 versus calycosin. (B) Effect of ICI182, 780 on calycosin-induced activation of ERK1/
2. Calycosin-stimulated phosphorylation of ERK1/2 was completely reversed by the absence of ICI182, 780 (30 mM). Expression of phospho-ERK1/2
and total-ERK1/2 was analyzed by western blotting and quantified by densitometry. The values indicate the relative densitometric units of the p-
ERK1/2 bands with the density of the control band set arbitrarily at 1.0. Results are represented as mean6SEM. ‘‘cal’’ and ‘‘ICI’’ are the abbreviations of
calycosin and ICI182, 780 respectively.
doi:10.1371/journal.pone.0011822.g009
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100 nM) for ERa, RU-496 (starting concentration 10 mM) for

ERb or calycosin (starting concentration 300 mM, 3-fold dilute

manner) was added to cells. Cells were pre-incubated with

calycosin and the antagonist control for 30–60 min, then 4 ml of

17-b-estradiol was added to wells at the pre-determined EC80

concentration. Plates were then incubated for another 16–24 h.

8 ml of 1 mM substrate loading solution was added to each well,

and plates incubated for 2 h at room temperature. All results were

measured using a fluorescence plate reader. Results of agonist

activity assays were expressed as percentage activation of the

defined maximum activation induced by 17-b-estradiol (10 mM).

For the antagonist activity assay, inhibition responses were

expressed as percentage inhibition in the presence of EC80

concentration of 17-b-estradiol according to the previous agonist

activity assay.

HUVEC viability by XTT assay
HUVECs were trypsinised and seeded at 104 cells/well in 96-

well gelatin coated plates. After 24 h, complete medium was

removed and renewed with hormone-free low serum (0.5% CS-

FBS) medium, and samples incubated for 24 h in order to starve

HUVECs to achieve a quiescent state. After these pre-incubations,

different concentrations (1 mM-100 mM) of calycosin medium

were replaced. Cells receiving DMSO (0.1%) served as vehicle

controls, and were equivalent to no treatment. For inhibition

assays, HUVECs were pretreated with inhibitors (10 mM ICI182,

780 and 1 mM ERK activation inhibitor peptide II) for 60 min

before addition of calycosin (100 mM). Cells receiving DMSO

(0.1%) served as vehicle control and were equivalent to no

treatment. On the other hand, cells cultured in VEGF (20 ng/ml)

served as positive controls. After 48 h, cell proliferation was

assessed by XTT for 4 h. The spectrophotometrical absorbance of

each well was measured by a Multilabel counter (Perkin Elmer,

Singapore). The wavelength used to measure absorbance of the

formazan product was 490 nm and the reference wavelength was

690 nm. Cell viability data were expressed as percentage of cell

viability calculated.

Tube formation assay on HUVEC
The effect of calycosin on HUVEC differentiation was

examined by in vitro tube formation on Matrigel [63]. Confluent

HUVECs were harvested and diluted (96104 cells) in 500 ml low

serum medium containing 3–100 mM calycosin, which were then

seeded on 1:1 Matrigel (v/v) coated 24-well plates in triplicate at

37uC for 7 h. Cells receiving DMSO (0.1%) served as vehicle

controls, and were equivalent to no treatment. Besides, cells

cultured in 20 ng/ml VEGF served as positive controls (data not

shown). The network-like structures were examined under an

inverted microscope (at 506 magnification). The tube-like

structures were defined as endothelial cord formations that were

connected at both ends. The number of branching points in three

random fields per well was quantified by Metamorph Imaging

Series software.

Western blotting analysis
Cells were treated with 100 mM calycosin for different time

durations (5–120 min) in the time course study. 20 ng/ml VEGF

was used as a positive control while medium with 0.1% DMSO

served as a negative control. To observe dose-dependent effects of

calycosin, 10 mM, 30 mM and 100 mM calycosin were used to treat

HUVECs for 30 min in culture medium. For inhibition assays,

HUVECs were pretreated with 10 mM ICI182, 780 for 60 min

prior to the addition of 100 mM calycosin. Cells were then washed

with PBS and lysed for 30 min on ice with lysis buffer (0.5 M

NaCl, 50 mM Tris, 1 mM EDTA, 0.05% SDS, 0.5% Triton X-

100, 1 mM PMSF, pH 7.4). Cell lysates were centrifuged at

110006g for 20 min at 4uC. Protein concentrations in the

supernatants were measured using the bicinchoninic acid assay

(Pierce, Rockford, IL). Supernatants were electrophoresed on 12%

SDS-PAGE, and transferred to polyvinylidene diuoride (PVDF)

membranes, which were then blocked with 5% non-fat milk.

Immunoblot analysis was undertaken by incubation with anti-p-

ERK1/2 antibody and anti-ERK1/2 antibody at 4uC overnight.

After washing, membranes were incubated for 1 h at room

temperature with horseradish peroxidase-conjugated goat anti-

rabbit IgG. Proteins were detected using an advanced enhanced

ECL system (GE Healthcare, Little Chalfont, Buckinghamshire,

UK). Semi-quantifications were performed with densitometric

analysis by Quantity One software.

Statistical analysis
Data was analyzed with unpaired two-tailed Student’s t-tests or

one-way ANOVA followed by Tukey’s multiple comparison test,

using GraphPad Prism 5.0 software (San Diego, CA). Curve fitting

was carried out using GraphPad Prism 5.0 (nonlinear fit, variable

slope sigmoidal dose-response model). Data were expressed as

mean6SEM from individual experiments. Differences were

considered as significant at P,0.05.

Acknowledgments

We are very grateful to Dr Patrick Ying-Kit Yue, Department of Biology,

The Hong Kong Baptist University, for his advice and assistance on in

vitro binding assay.

Author Contributions

Conceived and designed the experiments: JYT SL YWK SWC GPHL

SMYL. Performed the experiments: JYT SL ZHL. Analyzed the data: JYT

SL ZJZ GH DA MPMH. Drafted and revised the manuscript: LCVC.

References

1. Franco CA, Liebner S, Gerhardt H (2009) Vascular morphogenesis: a Wnt for
every vessel? Curr Opin Genet Dev 19: 476–483.

2. Barkhem T, Nilsson S, Gustafsson JA (2004) Molecular mechanisms,
physiological consequences and pharmacological implications of estrogen
receptor action. Am J Pharmacogenomics 4: 19–28.

3. Losordo DW, Isner JM (2001) Estrogen and angiogenesis: A review. Arterioscler
Thromb Vasc Biol 21: 6–12.

4. Kim KH, Moriarty K, Bender JR (2008) Vascular cell signaling by membrane
estrogen receptors. Steroids 73: 864–869.

5. Kim-Schulze S, McGowan KA, Hubchak SC, Cid MC, Martin MB, et al.
(1996) Expression of an estrogen receptor by human coronary artery and
umbilical vein endothelial cells. Circulation 94: 1402–1407.

6. Morales DE, McGowan KA, Grant DS, Maheshwari S, Bhartiya D, et al. (1995)
Estrogen promotes angiogenic activity in human umbilical vein endothelial cells
in vitro and in a murine model. Circulation 91: 755–763.

7. Doshida M, Ohmichi M, Tsutsumi S, Kawagoe J, Takahashi T, et al.
(2006) Raloxifene increases proliferation and up-regulates telomerase
activity in human umbilical vein endothelial cells. J Biol Chem 281: 24270–
24278.

8. Valachovicova T, Slivova V, Sliva D (2004) Cellular and physiological effects of
soy flavonoids. Mini Rev Med Chem 4: 881–887.

9. Kostelac D, Rechkemmer G, Briviba K (2003) Phytoestrogens modulate binding
response of estrogen receptors alpha and beta to the estrogen response element.
J Agric Food Chem 51: 7632–7635.

10. Seng WL, Eng K, Lee J, McGrath P (2004) Use of a monoclonal antibody
specific for activated endothelial cells to quantitate angiogenesis in vivo in
zebrafish after drug treatment. Angiogenesis 7: 243–253.

11. Chen XJ, Bian ZP, Lu S, Xu JD, Gu CR, et al. (2006) Cardiac protective effect
of Astragalus on viral myocarditis mice: comparison with Perindopril. Am J Chin
Med 34: 493–502.

Calycosin is Pro-Angiogenic

PLoS ONE | www.plosone.org 13 July 2010 | Volume 5 | Issue 7 | e11822



12. Zhao Z, Wang W, Wang F, Zhao K, Han Y, et al. (2009) Effects of Astragaloside
IV on heart failure in rats. Chin Med 4: 6.

13. Xu XL, Ji H, Gu SY, Shao Q, Huang QJ, et al. (2008) Cardioprotective effects
of Astragali Radix against isoproterenol-induced myocardial injury in rats and its
possible mechanism. Phytother Res 22: 389–394.

14. He J, Jing Z, Gu Q (1999) [Collagen expression of intra-acinar pulmonary
arteries and right ventricle and intervention of Radix Astragali in rats with
hypoxic pulmonary hypertension]. Zhonghua Yi Xue Za Zhi 79: 654–656.

15. Xi S, Ruan Y, Liu Y (1998) [Morphometric investigation on hypoxic structural
remodeling of intraacinar pulmonary arteries]. Zhonghua Jie He He Hu Xi Za
Zhi 21: 303–305.

16. Chen X, Ruan Y, Xi S, Si W, Zhang L (1997) [Therapeutic effect of radix
Astragali on hypoxia pulmonary hypertension in rats]. Zhongguo Zhong Yao Za
Zhi 22: 432–434, inside back cover.

17. Liu JC, An CS, Wang JF, Li FY, Li JH (2006) [Influence of Radix Astragali on
nitric oxide and endothelin-1 in pulmonary tissue in hypoxemic pulmonary
hypertension in rats]. Zhonghua Er Ke Za Zhi 44: 46–48.

18. Liu K (1990) [Preliminary report on various symptoms of chronic hepatitis
treated with radix Astragali and its regulative effect on levels of serum hormone].
Zhong Xi Yi Jie He Za Zhi 10: 330–333, 323.

19. Chan CM, Chan YW, Lau CH, Lau TW, Lau KM, et al. (2007) Influence of an
anti-diabetic foot ulcer formula and its component herbs on tissue and systemic
glucose homeostasis. J Ethnopharmacol 109: 10–20.

20. Xu A, Wang H, Hoo RL, Sweeney G, Vanhoutte PM, et al. (2009) Selective
elevation of adiponectin production by the natural compounds derived from a
medicinal herb alleviates insulin resistance and glucose intolerance in obese
mice. Endocrinology 150: 625–633.

21. Cai XY, Xu YL, Lin XJ (2006) [Effects of radix Astragali injection on apoptosis
of lymphocytes and immune function in patients with systemic lupus
erythematosus]. Zhongguo Zhong Xi Yi Jie He Za Zhi 26: 443–445.

22. Choi RC, Gao QT, Cheung AW, Zhu JT, Lau FT, et al. (2009) A Chinese
Herbal Decoction, Danggui Buxue Tang, Stimulates Proliferation, Differenti-
ation and Gene Expression of Cultured Osteosarcoma Cells: Genomic
Approach to Reveal Specific Gene Activation. Evid Based Complement Alternat
Med.

23. Song ZH, Ji ZN, Lo CK, Dong TT, Zhao KJ, et al. (2004) Chemical and
biological assessment of a traditional chinese herbal decoction prepared from
Radix Astragali and Radix Angelicae Sinensis: orthogonal array design to
optimize the extraction of chemical constituents. Planta Med 70: 1222–1227.

24. Dong TT, Zhao KJ, Gao QT, Ji ZN, Zhu TT, et al. (2006) Chemical and
biological assessment of a chinese herbal decoction containing Radix Astragali
and Radix Angelicae Sinensis: Determination of drug ratio in having optimized
properties. J Agric Food Chem 54: 2767–2774.

25. Gao QT, Choi RC, Cheung AW, Zhu JT, Li J, et al. (2007) Danggui buxue
tang–a Chinese herbal decoction activates the phosphorylations of extracellular
signal-regulated kinase and estrogen receptor alpha in cultured MCF-7 cells.
FEBS Lett 581: 233–240.

26. Fan TP, Yeh JC, Leung KW, Yue PY, Wong RN (2006) Angiogenesis: from
plants to blood vessels. Trends Pharmacol Sci 27: 297–309.

27. Shi ZY, Bao Z, Jiang Y, Tu PF (2007) [Quantitative analysis of calycosin
glycoside and formononetin in Radix astragali from different sources].
Zhongguo Zhong Yao Za Zhi 32: 779–783.

28. Song JZ, Yiu HH, Qiao CF, Han QB, Xu HX (2008) Chemical comparison and
classification of Radix Astragali by determination of isoflavonoids and
astragalosides. J Pharm Biomed Anal 47: 399–406.

29. Fan Y, Wu DZ, Gong YQ, Zhou JY, Hu ZB (2003) Effects of calycosin on the
impairment of barrier function induced by hypoxia in human umbilical vein
endothelial cells. Eur J Pharmacol 481: 33–40.

30. Zhang Y, Hu G, Lin HC, Hong SJ, Deng YH, et al. (2009) Radix Astragali
extract promotes angiogenesis involving vascular endothelial growth factor
receptor-related phosphatidylinositol 3-kinase/Akt-dependent pathway in hu-
man endothelial cells. Phytother Res 23: 1205–1213.

31. Siekmann AF, Lawson ND (2007) Notch signalling limits angiogenic cell
behaviour in developing zebrafish arteries. Nature 445: 781–784.

32. Tischer E, Mitchell R, Hartman T, Silva M, Gospodarowicz D, et al. (1991) The
human gene for vascular endothelial growth factor. Multiple protein forms are
encoded through alternative exon splicing. J Biol Chem 266: 11947–11954.

33. Klagsbrun M, D’Amore PA (1996) Vascular endothelial growth factor and its
receptors. Cytokine Growth Factor Rev 7: 259–270.

34. Zachary I (2001) Signaling mechanisms mediating vascular protective actions of
vascular endothelial growth factor. Am J Physiol Cell Physiol 280: C1375–1386.

35. Furet P, Bold G, Hofmann F, Manley P, Meyer T, et al. (2003) Identification of
a new chemical class of potent angiogenesis inhibitors based on conformational
considerations and database searching. Bioorg Med Chem Lett 13: 2967–2971.

36. Bracamonte MP, Rud KS, Miller VM (2002) Mechanism of raloxifene-induced
relaxation in femoral veins depends on ovarian hormonal status. J Cardiovasc
Pharmacol 39: 704–713.

37. Jordan VC (2006) Tamoxifen (ICI46,474) as a targeted therapy to treat and

prevent breast cancer. Br J Pharmacol 147 Suppl 1: S269–276.

38. Cid MC, Schnaper HW, Kleinman HK (2002) Estrogens and the vascular

endothelium. Ann N Y Acad Sci 966: 143–157.

39. Haynes MP, Li L, Sinha D, Russell KS, Hisamoto K, et al. (2003) Src kinase

mediates phosphatidylinositol 3-kinase/Akt-dependent rapid endothelial nitric-

oxide synthase activation by estrogen. J Biol Chem 278: 2118–2123.

40. Johns A, Freay AD, Fraser W, Korach KS, Rubanyi GM (1996) Disruption of

estrogen receptor gene prevents 17 beta estradiol-induced angiogenesis in

transgenic mice. Endocrinology 137: 4511–4513.

41. Risau W (1997) Mechanisms of angiogenesis. Nature 386: 671–674.

42. Pages G, Milanini J, Richard DE, Berra E, Gothie E, et al. (2000) Signaling

angiogenesis via p42/p44 MAP kinase cascade. Ann N Y Acad Sci 902:

187–200.

43. Holash J, Wiegand SJ, Yancopoulos GD (1999) New model of tumor

angiogenesis: dynamic balance between vessel regression and growth mediated

by angiopoietins and VEGF. Oncogene 18: 5356–5362.

44. Ferrara N (1999) Molecular and biological properties of vascular endothelial

growth factor. J Mol Med 77: 527–543.

45. Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, et al. (1996)

Abnormal blood vessel development and lethality in embryos lacking a single

VEGF allele. Nature 380: 435–439.

46. Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, et al. (1996)

Heterozygous embryonic lethality induced by targeted inactivation of the

VEGF gene. Nature 380: 439–442.

47. Fong TA, Shawver LK, Sun L, Tang C, App H, et al. (1999) SU5416 is a potent

and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/

KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth

of multiple tumor types. Cancer Res 59: 99–106.

48. Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, et al. (1995)

Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice.

Nature 376: 62–66.

49. Park JE, Chen HH, Winer J, Houck KA, Ferrara N (1994) Placenta growth

factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and

in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J Biol Chem

269: 25646–25654.

50. Wren BG (2009) The benefits of oestrogen following menopause: why hormone

replacement therapy should be offered to postmenopausal women. Med J Aust

190: 321–325.

51. Conner P, Lundstrom E, von Schoultz B (2008) Breast cancer and hormonal

therapy. Clin Obstet Gynecol 51: 592–606.

52. Leung FP, Yung LM, Leung HS, Au CL, Yao X, et al. (2007) Therapeutic

concentrations of raloxifene augment nitric oxide-dependent coronary artery

dilatation in vitro. Br J Pharmacol 152: 223–229.

53. Leung HS, Yung LM, Leung FP, Yao X, Chen ZY, et al. (2006) Tamoxifen

dilates porcine coronary arteries: roles for nitric oxide and ouabain-sensitive

mechanisms. Br J Pharmacol 149: 703–711.

54. Pinna C, Bolego C, Sanvito P, Pelosi V, Baetta R, et al. (2006) Raloxifene elicits

combined rapid vasorelaxation and long-term anti-inflammatory actions in rat

aorta. J Pharmacol Exp Ther 319: 1444–1451.

55. Wong CM, Yung LM, Leung FP, Tsang SY, Au CL, et al. (2008) Raloxifene

protects endothelial cell function against oxidative stress. Br J Pharmacol 155:

326–334.

56. Murphey RD, Stern HM, Straub CT, Zon LI (2006) A chemical genetic screen

for cell cycle inhibitors in zebrafish embryos. Chem Biol Drug Des 68: 213–219.

57. Kuida K, Boucher DM (2004) Functions of MAP kinases: insights from gene-

targeting studies. J Biochem 135: 653–656.

58. Uchiba M, Okajima K, Oike Y, Ito Y, Fukudome K, et al. (2004) Activated

protein C induces endothelial cell proliferation by mitogen-activated protein

kinase activation in vitro and angiogenesis in vivo. Circ Res 95: 34–41.

59. Suzuma I, Mandai M, Takagi H, Suzuma K, Otani A, et al. (1999) 17 Beta-

estradiol increases VEGF receptor-2 and promotes DNA synthesis in retinal

microvascular endothelial cells. Invest Ophthalmol Vis Sci 40: 2122–2129.

60. Geraldes P, Sirois MG, Tanguay JF (2003) Specific contribution of estrogen

receptors on mitogen-activated protein kinase pathways and vascular cell

activation. Circ Res 93: 399–405.

61. Westerfield M (1995) The Zebrafish Book. A Guide for the Laboratory Use of

Zebrafish (Danio rerio), 3rd Edition Eugene, OR, University of Oregon Press.

385 p.

62. Wilkinson JM, Hayes S, Thompson D, Whitney P, Bi K (2008) Compound

profiling using a panel of steroid hormone receptor cell-based assays. J Biomol

Screen 13: 755–765.

63. Merchan JR, Chan B, Kale S, Schnipper LE, Sukhatme VP (2003) In vitro and

in vivo induction of antiangiogenic activity by plasminogen activators and

captopril. J Natl Cancer Inst 95: 388–399.

Calycosin is Pro-Angiogenic

PLoS ONE | www.plosone.org 14 July 2010 | Volume 5 | Issue 7 | e11822


