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Abstract. We investigate the effects of the aerodynamic loads on the performance of piezoaeroelastic energy
harvesters. The harvester consists of a rigid airfoil having a pitch and plunge degrees of freedom with a piezoelec-
tric coupling attached to the plunge degree of freedom. The Unsteady Vortex Lattice Method is used to model the
unsteady flow and predict the loads. An iterative scheme based on Humming’s fourth order predictor-corrector
method is employed to solve simultaneously and interactively the governing equations. The effects of varying
the airfoil camber coefficient are determined. We demonstrate that increasing the camber does not necessarily
increase the level of the harvested power.

1 Introduction

The use of aeroelastic vibrations to harvest energy has been
the focus of many previous studies. De Marqui et al.[1]
presented frequency domain piezoaeroelastic modeling and
analysis of an unswept generator wing using the doublet-
lattice method to model the aerodynamic loads. Erturk et
al.[2] determined theoretically and experimentally the ef-
fects of piezoelectric power generation on the linear flut-
ter speed. Because power generation is most efficient from
limit cycle oscillations, Abdelkefi et al.[3,4] noted that eval-
uating aeroelastic responses and power generation are best
determined from nonlinear responses of the harvester. In
fact, structures subjected to wind loads can undergo vari-
ous responses [5], including bifurcations, limit cycle oscil-
lations, internal resonances and chaotic motions.

The level of the harvested power is related to airfoil
parameters and the freestream velocity. In this work, we
focus on the effects of the aerodynamic loads on the per-
formance of the energy harvester. The focus is on the ef-
fects of the camber of the airfoil on the harvested voltage,
pitch and plunge motions.

2 Mathematical Modeling

The piezoaeroelastic system, considered in this work, con-
sists of a rigid airfoil that is allowed to move with two
degrees of freedom, as shown in Figure 1. The airfoil is
supported by linear and nonlinear torsional and flexural
springs with a piezoelectric coupling attached to the plunge
degree of freedom. The governing equations of this system
are written as [2,4]:

mT ḧ + mW xαbα̈ + chḣ + kh(h)h − θV = −ρU2bCn (1)
mW xαbḧ + Iαα̈ + cαα̇ + kα(α)α = 2ρU2b2Cm (2)

CpV̇ + V
R + χḣ = 0 (3)

where mT is the total mass of the wing, including its sup-
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Fig. 1. Schematic of a cambered piezoaeroelastic system under
uniform airflow.

port structure; mW is the wing mass alone; Iα is the mass
moment of inertia about the elastic axis; b is the half chord
length; xα is the dimensionless distance between the cen-
ter of mass and the elastic axis; ch and cα are, respectively,
the plunge and pitch structural damping coefficients; Cn
and Cm are, respectively, the normal force coefficient and
the pitching moment coefficient about the elastic axis; R is
the load resistance; U is the freestream velocity; V is the
voltage across this load resistance; Cp is the capacitance
of the piezoelectric layer; θ and χ are electromechanical
coupling terms, and kh and kα are the structural stiffness
for the plunge and pitch motions, respectively. Here, we
represent the stiffness for the plunge and pitch motions in
polynomial forms respectively as

kα(α) = kα0 + kα2α
2 (4)

kh(h) = kh0 + kh2h2 (5)

The three equations of motion are nondimensionalized
using the following characteristic parameters: l for length,
U for velocity, and l

U for time. Using this nondimensional
strategy, h∗ = h

l and V∗ = V
V0

where V0 =
χl
Cp

. Eliminating
hats, the resulting nondimensional equations of motion are:

ḧ = [
1

r2 − m∗x2
α

][−
2r2c∗h
NelW

ḣ +
4xαm∗c∗α

W
α̇ −

4σ2r2

N2
elW

2
h (6)
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+
2xαm∗r2

NelW2 α −
4σ2σ

2r2

N4
elW

2
h3 +

2xασ3m∗r2

NelW2 α3

+
4σ5r2

N2
elW

2
V −

2m∗r2

πµNel
Cn −

4m∗xα
πµNel

Cm]

α̈ = [
1

r2 − m∗x2
α

][
4xαc∗h
N2

elW
ḣ −

8c∗α
NelW

α̇ +
8σ2xα
N3

elW
2

h (7)

−
4r2

N2
elW

2
α +

8σ2σ
2xα

N5
elW

2
h3 −

4σ3r2

N2
elW

2
α3

−
8xασ5

N3
elW

2
V +

4m∗xα
πµN2

el

Cn +
8

πµN2
el

Cm]

V̇ +
2σ6

NelW
V + ḣ = 0 (8)

where m∗ =
mW
mT

, c∗h = ch
mTwα

is the nondimensional plunge
damping coefficient, cα∗ =

cα
mW c2wα

is the nondimensional
pitch damping coefficient, µ =

4mW
πρc2 is the mass ratio, r2 =

4Iα
mW c2 is the dimensionless square of the radius of gyration,
W = 2U

cwα
is the reduced velocity, σ = wh

wα
is the frequency

ratio in which wα =

√
kα0
Iα

and wh =

√
kh0
mT

are the structural
pitch and plunge natural frequencies, respectively. Nel is
the number of elements in the aerodynamic model. σ2 =
c2kh2
kh0

is the plunge spring coefficients ratio, σ3 =
kα2
kα0

is
the pitch spring coefficients ratio, σ5 =

θχ

mTw
2
αCp

is the first
nondimensional electromechanical coupling term, andσ6 =

1
RCpwα

is the second nondimensional electromechanical cou-
pling term. The characteristic length l has been replaced by
c/Nel.

3 Aerodynamic model

The unsteady flow around a cambered plate is modeled us-
ing the unsteady vortex lattice method (UVLM). The flow
is assumed to be incompressible and inviscid. The plate
and its wake are represented by sheets of vorticity. The
position of the sheet representing the plate is known and
is called a bound vortex sheet. Each vortex is interpreted
as an infinite-long vortex filament oriented in the normal
direction of the plate. The position of the sheet represent-
ing the wake is not known in advance and is determined
as part of the solution. This sheet deforms freely during
the simulation, it assumes a force-free position. This sheet
is called a free vortex sheet. These two vortex sheets are
joined along the trailing edge of the plate. In this numerical
method, these two vortex sheets are replaced by discrete
vortices. Furthermore, the rigid plate is divided into Nel
equal-length panels or piecewise straight line segments. In
each panel, the vorticity distributed on each element is re-
placed by a single vortex of unknown circulation strength
Γ j which is located at one quarter of the element length.
The starting vortex is simulated by locating a vortex at the
trailing edge of unknown circulation strength Γc. Accord-
ing to the Biot-Savart law, the magnitude of the induced
velocity varies directly with the strength of the vortex and
inversely with the distance between the vortex and point of

interest. This law gives the velocity W at a point r due to an
individual vortex point located at r0 and which has a circu-
lation Γ(t) The total velocity field induced by these vortices
satisfies the continuity equation, the no-penetration bound-
ary condition on the plate, zero fluid velocity at infinity, un-
steady Kutta condition at trailing edge of the rigid plate, the
total circulation around the closed fluid line that encircles
the plate and its wake is conserved (zero in this case), and
the pressure is continuous in the wake. The no-penetraion
boundary condition is imposed at one point of each panel
which is named control point. This point is placed at the
three-quarter point of the element. Furthermore, the nondi-
mensional length of the element is equal to unity and hence
the nondimensional chord of the plate is set equal to Nel.

The unsteady Bernoulli’s equation was used to com-
pute the pressure jump 4p across each element at its con-
trol point. For more details on the aerodynamic model, one
is referred to the paper of Zedan and Nuhait[6].

4 Camber implementation

In this work, the effect of the camber is introduced using
the following expression for a cambered four digit NACA
airfoil to calculate the mean camber line
If x < Lc

yc =
cb

Lc
(2Lcx − x2) (9)

If not

yc =
cb

(1 − Lc)2 (1 − 2Lc + 2Lcx − x2) (10)

where cb and Lc represent respectively the maximum cam-
ber (100cb is the first of the four digits) and the location
of the maximum camber (10Lc is the second of the four
digits).

5 Predictor-corrector methodology

To rewrite the equations of motion as a set of first order
equations, we consider the following state variables

X =


X1
X2
X3
X4
X5

 =


h
ḣ
α
α̇
V

 (11)

we rewrite the equations of motions as

Ẋ1 = X2 (12)

Ẋ2 = [
1

r2 − m∗x2
α

][−
2r2c∗h
NelW

X2 +
4xαm∗c∗α

W
X4 −

4σ2r2

N2
elW

2
h (13)

+
2xαm∗r2

NelW2 X3 −
4σ2σ

2r2

N4
elW

2
X1

3 +
2xασ3m∗r2

NelW2 X3
3

+
4σ5r2

N2
elW

2
X5 −

2m∗r2

πµNel
Cn −

4m∗xα
πµNel

Cm]
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Table 1. Parameters of the piezoaeroelastic system

a -0.6847
σ 1.37
µ 29.21
xα 0.33
m∗ 1
r2 1.49
c∗h 0.2
c∗α 0.02
σ2 0
σ5 0.013
σ6 0.75

Ẋ3 = X4 (14)

Ẋ4 = [
1

r2 − m∗x2
α

][
4xαc∗h
N2

elW
X2 −

8c∗α
NelW

X4 +
8σ2xα
N3

elW
2

X1 (15)

−
4r2

N2
elW

2
X2 +

8σ2σ
2xα

N5
elW

2
X1

3 −
4σ3r2

N2
elW

2
X3

3

−
8xασ5

N3
elW

2
X5 +

4m∗xα
πµN2

el

Cn +
8

πµN2
el

Cm]

Ẋ5 +
2σ6

NelW
X5 + X2 = 0 (16)

These equations of motion are integrated numerically to
determine the harvested voltage, pitch and plunge responses.
To integrate these governing equations numerically, simul-
taneously, and interactively in the time domain, it is com-
plicated to determine it directly because the aerodynamic
loads and the motion of the plate are related at each time
step. In fact, to predict the aerodynamic loads, we have to
know the motion of the rigid plate, and to predict the mo-
tion of this plate, we need to know the aerodynamic loads.
Consequently, an iterative scheme based on Humming’s
fourth order predictor-corrector method is employed [7].

6 Effects of the camber on the flutter speed
and the performance of the harvester

Before investigating the impact of the aerodynamic loads
when varying the camber on the harvested voltage, pitch
and plunge amplitudes, we study their effects on the flut-
ter speed. Using the parameters given in Table 1, the plot-
ted curves in Figures 2 and 3 show the time histories of
the harvested voltage when the reduced wind speed are set
equal, respectively, to 3.88 (directly before flutter) and 3.9
(directly after flutter) for different considered cases of the
camber when the camber value is set equal to 0.04. In this
work, the location of maximum camber is set to 0.6.

We note that when the reduced airspeed is equal to 3.88
the response of the harvested voltage decreases with time.
Consequently, the system response is damped. This result
occurs because the sum of the structure and aerodynamic
damping are negative (resulting in a decay) and then the
system response is stable. Increasing the wind speed to 3.9,
a limit cycle oscillations is developed and then the posi-
tive damping leads to the appearance of unstable solutions.
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Fig. 2. Time histories of the nondimensional harvested voltage
when W = 3.88 and cb=0.04.
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Fig. 3. Time histories of the nondimensional harvested voltage
when W = 3.9 and cb=0.04.

We conclude that the flutter speeds for different values of
the camber are between 3.88 and 3.9. The plotted curves
in Figures 4, 5, and 6 show the variations of the nondi-
mensional harvested voltage, nondimensional plunge, and
pitch amplitudes when varying the camber when σ3 = 80
and for three different values of the reduced velocity. We
note that the increase of the |cb| is accompanied with a de-
crease on the system’s outputs. Consequently, the configu-
ration in which the camber is considered zero (flat plate),
the harvested power is more important. For example, when
W = 3.9, the nondimensional harvested voltage decrease
by 14% (31% in the harvested power) when the camber
change from zero to 0.05.
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Fig. 4. Variations of the nondimensional harvested voltage with
the camber when σ3 = 80 and W = 3.9 (red dashed line), W = 4
(black dot-dashed line), and W = 4.2 (blue solid line).

7 Conclusions

In this work, we have studied the effects of the aerody-
namic loads on the performance of piezoaeroelastic sys-
tems. This harvester consists of a rigid airfoil supported
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Fig. 5. Variations of the nondimensional plunge amplitude with
the camber when σ3 = 80 and W = 3.9 (red dashed line), W = 4
(black dot-dashed line), and W = 4.2 (blue solid line).
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Fig. 6. Variations of the pitch amplitude with the camber when
σ3 = 80 and W = 3.9 (red dashed line), W = 4 (black dot-dashed
line), and W = 4.2 (blue solid line).

by flexural and torsional springs with a piezoelectric cou-
pling attached to the plunge degree of freedom. The aero-
dynamic loads effects are investigated through varying the
camber of the rigid airfoil. We have used a two dimensional
Unsteady Vortex Lattice Method to model the unsteady
flow. Because the aerodynamic loads and the motion of
the plate are related at each time step, we used an itera-
tive scheme based on Humming’s fourth order predictor-
corrector method to solve simultaneously and interactively
the governing equations. The results show that varying the
camber has a negligible influence on the flutter speed. On
the other hand, the increase of the camber results in a de-
crease on the harvested power which can attain 31%.
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