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Abstract

The Community Atmosphere Model (CAM) version 5 includes a spectral element

dynamical core option from NCAR’s High-Order Method Modeling Environment. It is

a continuous Galerkin spectral finite element method designed for fully unstructured

quadrilateral meshes. The current configurations in CAM are based on the cubed-

sphere grid. The main motivation for including a spectral element dynamical core is to

improve the scalability of CAM by allowing quasi-uniform grids for the sphere that do

not require polar filters. In addition, the approach provides other state-of-the-art ca-

pabilities such as improved conservation properties. Spectral elements are used for the

horizontal discretization, while most other aspects of the dynamical core are a hybrid

of well tested techniques from CAM’s finite volume and global spectral dynamical core

options. Here we first give a overview of the spectral element dynamical core as used in

CAM. We then give scalability and performance results from CAM running with three

different dynamical core options within the Community Earth System Model, using a

pre-industrial time-slice configuration. We focus on high resolution simulations, using

1/4 degree, 1/8 degree, and T341 spectral truncation horizontal grids.

Keywords: spectral elements, dynamical core, parallel scalability, global circula-

tion model, atmospheric modeling

1 Introduction

Today’s petascale computers have hundreds of thousands of processor cores, and the

next generation machines could have millions. As we no longer see much increase in

single processor core performance, these machines are relying almost entirely on in-

creasing performance through increased parallelism. Translating this to application

performance is thus only possible with very scalable applications. Achieving the re-

quired level of scalability in modern climate models remains a challenge due to several

scalability bottlenecks. The largest bottleneck in many of these models occurs in the

dynamical core of the atmosphere component. The dynamical core solves the partial

differential equations governing the fluid dynamical aspects of the atmosphere, but

does not include the suite of subgrid parametrizations used for unresolved physical

processes such as convection, precipitation and radiative forcings. The bottleneck is

due to the commonly used latitude/longitude grid, which clusters grid points at the

poles. Many numerical methods can successfully deal with this clustering but they

result in reduced parallel scalability (Taylor et al., 2008). Thus there is a growing

interest in highly scalable dynamical cores based on less structured or unstructured

grids with more uniform resolution. Many of these approaches have been surveyed in

(Williamson, 2007).



Here we report on the performance of a highly scalable configuration of the Com-

munity Earth System Model (CESM) version 1 using a spectral element dynamical

core. The CESM is a state of the art climate model with atmosphere, ocean, land

and ice component models1. The spectral element dynamical core is a new option

within the Community Atmosphere Model (CAM), the CESM atmosphere component

model (Neale et al., 2010). It comes from HOMME, the High-Order Method Modeling

Environment (Dennis et al., 2005). HOMME’s spectral element method (SEM) can

naturally make use of fully unstructured quadrilateral grids. For quasi-uniform grids

that do not cluster grid points at the poles, we use the cubed-sphere grid (Fig. 1) first

used in Sadourny (1972). The standalone HOMME model is also used for research

into other numerical methods, such as discontinuous-Galerkin (Nair, 2009) and adap-

tive mesh refinement (St.-Cyr et al., 2008). Here we refer to CAM with the spectral

element dynamical core as CAM-SE.

CAM-SE is the first dynamical core in CAM that is capable of using a fully un-

structured grid. This integration was made possible by the decoupling of dynamics and

physics used in CAM’s process split approach (Williamson, 2002), the extensive infras-

tructure work to support unstructured grids (Worley and Drake, 2005), and the CESM

tri-grid capability (Craig et al., 2011). The SEM was chosen based on its demonstrated

scalability when run as a standalone dry dynamical core (Dennis et al., 2005; Bhanot

et al., 2008). In addition to scalability, the SEM is known to produce accurate solutions

for atmospheric problems, as demonstrated first with shallow water test cases (Tay-

lor et al., 1997; Thomas and Loft, 2002), three-dimensional dry dynamical test cases

(Taylor et al., 1998; Thomas and Loft, 2005; Dennis et al., 2005; Taylor et al., 2007;

Lauritzen et al., 2010), idealized multicloud simulations (Khouider et al., 2010), ide-

alized aqua planet experiments which include full physics (Taylor et al., 2008; Mishra

et al., 2011b,a) and realistic simulations with CAM2 physics (Wang et al., 2007). A

tuned version of CAM-SE simulating the Earth’s climate is evaluated in (Evans et al.,

2011). The SE method has also been pursued for global forecast modeling in (Giraldo

and Rosmond, 2004; Giraldo, 2005; Kim et al., 2008).

In what follows we will first give an overview of the CAM-SE dynamical core.

We combine some well proven approaches with several new features added to CAM-

SE in order to make it more suitable when running with CAM’s full suite of atmo-

spheric physics. We then describe CESM benchmark results using a realistic 1850s

pre-industrial time-slice configuration. We present results using CAM-SE, finite volume

(CAM-FV) and Eulerian global spectral (CAM-EUL) dynamical cores. CAM-EUL was

the original dynamical core in the CCSM (the predecessor to the CESM) and used in

the IPCC 4th assessment report (Intergovernmental Panel on Climate Change, 2007).

1http://www.cesm.ucar.edu



CAM-FV is the current default dynamical core in the CESM and is being used for the

CESM’s contributions to the IPCC 5th assessment report. CAM-EUL and CAM-FV

are described in (Collins et al., 2004). The computational performance of CAM-FV

and CAM-EUL have been extensively reported on, e.g. (Putman et al., 2005; Mirin

and Sawyer, 2005; Worley and Drake, 2005; Worley et al., 2006; Mirin and Worley,

2011).

2 The CAM-SE dynamical core

CAM-SE uses a continuous Galerkin spectral finite element method (Taylor et al., 1997;

Fournier et al., 2004; Thomas and Loft, 2005; Wang et al., 2007; Taylor and Fournier,

2010), here abbreviated to the spectral element method (SEM). It solves the atmo-

spheric primitive equations. CAM-SE represents a large change in the horizontal grid

as compared to the other dynamical cores in CAM, but most other aspects of CAM-SE

are based on a combination of well-tested approaches from the Eulerian global spec-

tral and finite volume dynamical cores. For tracer advection, CAM-SE is modeled

closely on the FV core. It uses the same conservation form of the transport equation

and the same vertically Lagrangian discretization (Lin, 2004). The CAM-SE dynamics

are modeled closely on the CAM-EUL core. They share the same vertical coordi-

nate, vertical discretization, hyper-viscosity based horizontal diffusion, top-of-model

dissipation, and solve the same moist hydrostatic equations. The main differences are

that CAM-SE uses the vector-invariant form of the momentum equation instead of the

vorticity-divergence formulation. CAM-SE provides improved scaling in CAM due in

part to its ability to efficently use a fixed two-dimensional domain decomposition and

the fact that it does not require inherently load-imbalanced polar filtering. In addition

to scaling, CAM-SE improves CAM’s numerical conservation: it locally conserves both

mass and moist total energy without the use of ad-hoc fixers (Taylor, 2011), and the

horizontal advection operator locally conserves potential vorticity (PV).

2.1 Time Step Approach

We start by giving a high level overview of the CAM-SE time split approach, which

decomposes each time step into components involving dynamics, tracer advection, forc-

ing and dissipation. Dynamics and tracer advection are the processes governed by the

atmospheric primitive equations. The forcing terms are computed by the CAM physics

(the suite of subgrid physical parametrizations in CAM). Dissipation is the horizontal

dissipation that is explicitly added to the model. Vertical dissipation is implemented

within the physics component. These components evolve on different time scales, so

we use a form of dynamics/tracer/physics subcycling achieved through multi-stage



2nd order accurate Runge-Kutta methods. The tracer and dynamics components are

subcycled with respect to the physics. Instead of further subcycling the dynamics com-

ponent with respect to the tracer component, we use a different Runge-Kutta method

for each component. The two methods are chosen so that their stability regions are

similar and thus both components will be stable with the same timestep.

Using the spatial discretization described below, the primitive equations can be

written as an ODE for a vector U containing all the prognostic state variables and right-

hand-side terms representing the forcing (F), dynamics and tracers (A) and dissipation

(D),
∂U

∂t
= F + A + D.

CAM-SE solves this equation in a time-split fully explicit form. For simplicity we

illustrate this using the forward-Euler method:

U∗ = U t + ∆tF(U t0) (1)

U∗∗ = U∗ + ∆tA(U∗) (2)

U t+∆t = U∗∗ + ∆tD(U∗∗) (3)

For the forcing and dissipation steps, (1) and (3), the equations are solved exactly as

written. The dissipation term used is a hyper-viscosity operator described in Sec. 2.9.

The forcing tendency F (computed by the CAM physics) is typically held fixed over

nsplit timesteps, where nsplit is a CAM input parameter common to all the CAM

dynamical cores. Every nsplit timesteps, we take U t0 = U t and recompute F (U t0).

The CAM physics package updates the forcings based on a physics timestep of ∆tphys

minutes. (In our simulations we use ∆tphys = 20 minutes.) Once ∆tphys is chosen, we

take ∆t = ∆tphys/nsplit with nsplit determined so that the resulting ∆t satisfies

the CFL restriction required by (2).

For the dynamics and tracer advection, (2), CAM solves the atmospheric primitive

equations. We do not use the forward-Euler approach shown in (2), but instead use a

family of N -stage Runge-Kutta methods for better accuracy. The dynamics advances

the prognostic variables of the atmospheric primitive equations, while the tracer advec-

tion is used for specific humidity, liquid water and ice, as well as additional quantities

depending on the CAM configuration. The tracer advection time-step uses a 3 stage,

second-order accurate RK-SSP method (Spiteri and Ruuth, 2002). The SSP method

ensures that the the timestep will preserve any monotonicity properties preserved by

the underlying spatial discretization.

For the dynamics, we use a second order accurate N -stage RK method, where the

extra stages are chosen to maximize the stable timestep size. This method allows for a

CFL number close to N − 1 (normalized so that the Robert-filtered Leapfrog method



has a CFL number of 1.0). It was chosen since it can be implemented as a combination

of the RK2 and Leapfrog schemes that were previously used in CAM-SE. The most

computationally efficient second order N -stage method for pure imaginary eigenvalues

(van der Houwen, 1977; Kinnmark and Gray, 1984) can obtain an advective CFL

number of N − 1, and we hope to evaluate this method in CAM-SE in the future. The

leapfrog scheme is more efficient then these methods and has been used successfully

in CAM-EUL, but we do not use leapfrog in CAM-SE because we were only able to

achieve tracer-mass consistency (per Sec. 2.8) if both dynamics and tracers used RK

based methods.

For dynamics, the CFL number is controlled by the maximum gravity wave speed

c0, while for tracer advection it is controlled by the maximum wind speed u0. We

choose N sufficiently large so that the dynamics and tracer advection can both use the

same timestep. For typical values u0 ≈ 140m/s and c0 ≈ 340m/s, N = 5 is found to

be suitable. The Butcher tableau (Butcher, 2003) for N = 5 is given by:

0
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1
8
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4 0 1

4
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2 0 0 1

2
3
4 0 1

4 0 1
2

0 0 1
2 0 1
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2.2 Continuum Formulation of the Equations

CAM-SE uses a conventional vector-invariant form of the moist primitive equations.

For the vertical discretization it uses the hybrid η pressure vertical coordinate system

derived from (Kasahara, 1974; Simmons and Burridge, 1981; Simmons and Strüfing,

1981). In order to conserve both mass and energy, surface pressure is used as a prog-

nostic variable as opposed to its logarithm.

In the η-coordinate system, the pressure is given by p(η) = A(η)p0 + B(η)ps where

p0 is a constant and ps is the surface pressure. The hydrostatic approximation ∂p/∂z =

−gρ with height coordinate z is used to replace the mass density ρ by an η-coordinate

pseudo-density ∂p/∂η. Following conventional notation (Satoh, 2004), we let η̇ denote

the η-coordinate velocity, �u the horizontal velocity component tangent to constant z-

surfaces (not η-surfaces), ∇(),∇ · () and ∇×() denote the two-dimensional gradient,

divergence and curl operators on constant η-surfaces, and ∂/∂η is the vertical derivative

operator. The η-coordinate atmospheric primitive equations, neglecting dissipation and



forcing terms can then be written as

∂�u

∂t
+ (ζ + f) k̂×�u + ∇

�

1

2
�u2 + Φ

�

+ η̇
∂�u

∂η
+

RTv

p
∇p = 0 (4)

∂T

∂t
+ �u ·∇T + η̇

∂T

∂η
−

RTv

c∗pp
ω = 0 (5)

∂

∂t

�

∂p

∂η

�

+ ∇ ·

�

∂p

∂η
�u

�

+
∂

∂η

�

η̇
∂p

∂η

�

= 0 (6)

∂

∂t

�

∂p

∂η
q

�

+ ∇ ·

�

∂p

∂η
q�u

�

+
∂

∂η

�

η̇
∂p

∂η
q

�

= 0 (7)

These are prognostic equations for �u, the temperature T , density ∂p
∂η

, and ∂p
∂η

q where

q is the specific humidity. The prognostic variables are functions of time t, vertical

coordinate η and two coordinates describing the surface of the sphere. The unit vector

normal to the surface of the sphere is denoted by k̂. This formulation has already

incorporated the hydrostatic equation and the ideal gas law, p = ρRTv. There is a

no-flux (η̇ = 0) boundary condition at η = 1 and η = ηtop. The vorticity is denoted

by ζ = k̂ ·∇×�u, f is a Coriolis term, ω = Dp/Dt is the pressure vertical velocity, and

Φs is the prescribed surface geopotential. The virtual temperature Tv and variable-

of-convenience c∗p are defined by RTv = RT + (Rv − R) qT and c∗p = cp + (cpv − cp) q

where R and Rv the ideal gas constants for dry air and water vapor, respectively and

cp, cpv the specific heat at constant pressure for dry air and water vapor, respectively.

To complete the system, we need diagnostic equations for the geopotential height

Φ, η̇ and ω. The diagnostic equation for Φ is given by

Φ = Φs +

� 1

η

RTv

p

∂p

∂η
dη. (8)

The remaining diagnostic equations come from integrating (6) with respect to η. For

numerical efficiency, (6) can be replaced by a diagnostic equation for η̇ ∂p
∂η

and a prog-

nostic equation for surface pressure ps

∂

∂t
ps +

� 1

ηtop

∇ ·

�

∂p

∂η
�u

�

dη = 0 (9)

η̇
∂p

∂η
= −

∂p

∂t
−

� η

ηtop

∇ ·

�

∂p

∂η�
�u

�

dη�, (10)

where (9) is (10) evaluated at the model bottom (η = 1) after using that ∂p/∂t =

B(η)∂ps/∂t and η̇(1) = 0, B(1) = 1. The diagnostic equation for ω, using (10), is

written

ω = �u ·∇p −

� η

ηtop

∇ ·

�

∂p

∂η�
�u

�

dη� (11)



Finally, we rewrite (10) as

η̇
∂p

∂η
= B(η)

� 1

ηtop

∇ ·

�

∂p

∂η
�u

�

dη −

� η

ηtop

∇ ·

�

∂p

∂η�
�u

�

dη�. (12)

We will discretize the prognostic equations (4), (5), (7), (9), and the diagnostic equa-

tions (8), (11), (12) exactly as written, with the integrals replaced by sums, the vertical

derivatives replaced by finite differences and the horizontal derivatives treated by the

SEM.

2.3 Vertical Discretization

The vertical coordinate system uses a Lorenz staggering of the variables as shown in

Fig. 2. Let K be the total number of layers, with variables �u, T, q, ω,Φ at layer mid

points denoted by k = 1, 2, . . . ,K. We denote layer interfaces by k+ 1
2 , k = 0, 1, . . . ,K,

so that η1/2 = ηtop and ηK+1/2 = 1. We consider (η̇ ∂p
∂η

) a single quantity given at

layer interfaces and defined by (12). The no-flux boundary condition is (η̇ ∂p
∂η

)1/2 =

(η̇ ∂p
∂η

)K+1/2 = 0.

There are two types of vertical derivative operators that appear in the equations:

(1) derivatives with respect to η of a layer interface value with the result at layer

mid points, which are discretized by centered differences, and (2) the η̇∂/∂η operator

which acts on quantities defined at layer midpoints and returns a result also at layer

midpoints. It is discretized by a more complex formulation specifically constructed

in (Simmons and Burridge, 1981) in order to ensure mass and energy conservation.

For the integrals with respect to η, we discretize (12) using the midpoint quadrature

rule where the integrand is evaluated at layer midpoints. For the remaining indefinite

integrals, we first integrate to layer interface k− 1
2 using the same midpoint quadrature

rule, and then add an additional term representing the integral from k − 1
2 to k. The

precise quadrature formulas used are given in (Taylor, 2011).

The vertical discretization quadrature rules and finite difference stencils are chosen

to ensure energy conservation (following Simmons and Burridge (1981)), and to ensure

that the discrete equations are as consistent as possible, following Williamson and

Olson (1994). By consistency, we mean that the discrete diagnostic equations for ω

(11) and η̇ ∂p
∂η

(12) are equivalent to a discrete version of the continuity equation (6)

and the pressure evolution equation

ω =
Dp

Dt
=

∂p

∂t
+ (�u ·∇p) + η̇

∂p

∂η
. (13)

In CAM-SE, if one applies the discrete ∂/∂η operator to the discretized (12) one

recovers a natural discretization of (6) at layer midpoints. The discrete diagnostic



equations can be layer averaged and combined to derive a natural discretization of

(13) at layer midpoints.

2.4 The Horizontal Discretization

CAM-SE uses the SEM for the horizontal discretization, applied on each η-surface

after applying the vertical discretization from Sec. 2.3. In a continuous-Galerkin fi-

nite element method such as SEM, instead of constructing discrete approximations to

the derivative operators, we construct a discrete functional space. We then find the

function in this space that solves the primitive equations in a minimum residual sense.

Compared to finite volume methods, there is less choice in how one constructs the

discrete derivative operators in this setting, since functions in the discrete space are

represented in terms of known basis functions whose derivatives are known analytically.

Below, we give an overview of the SEM used by CAM-SE. For complete details, see

(Taylor and Fournier, 2010).

To apply the SEM, we first decompose each η-surface, represented by the surface

of the sphere Ω, using a quadrilateral finite-element mesh consisting of a {Ωm}M
m=1 of

non-overlapping elements,

Ω =
�

Ωm

We assume the mesh is conforming (has no hanging nodes), and that each element

can be mapped to the reference element [−1, 1]2, with reference coordinates x and y.

CAM-SE can work with any such decomposition of the sphere, the only requirements

are that the reference element map is differentiable within each element, and the maps

for two adjacent elements agree at the common element edge. When uniform resolution

is desired at all locations, we utilize the cubed-sphere grid (Fig. 1) with the equal-angle

gnomonic projection (Rančić et al., 1996). This grid is the most natural way to generate

a highly uniform grid for the sphere with all quadrilateral elements.

The SEM works in the space of globally continuous piecewise polynomials, V
1
d. To

describe this space, we first introduce the larger space V
0
d, which is the space of all

functions whose values within each element Ωm are polynomials in x and y of at most

degree d. These functions are not required to be continuous at element boundaries.

We then take V
1
d = C0 ∩ V

0
d, where C0 is the set of all continuous functions in Ω. The

SEM is a Galerkin method with respect to the V
1
d subspace.

In CAM-SE, the default configuration uses d = 3, which achieves a globally 4’th

order accurate horizontal discretization (Taylor and Fournier, 2010). Functions in V
0
d

can be represented by coefficients of a polynomial expansion (modal basis approach)

within each element, but for the SEM it is more efficient to use an equivalent nodal

basis approach, where functions are represented by their grid point values at the (d +



1)×(d+1) tensor product of Gauss-Lobatto-Legendre (GLL) quadrature points (shown

in Fig. 3). In CAM-SE, functions in V
1
d are also represented as functions in V

0
d, with

the continuity constraint being enforced by requiring that grid point values at GLL

points shared by multiple elements agree.

The horizontal discretization of the primitive equations requires discrete divergence,

gradient and curl operators. These are the fundamental operators that appear in CAM-

SE. All other derivative operators (such as hyper-viscosity, discussed later) are written

in terms of these operators. Non-differential operations such as cross products are

computed directly at the GLL grid points. As the method is fully collocated, no

spatial averaging is needed.

The divergence, curl and gradient operators are computed by representing their

argument in terms of its polynomial expansion and differentiating this expression an-

alytically. The SEM is well known for being quite efficient in computing these types

of operations. Because of the tensor product decomposition, the SEM divergence, gra-

dient and curl can all be evaluated at the (d + 1)2 GLL nodes within each element in

O(d) operations per node using the tensor-product property of these points (Deville

et al., 2002; Karniadakis and Sherwin, 2005).

In the case where the Jacobian of the map to the reference element is constant,

these operators will be computed exactly for all functions in V
1
d. However, the result

will belong to V
0
d, as it will be multi-valued at element boundaries because derivatives

computed with the polynomial expansions in adjacent elements will not necessarily

agree along their shared boundary. In CAM-SE, we have a non-constant Jacobian

and these operators may not be computed exactly by the SEM due to the Jacobian

factors in the operators and the Jacobian factors that appear when converting between

covariant and contravariant coordinates. In this case there is some freedom in how the

operators are constructed. We use the formulation from Thomas and Loft (2000).

2.5 Horizontal Discretization: Discrete Inner-Product

Instead of using exact integration of the basis functions as in a traditional finite-element

method, the SEM uses quadrature approximation for the integral over Ω based on the

same GLL points used for representing V
0
d. We denote this quadrature approximation

by �·�. It is given by first writing the integral over the sphere as a sum of area-weighted

integrals over the set of elements {Ωm}M
m=1,

�fg� ≈

�

fg dA =

M
�

m=1

�

Ωm

fg dA =

M
�

m=1

��

[−1,1]2
fgJm dx dy



where Jm is the Jacobian of the map from the reference element to Ωm. The integral

over [−1, 1]2 is then approximated by the standard GLL quadrature rule

��

[−1,1]2
fgJm dx dy ≈

�

wiwjJm(i, j)f(i, j)g(i, j)

with Gauss-Legendre weights wi and wj . When applied to the product of functions

f, g ∈ V
0
d, the quadrature approximation �fg� defines a discrete inner-product in the

usual manner.

2.6 The SEM Projection Operators

Let P : V
0
d → V

1
d be the unique orthogonal projection operator from V

0
d onto V

1
d with

respect to the SEM discrete inner product �·�. The operation P is essentially the same

as the common procedure in the SEM described as assembly (Karniadakis and Sherwin,

2005, p. 7), or direct stiffness summation (Deville et al., 2002, eq. 4.5.8). Applying the

projection operator in a finite element method requires inverting the finite element mass

matrix. A remarkable fact about the SEM is that with the GLL-based discrete inner

product and the careful choice of global basis functions, the mass matrix is diagonal

(Maday and Patera, 1987). The resulting projection operator then has a very simple

form: at element interior points, it leaves the nodal values unchanged, while at element

boundary points shared by multiple elements it is a Jacobian-weighted average over all

redundant values.

2.7 Galerkin Formulation

We can now describe the Galerkin formulation of (2). The SEM solves this equation

in integral form with respect to the SEM inner product. That is, for A ∈ V
0
d, the SEM

finds the unique U t+∆t ∈ V
1
d such that

�

φU t+∆t
�

=
�

φ
�

U t + ∆tA(U t)
��

∀φ ∈ V
1
d, (14)

where again we use a forward-Euler timestep for simplicity of illustration only. As U t

belongs to V
1
d, the RHS will in general belong to V

0
d since it contains derivatives of

the prognostic variables, resulting in the loss of continuity at the element boundaries.

Picking a suitable basis for V
1
d, and requiring (14) to hold for all basis functions results

in a system of L equations for the L expansion coefficients of ∂U
∂t , where L = dimV

1
d.

The SEM solves these equations exactly, and the solution can be written in terms of

the SEM projection operator P :

U t+∆t = P
�

U t + ∆tA(U t)
�

= U t + ∆tP
�

A(U t)
�

.



The projection operator commutes with any time-stepping scheme, so the equations

can be solved in a two step process,

• Step 1:

U∗ = U t + ∆t A(U t) U∗ ∈ V
0
d

• Step 2:

U t+∆t = P (U∗) U t+∆t ∈ V
1
d

In a traditional finite element method, step 2 would require inverting the finite element

mass matrix, usually with an iterative method. But in the SEM, because of the diagonal

mass matrix (per Sec. 2.6), step 2 is fully explicit and no solver is needed.

This two step Galerkin solution process represents a natural separation between

computation and communication for the implementation of the SEM on a parallel

computer. The computations in step 1 are all local to the data contained in a single

element. Assuming an element-based decomposition so that each processor contains

at least one element, no inter-processor communication is required in step 1. All inter-

processor communication in CAM-SE is isolated to the projection operator step, in

which element boundary data must be exchanged between adjacent elements.

This decomposition is the main reason the SEM performs so well on parallel com-

puters. The element structure provides a natural cache blocking strategy, as all the

data needed for all element computations within the (d + 1)× (d + 1) vertical columns

belonging to each element will easily fit into cache. Furthermore, as all communica-

tion is isolated to a single projection operator, one needs only focus on load balancing

strategies and message scheduling designed for this single operator. Significant re-

sources have been devoted to optimizing the SEM projection operator (Loft et al.,

2001; Dennis, 2003).

2.8 Tracer Advection

All tracers, including specific humidity, are advected with a discretized version of (7).

Due to the need to impose monotonicity constraints, tracer advection is handled within

the vertical discretization described above but using the vertically Lagrangian approach

from Lin (2004). The main advantage of this approach is that it avoids the difficulty

of developing a three-dimensional monotone limiter by separating the problem into

horizontal and vertical components, where the horizontal component can use limiters

developed specifically for the spectral-element method and the vertical component

can use any of the well-proven one-dimensional limiters. The vertically Lagrangian

approach can also be used in the dynamics, as in Lin (2004). Currently CAM-SE does

not use this approach for the dynamics (Equations (4),(5) and (9)) because we do not



impose any monotonicity constraints on these variables and the Simmons and Burridge

(1981) approach is more efficient if limiters are not needed.

In CAM-SE, at the beginning of each timestep the tracers are assumed to be given

on the η-coordinate layer midpoints. The tracers are advanced in time on a moving

vertical coordinate system η� defined so that η̇� = 0. At the end of the timestep, the

tracers are remapped back to the η-coordinate layer midpoints using the monotone

remap algorithm from Zerroukat et al. (2005). The horizontal advection step consists

of using the SEM to solve

∂

∂t

�

∂p

∂η
q

�

= −∇h ·

�

�

∂p

∂η
�u

�

q

�

(15)

on the surfaces defined by the η� layer midpoints. The quantity
�

∂p
∂η

�u
�

is the mean

flux computed during the dynamics update. The mean flux used in (15), combined

with a suitable mean vertical flux used in the remap stage allows CAM-SE to preserve

mass/tracer-mass consistency: The tracer advection of ∂p
∂η

q with q = 1 will be identical

to the advection of ∂p
∂η

implied from (6).

Simply discretizing (15) with the SEM will result in locally conservative, high-order

accurate but oscillatory transport scheme. A limiter is added to reduce or eliminate

these oscillations (Taylor et al., 2009). CAM-SE supports both monotone and sign-

preserving limiters, but the most effective limiter for CAM-SE has not yet been de-

termined. The default configuration is to use the sign-preserving limiter to prevent

negative values of q coupled with a sign-preserving hyper-viscosity operator which dis-

sipates q2. We use the optimal 3-stage second-order RK-SSP timestepping method

from Spiteri and Ruuth (2002) which preserves the monotonicity properties enforced

by the limiter.

2.9 Dissipation

A horizontal hyper-viscosity operator, modeled after that used in CAM-EUL is applied

to the momentum and temperature equations. It is applied in a time-split manner after

each dynamics timestep. The hyper-viscosity step for vectors is written

�u(t + ∆t) = �u(t) − ∆tν∇4�u. (16)

A possible implementation of this operator would be the repeated application of the

Laplacian. The Laplacian operator has been used previously in HOMME, in a baro-

clinic instability test case (Polvani et al., 2004). In that formulation, the Laplacian re-

quired two applications of the SEM projection operator, suggesting the hyper-viscosity



operator would require four such applications. As the timestep only requires one ap-

plication, and all the communication in the SEM are isolated to this operator, this

represents a potential 4x increase in the amount of communication per timestep.

Here we present a more efficient hyper-viscosity operator that only requires 2 pro-

jection steps. It uses an integral form of the operator, from the mixed finite element

approach (following Giraldo (1999)) which writes the equation as a system of equations

involving only first derivatives. We start by introduced an auxiliary vector �f so that

hyper-viscosity step (16) can be written

�u(t + ∆t) = �u(t) − ∆t ν∇2 �f �f = ∇2�u.

In order to avoid expressing ∇2 in spherical coordinates, we use the identity ∇2�u =

∇(∇ · �u) − ∇×(∇×�u) to write it in terms of the same operators that appear in the

vector-invariant form of the primitive equations, resulting in

�u(t + ∆t) = �u(t) − ∆t ν
�

∇(∇ · �f) −∇×k̂(∇×�f)
�

(17)

�f = ∇(∇ · �u) −∇×(∇×�u)k̂. (18)

Applying the Galerkin approach of writing this as a system of integral equations for

a family of test functions �φ, and then integrating the gradient and curl operators by

parts gives

��

�φ · �u(t + ∆t) dA =

��

�φ · �u(t) dA + ν

��

�

(∇ · �φ)(∇ · �f) + (∇×�φ) · k̂(∇×�f)
�

dA

(19)
��

�φ · �f dA = −

��

�

(∇ · �φ)(∇ · �u) + (∇×�φ) · k̂(∇×�u)
�

dA. (20)

These equations are then discretized with the SEM approach from Sec. 2.7. The

integrals are approximated with the SEM inner-product �·�, resulting in a linear system

of equations that must be solved. Again due to the diagonal mass matrix, the resulting

system can be solved directly with two applications of the projection operator, first to

compute the auxiliary vector �f and then to compute �u(t + ∆t).

The hyper-viscosity formulation used for scalars such as T is simpler, since instead

of the vector Laplacian identity we use ∆T = ∇ · ∇T . Otherwise the approach is

identical to that used above so we omit the details.

2.10 Conservation and Compatibility

The SEM used in CAM-SE is compatible, meaning it has a discrete version of the

divergence theorem, Stokes theorem and curl/gradient annihilator properties (Taylor



and Fournier, 2010). The divergence theorem is the key property of the horizontal

discretization that is needed to show conservation of both mass and energy. Because of

the discrete divergence theorem, a compatible method obtains global energy conserva-

tion by mimicking the behavior of the continuum energy dynamics on a term-by-term

basis. The discrete form of the terms in the energy equation that are responsible for

the transfer between kinetic, internal and potential energy will be in exact balance,

while the advection terms will vanish as in the continuum form of the equations.

For an arbitrary scalar h and vector �u at layer midpoints, the divergence theorem

(or the divergence/gradient adjoint relation) can be written

��

D
h∇ · �u dA +

��

D
�u∇h dA =

�

∂D
h�u · n̂ dS

for any domain D with piecewise smooth boundary. The SEM discrete divergence

and Stokes theorem apply locally at the element level, D = Ωm, or any collection of

elements. This is the fundamental identity needed to show mass and energy conserva-

tion. When combined with the curl/gradient annihilator properties, it is used to show

that the horizontal advection operator locally conserves the two-dimensional potential

vorticity.

In the vertical, Simmons and Burridge (1981) showed that the discrete ∂/∂η and

η̇∂/∂η operators need to satisfy two integral identities to ensure energy and mass

conservation. For any layer interface velocity η̇ that satisfies η̇1/2 = η̇K+1/2 = 0 and

f, g arbitrary functions of layer midpoints, the first identity is the adjoint relationship

between the η̇∂/∂η operator and the ∂/∂η operator acting on functions of the form

η̇f . The second identity is a discrete integrated-by-parts analog of ∂(fg) = f∂g + g∂f.

Construction of methods with both properties on a staggered unequally spaced grid is

the reason behind the complex definition for η̇∂/∂η.

The energy conservation properties of CAM-SE were studied in Taylor (2011) using

the aqua planet test case (Neale and Hoskins, 2000a,b). CAM-SE uses

E =

�

K
�

i=1

∆ηi

�

∂p

∂η

�

i

�

1

2
�u2 + c∗pT

�

i

�

+ �psΦs�

as the discretization of the total moist energy. The conservation of E is semi-discrete,

meaning that the only error in conservation is the time truncation error. In the adia-

batic case (with no hyper-viscosity and no limiters), running from a fully spun up initial

condition, the error in conservation decreases to machine precision at a second-order

rate with decreasing timestep. In the full non-adiabatic case with a realistic timestep,

dE/dt ≈ 0.013W/m2, or about 0.04% of the mean solar flux.



3 OpenMP/MPI strategy

CAM-SE uses both MPI and OpenMP for distributed memory and shared memory par-

allelism, respectively. The collection of elements is horizontally domain-decomposed

then mapped to processes based on a space-filling curve ordering and a specified two-

dimensional process topology. Subdomains contain entire vertical columns, and the

horizontal extent of a given subdomain is disjoint from that of other subdomains with

the exception of the subdomain boundary. MPI communicates data between the re-

spective memories. Most of the interprocess communication within CAM-SE occurs at

element boundaries (hence with nearby processes in the process topology), but there are

several instances of global communication, mostly in the CAM physics for diagnostics.

The decomposition paradigm requires at least one element per MPI task.

Within a given MPI task, OpenMP may be applied to utilize multiple cores in

shared memory space (e.g., on a processor or node). The present OpenMP paradigm

within CAM-SE is with respect to elements. As little as one element may be assigned

to a thread, and there is no provision at this time to assign multiple threads to a given

element. OpenMP is done so in a static manner. In advance, specific threads are

assigned to specific elements. The solution timestep is one large parallel region. There

are certain instances though where only the master thread for a given task is active.

The most notable of these are during message-passing and the reproducible (parallel

decomposition independent) distributed sum computation.

Within CAM-SE, OpenMP and MPI work against one-another. The total number

of threads is limited to the number of elements; it is a question of how those threads

are divided between MPI and OpenMP. In many instances it is superior to apply more

distributed memory parallelism (MPI) than shared memory parallelism (OpenMP).

However, at scale, using more OpenMP threads and fewer MPI tasks is often superior

because of the high cost of global communication for very large MPI task counts.

4 Performance Benchmarks

For our benchmark results, we evaluate the performance and scalability of CAM-SE,

CAM-FV and CAM-EUL using a realistic CESM time-slice configuration. This config-

uration is often used for short high-resolution simulations driven by prescribed ocean

conditions where the prescribed conditions come from a slice in time of a century-long,

low-resolution coupled atmosphere-ocean simulation. The time-slice configuration uses

the CESM’s atmosphere (CAM), land model (CLM), and sea ice model (CICE), but

with prescribed sea ice extent and sea surface temperatures (SST). The SST data are

provided by the CESM data ocean component, DOCN. For our simulations we used



prescribed data that simulates 1850 pre-industrial conditions, as implemented in the

CESM version 1 F 1850 compset.

The CAM supports several atmospheric physics configurations. For our simula-

tions, we used the CAM4 physics option (the default physics used with CAM Version

4). CAM4 physics uses 26 vertical levels and advects three tracers (specific humidity,

liquid water and ice) in addition to the prognostic variables for temperature, velocity

and pressure. All simulations used the CLM model running on a 0.25◦ (768 × 1152)

latitude/longitude grid (the same horizontal grid employed by the 0.25◦ CAM-FV).

DOCN and CICE used a 0.1◦ (2400×3600) tri-pole grid. We made this choice in order

to mimic a global high-resolution fully coupled (active ocean) simulation. Even though

the prescribed SST data comes from a low resolution (1.0◦) data set, it is interpolated

by the DOCN component to the 0.1◦ tri-pole grid during the simulation. Thus all

the costs of interacting with a high-resolution ocean are included in this configuration;

only the cost of performing the ocean simulation is omitted. In the CESM, the ocean

component can be run concurrently with the other model components, using an inde-

pendent set of processors. Thus the timings reported here will be similar to the timings

of a fully coupled CESM simulation where the DOCN is replaced with an active ocean

model and the ocean model is given additional processors so that its integration rate

matches that of the other CESM components.

In the CAM-FV configuration described above, only two different horizontal grids

are present. For the CAM-SE and CAM-EUL configurations, CAM and CLM are

using different grids. As a result, the CESM coupling will involve three different

grids, requiring the CESM tri-grid configuration described in (Craig et al., 2011). Our

CAM-EUL configuration uses the T341 truncation, with its associated 512× 1024 lat-

itude/longitude grid on the sphere. CAM-SE uses a cubed-sphere grid and we present

results from both 0.25◦ and 0.125◦ resolutions, where the resolution is determined by

the average grid spacing at the Equator. The 0.25◦ and 0.125◦ grids have 777,602 and

3,110,402 total grid points (in the horizontal) distributed among 86,400 and 345,600

elements, respectively. For all the dynamical cores, we used ∆tphys = 900 seconds.

For the tracer timestep ∆t, we used the largest stable value for which 900/∆t is an

integer (and for CAM-FV, the largest stable dynamics timestep which evenly divides

∆t). For the 0.25◦ CAM-SE, ∆t = 81.82, using a 3 stage (tracers) and 5 stage (dy-

namics) Runge-Kutta method. For the 0.125◦ CAM-SE, ∆t was reduced by a factor

of 2. For T341 CAM-EUL, the tracer and dynamics timestep was ∆t = 150.0, using

a semi-Lagrange method (tracers) and a semi-implicit Robert filtered leapfrog scheme

(dynamics). For 0.25◦ CAM-FV, which supports subcycling the dynamics with respect

to the tracers, ∆t = 112.5 and ∆tdyn = 56.25. All other parameters were left at their

CAM default values.



4.1 Load balancing

The CESM supports a very flexible static load balancing capability. Every model

component as well as the flux coupler can be assigned arbitrary subsets of MPI tasks

which may or may not overlap. On modern machines with tens of thousands of pro-

cessor cores, the best performance can be obtained by identifying the components that

can run concurrently and assigning them independent MPI tasks. The ocean compo-

nent is the main example. It needs to communicate with the atmosphere component

once per model day, but otherwise runs independently of all other components. In

contrast, the ice and land models communicate with the atmosphere every atmosphere

model timestep and can not run concurrently with the atmosphere. (However, the

land and ice can run concurrently with one-another.) All communication between the

component models is via the coupler component.

As our focus is solely on the evaluation and comparison of performance of the three

atmospheric dynamical cores, a stacked configuration that uses the same processors

for all components, running the component models sequentially, one after the other,

would do the best job of isolating the performance of the atmosphere. An example

CESM stacked configuration is illustrated in Fig. 4, left panel. This can require a

significant amount of memory, since a processor shared by several components will

need sufficient memory to support all the components. Due to memory limitations on

one of our target systems, a stacked configuration was not possible. Instead we ran

the ocean model on a separate set of processors and ran the coupler, ice, and land

model on a subset of the same processors as the atmosphere model, as shown in Fig. 4,

right panel. This configuration is very efficient in terms of both memory usage and

allows the maximum amount of concurrent execution. More specifically, given N MPI

tasks we assigned 64 independent tasks to DOCN, and assigned the remaining N − 64

tasks to CAM. Within these N − 64 tasks, we assigned non-overlapping subsets to the

remaining three components (flux coupler, CICE, CLM). The land and ice components

will then run concurrently with each other, while the coupler, land, and ice components

run sequentially with respect to the atmosphere.

Note that we did not attempt to determine a configuration of the other components

(land, ice, ocean) that would optimize the throughput of the CESM run, and we report

only the execution time of the atmosphere component. To further insulate our CAM

benchmark numbers from the load imbalance between CLM and CICE, we added a

call to MPI Barrier (using an MPI communicator that included only the atmosphere

processes) at the beginning of each call to the atmosphere model. Without this bar-

rier, any CLM/CICE load imbalance could be counted as time spent running CAM,

while with this barrier this time is attributed instead to the coupler. We also timed

this barrier to determine whether load imbalances introduced by the other component



models would have impacted performance of the atmosphere model if the barrier were

not called. In all cases the time spent in this barrier was insignificant compared to the

execution time of the atmosphere model as a whole.

4.2 Benchmark Results

The CAM performance was evaluated on two Leadership Computing Platforms (LCF),

the Oak Ridge LCF Cray XT5 JaguarPF system and the Argonne LCF IBM Blue

Gene/P Intrepid system. Each of the 18,688 compute nodes in JaguarPF system

nodes consists of two hex-core processors for a total of 224,256 cores. Each of the

40,960 nodes of Intrepid consists of a quad core processor for a total of 163,840 cores.

In Fig. 5 we show the approximate 0.25◦ comparison of CAM running with each of

the three dynamical cores on Intrepid. All simulations were made using CAM’s hybrid

openMP/MPI approach, with one MPI task per node and 4 OpenMP threads per MPI

task (1 thread per core on Intrepid). We first note that CAM-EUL is the most efficient

in terms of core-hours per simulated day. On two-thousand cores, it is more than twice

as fast as CAM-SE and CAM-FV. This is largely due to a recent implementation of

subcycled dynamics Taylor et al. (2011) and the fact that it uses a semi-implicit method

that allows for a relatively larger timestep. However its scalability is limited due to the

spherical harmonic transforms. As the number of cores is increased, the integration

rate stagnates at about 0.9 simulated year per day (SYPD). CAM-FV benefits from a

larger timestep, while for the same resolution, CAM-SE benefits from fewer degrees of

freedom becuase of its more uniform grid. Above eight thousand cores, CAM-FV starts

to lose scalability due in part to its inherently load-imbalanced polar filtering. CAM-SE

exhibits near perfect strong scaling to 1 element per core (86,400 cores), obtaining 12.2

SYPD. Currently it is not possible to execute CAM-SE using multiple MPI tasks per

element. Further, unlike in CAM-FV, the use of the OpenMP/MPI programing model

within CAM-SE does not enable additional parallelism. We hope to enable CAM-SE

at 0.25◦ to use more than 86,000 cores by utilizing additional parallelism within the

physics component and through OpenMP threading of the vertical dimension.

In Fig. 6 we show results from CAM-SE at 0.25◦ and 0.125◦ resolutions on both

Intrepid and JaguarPF. For JaguarPF, we tested 1,2,3 and 6 threads per MPI task,

with 12,6,4 and 2 MPI tasks per node respectively, and report only the best times.

When running on few numbers of cores, the best times were obtained with a pure MPI

configuration (1 thread per task); we found the best results were obtained by increasing

the number of threads whenever the number of MPI tasks neared about 8000.

Focusing on the 0.25◦ results in Fig. 6, we see that JaguarPF cores are significantly

faster than the Intrepid cores. But CAM-SE does not scale as well on JaguarPF, and

at the limit of CAM-SE’s scalability, both platforms obtain the same throughput. Pre-



liminary analysis suggests that CAM-SE’s space-filling curve decomposition strategy

is suboptimal for the 12 cores per node processors used by JaguarPF, so we expect fu-

ture improvements in domain decomposition to improve the JaguarPF results at high

task counts. Similar results are seen for the 0.125◦ benchmarks. This problem size

has 345,600 elements and thus would allow for up to 345,600 MPI tasks. For both

machines, we have obtained data out to the largest core counts possible, 2 elements

per core on JaguarPF and 3 elements per core on Intrepid. Using 1 element per core on

JaguarPF or 2 elements per core on Intrepid would require more cores than currently

available on these machines. JaguarPF again exhibits significantly faster single-core

performance at the low end, while Intrepid shows excellent scalability at all core counts.

JaguarPF obtains a throughput of 4.6 SYPD, while Intrepid achieves 2.83 SYPD. To

our knowledge, both of these numbers are a new record for any 0.125◦ atmospheric

model running with full physics.

For completeness, in Fig. 7 we show the same 0.25◦ dynamical core comparison as

in Fig. 5, only on the JaguarPF system. Again CAM-EUL is the most efficient in terms

of core-hours per simulated day, but cannot run at more than 3 SYPD due to lack of

scalability. Both CAM-SE and CAM-FV do not scale as well on JaguarPF as they

do on Intrepid. CAM-SE shows better scaling than CAM-FV at all processor counts,

but starts to depart from perfect scalability at around 5000 cores. However, Intrepid’s

better scaling does not quite allow its CAM-SE performance (12.2 SYPD) to catch up

with JaguarPF (12.7 SYPD).

5 High Resolution Simulations

The benchmarks presented above show that the CESM with the CAM-SE atmosphere

can now take full advantage of modern petascale platforms and achieve integration rates

suitable for long term climate studies at very high resolutions. These performance

results, coupled with the 1.0◦ resolution CESM results (Evans et al., 2011) and the

proven high-order accuracy and mesh convergence properties of the spectral element

method give us confidence that the software engineering and dynamics in the CESM

are now fully capable of ultra high resolution simulations.

A challenging remaining issue is to evaluate the suitability of the CAM physics

parametrizations at high resolution. The parametrizations have been developed for

use with lower resolutions (typically 1.0◦ or lower), where tuning parameters are based

on assumptions of mean values of quantities such as the vertical velocity and relative

humidity. Preliminary runs at 0.25◦ with all three dynamical cores show they are

able to produce a global annually-averaged residual energy flux at the model top and

bottom within several tenths of a W/m2 for relatively short 1-3 year simulations with



properly spun up initial conditions. Annual means of the CAM-SE 0.25◦ preindustrial

configuration 500mb geopotential height, tropopause temperature, sea level pressure,

and total precipitable water have a root mean square error (rmse) of 0.20, 4.39. 4.59,

and 2.46, respectively with respect to observational data (as computed by the CESM

Atmospheric Model Working Group Diagnostics Package2). Comparing the same quan-

tities of the CAM-FV 1◦ preindustrial configuration with rmse of 0.21, 5.41, 3.92, and

2.56, respectively, it is clear that the gross features are reasonable.

Many dynamical features are clearly improved at these resolutions, such as the

response to topography, meso-scale variability and the ability of the model to capture

tropical cyclones. As an example, a snapshot from a 0.125◦ simulation is shown in

Fig. 8, where many fine scale features of the flow, such as well defined mid-latitude

fronts and tropical cyclones, are visible. However, the preliminary high-resolution

simulations show some issues with mean climate properties such as moisture levels

in the free atmosphere. Improving the results through turning or more fundamental

changes to the parametrizations is an active area of research.

6 Conclusions

The finite volume and Eulerian global spectral dynamical cores have been engineered

to take advantage of supercomputers with thousands of processor cores. However, due

to limitations arising from the nature of the underlying computational grids and the

dependencies in the numerical schemes, performance scalability has proven to be poor

when using tens of thousands of processor cores. The spectral element dynamical core

eliminates these scalability bottlenecks and provides excellent performance on petascale

platforms, with the potential for better performance on even larger systems (Carpenter

et al., 2011). This performance is obtained within a state-of-the-art compatible nu-

merical method, featuring high-order accuracy, mass, energy and PV conservation and

sign-preserving consistent advection on fully unstructured quadrilateral grids. Spec-

tral element methods have traditionally scaled very well on modern parallel computers.

That scalability has lead to the excellent performance results given here. We have also

further increased the method’s throughput for climate applications by the introduction

of multi-stage RK methods (which achieve the performance benefit of the older subcy-

cling approach) and a new integrated-by-parts hyper-viscosity operator which reduces

the number of projection (communication) steps by a factor of 2.

2http://www.cgd.ucar.edu/cms/rneale/tools/amwg diagnostics.html
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9 List of Figures



Figure 1: An example quadrilateral element grid for the sphere. An inscribed cube is pro-
jected on the surface of the sphere. The faces of the cubed-sphere are further subdivided
to form a quadrilateral grid of the desired resolution. Coordinate lines from the gnomonic
equal-angle projection are shown.

Figure 2: The terrain following η-coordinate layers and layer indexing. There are K layer
midpoints denoted by k = 1, 2, . . . , K and K + 1 layer interfaces denoted by k + 1

2
, k =

0, 1, . . . , K



Figure 3: A 4 × 4 tensor product grid of GLL nodes used within each element, for a degree
d = 3 discretization. Nodes on the boundary are shared by neighboring elements.
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Figure 4: Two example processor layouts supported by the CESM. The position of each
model component box in the figure shows (not exactly to scale) the wall clock time and
number of processors used for a simulated model day. In both configurations, the ocean
runs on an independent set of processors from the rest of the components. In a stacked

configuration (left panel) all remaining processors are used by the atmosphere, land ice and
flux coupler, and these components will then run sequentially. For high-resolution simulations
running on thousands of processors, more efficient distributions (right panel) allow the land
and sea ice components to run concurrently and reduce the memory requirements.
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Figure 5: Performance of the CESM atmosphere component model on Intrepid (IBM BG/P)
when using the CAM-SE, FV or EUL dynamical core, showing the simulated-years-per-day
as a function of the number of processing cores. Atmosphere component times taken from a
CESM time-slice simulation, coupling the atmosphere (at 0.25◦ or T341 resolution), the land
model (0.25◦ resolution), and the sea ice and data ocean model (0.1◦). The solid black line
shows perfect parallel scalability. When using CAM-SE, the CESM achieves near perfect
scalability down to one element per processor, running at 12.2 SYPD on 86,400 cores.
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Figure 6: Performance of the CESM atmosphere component model when using CAM-SE at-
mosphere component, comparing the performance on Intrepid and JaguarPF at both 0.25◦

and 0.125◦ resolutions. Atmosphere component times taken from a CESM time-slice simu-
lation, coupling the atmosphere (at 0.25◦ or 0.125◦ resolution), the land model (0.25◦ res-
olution), and the sea ice and data ocean model (0.1◦). The solid black line shows perfect
parallel scalability. At 0.125◦ resolution, the CESM achieves 4.6 SYPD on 172,800 cores of
JaguarPF.
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Figure 7: Performance of the CESM atmosphere component model as in Fig. 5, only on the
JaguarPF (Cray XT5) system. The best performance is obtained with CAM-SE, running at
12.7 SYPD on 86,400 cores.

Figure 8: A snapshot of the column integrated precipitable water from a CESM time-slice
simulation using CAM-SE at 0.125◦ resolution. The snapshot is from early January and
shows the winter-time cyclone activity in the Indian ocean.


