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ABSTRACT

This paper reviews histological studies of cambium activity in South American 
woody species and provides future research prospects. The majority of the stud-
ies almost exclusively describe radial increment and/or its periodicity. There 
are 15 papers concerning the cambial activity of 17 woody species from the 
South American flora and 3 exotic species in 4 countries that were published to 
date. Despite endogenous factors affecting the radial meristem, the seasonal-
ity of rains has been identified as the main factor influencing cambial activity 
in the tropics and subtropics. There is a lack of standardization and a need for 
improvement and discussion concerning the methods used. Moreover, radial 
growth studies conducted by monitoring cambium cell production are still 
scarce in South America, especially when considering the high diversity of the 
continent’s flora and ecosystems.
Keywords: Tree growth, cambium, wood production, tree-ring analysis, envi-
ronmental signals.

INTRODUCTION

The cambium is the lateral meristem that forms the secondary xylem and phloem. In ad- 
dition to the phellogen, the cambium promotes growth in thickness or circumference  
of stems and roots in woody species. This meristem is made of a single layer of initial 
cells, divided into fusiform and ray cell initials, which undergo periclinal and anticlinal 
divisions (Evert 1963, 2006; Esau 1977; Raven et al. 2010). Some cambial initials some- 
times differentiate and become part of the vascular tissues (Gahan 1989; Evert 2006). 
 Morphologically, cambial cells show a great resemblance to their immediate deriva-
tive cells, even at the ultrastructural level under transmission electron microscopy and 
this fact has led to the adoption of the term cambial zone to describe cambial cells and 
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their immediate undifferentiated derivatives (e.g., Evert 1963; Evert & Deshpande 
1970; Schmid 1976; Algan 1996; Savidge 2000; Angyalossy & Marcati 2006; Pallardy 
2008).
 The number of cell layers and the morphological and functional aspects of the cells 
that form the cambial zone may vary according to local and seasonal environmental 
conditions. The most important environmental variables that promote cell division and 
expansion are light, temperature, soil nutrients and water availability (e.g., Kramer 1964; 
Kozlowski et al. 1991; Kozlowski & Pallardy 1997; Savidge 2000; Schweingruber 
2007). Regular fluctuations of one or more of these limiting factors provoke a periodic 
rhythm in plant development, reproduced at the cambium level by active and dormant 
stages. Thus, cambial production of new cells is genetically controlled but the rhythm 
is determined by environmental limitations (Avila et al. 1975; Kozlowski et al. 1991; 
Kozlowiski & Pallardi 1997). Moreover, competition, pollution and pathogenic attacks 
may affect and alter cambial activity (Kozlowski et al. 1991; Rajput et al. 2008).
 Although several studies have indicated the existence of periodic rhythms of radial 
growth in South American woody species (e.g., Roig 2000; Worbes 2002; Rozendaal 
& Zuidema 2011), seasonal fluctuations in the cambial zone have not been extensively 
observed or discussed. Terrazas et al. (2011), for example, showed that the activity 
and differentiation of the cambium are important factors in the survival and adaptive 
strategies of woody plants in diverse ecosystems. Fritts (1976) has already stated that 
the understanding of periodicity in cambial activity is relevant to studies of wood pro- 
duction and essential to dendroclimatological studies because identification of the 
beginning of cambial cell production and the length of cambial activity allows for a 
better understanding of the tree-ring formation process and its relationship with climate. 
Begum et al. (2012) add that a better understanding of the mechanisms of radial growth 
in trees should aid efforts to improve and enhance the exploitation of commercial woods 
and to develop effective forest policy that can help in mitigating climatic change.
 According to Worbes (2002), a partially unresolved matter in the literature concerns 
the dynamics of tropical forests, which is associated with the discussion of sustained 
management, time span of natural regeneration and carbon cycle. The understanding 
of radial growth dynamics is a relevant part of this question. The issue becomes more 
relevant in South America, where biodiversity is highlighted by five world hotspots 
(Conservation International 2011). These hotspots account for 29% of the known angio-
sperm species and 12% of the known plant endemism (Myers et al. 2000; Prance et al. 
2000). In spite of the extraordinary ecological and economic importance of the forests in 
South America, we do not have a general understanding of the radial growth dynamics 
of native species. The study of Worbes (1995) is the sole study that proposes a predictive 
analysis for the growth of species related to climate. This predictive hypothesis is based 
on the development of true annual growth rings in tropical species from regions with 
an annual dry season of 2 to 3 months with less than ~60 mm monthly precipitation. 
 In view of the relevance of the radial growth dynamics of woody plants in the dif-
ferent ecosystems of South America and the importance of cambial activity for a better 
understanding of these dynamics, we surveyed the histological cambial activity research 
in this region.
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Applied methodology

Studies on cambial periodicity in South America are mostly performed using band 
dendrometers to measure radial growth (e.g., Alvim & Alvim 1964; Prévost & Puig 
1981; Détienne et al. 1988; Botosso & Vetter 1991; Worbes 1999; Botosso et al. 2000; 
Tomazello-Filho et al. 2000; Schöngart et al. 2002; Dünisch et al. 2002, 2003; Callado 
et al. 2004; Ferreira-Fedele et al. 2004; Dünisch 2005; Figueiredo-Filho et al. 2008; 
Lisi et al. 2008; Bräuning et al. 2009; Pérez et al. 2009; Volland-Voigt et al. 2011; 
Cardoso et al. 2012) or using cambium mechanical injury techniques, such as the 
Mariaux window or the pinning method (e.g., Détienne et al. 1988; Botosso & Vetter 
1991; Détienne 1995; Worbes 1997, 1999; Bauch & Dünisch 2000; Tomazello-Filho 
et al. 2000; Callado et al. 2001a; Dünisch et al. 2002; Lisi et al. 2008; Brandes et al. 
2011). Oliveira et al. (2007, 2009) used one of the oldest methods to study cambial 
activity: periodical sampling of the last growth rings by conventional increment borers 
and assessing the radial tree growth by visual inspections and measurements of the 
sequential formation of earlywood and latewood layers, associated with a formula that 
allows the evaluation of radial growth and the relationship between seasonal climate 
variation and tree-ring formation.
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  5: Pará: Santarém. 
  6: Mato Grosso: Aripuanã. 
  7: São Paulo: Botucatu. 
  8: São Paulo: Piracicaba. 
  9: São Paulo: São Paulo. 
10: Rio de Janeiro: Rio de  
      Janeiro. 
11: Cordillera de la Costa. 
12: Santa Laura. 
13: Reserva Laipuna.
14: Reserva Biológica San  
      Francisco.

Figure 1. Locations where cambial studies were 
performed in South America. 
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Figure 2. An example of the seasonal cambial activity in Cariniana estrellensis. Transverse section 
showing the number of cells of the cambial zone (cz) in both the growth (A) and dormant period 
(B), respectively. P = secondary phloem; X = secondary xylem. — Scale bar = 100 µm.
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 The literature includes many papers that report misinterpretations of results obtained 
with the dendrometer band approach (e.g., Kuroda & Kiyono 1997; Deslauriers et al.  
2003; Mäkinen et al. 2008), which can be misleading because the method shows the 
total growth of the stem circumference, including secondary phloem and phellem in-
crement, and ignores the effects of seasonal fluctuations of the water status of stems. 
Therefore, mechanical injury of cambial cells is considered a more reliable technique 
to examine periodical wood formation (Kuroda & Kiyono 1997; Mäkinen et al. 2008). 
 Monitoring studies on cambial seasonal activity using histological approaches are 
still scarce in South America and we were able to find only 15 papers in the literature. 
These studies were developed in Argentina, Brazil, Chile and Ecuador (Fig. 1), in natural 
or cultivated woody species in different phytogeographic regions (Fig. 1; Table 1). The 
monitoring of seasonal cambial activity in these studies, according to the classifica- 
tion of Jura et al. (2005), can be divided into direct observations, when the data effec-
tively show the stage of cell division and the development of the cambial zone (Fig. 2; 
Table 2), or indirect observations, when the secondary xylem ontogeny is considered 
as a consequence of cambial activity (Table 2).

Cambial studies using histological approaches

Aljaro et al. (1972) published the first article on histological cambial dynamics in 
South American species and described the annual rhythm of the cambial activity of 
Proustia cuneifolia D.Don (Asteraceae) and Acacia caven (Molina) Molina (Fabaceae), 
two typical shrubs of the ‘matorral’ in the semi-arid region of central Chile (Fig. 1; 
Tables 1 & 2). In this study, they compared phenological behavior and cambial activ-
ity during one year and related this with climatic data. Proustia cuneifolia, which is 
semi-deciduous during drought, showed an annual rhythm of cambial cell production, 
revealing its sensitivity to rain. Acacia caven, an evergreen species, showed a cambial 
activity that was apparently not synchronized with precipitation. These results indicate 
that shrubs growing in the same xeric environment may show different patterns of 
cambial activity.
 Avila et al. (1975) compared the seasonal cambial activity of sclerophyllous ev-
ergreen shrubs from central Chile (Fig. 1; Tables 1–3) and southern California. They 
established four pairs of species (Table 3) with analogous characteristics based on 
morphological traits: crown architecture, size, texture and the anatomy of leaves and 
xylem. The authors measured the number of cell layers formed in the secondary xylem 
and observed a coincidence of seasonal fluctuations in cambial activity between the 
species of each ecological pair established.
 Villalba (1985) described the cambial activity of Prosopis flexuosa DC. (Fabaceae) 
trees growing in the xerophytic open forests in the eastern deserts of Mendoza, Argen-
tina (Fig. 1; Tables 1 & 2). Cambial activity was related to vegetative and reproductive 
phenology, monthly precipitation and temperature data. This analysis revealed that the  
growth of P. flexuosa is directly related to fluctuations of the local climate, although  
the start of cambial activity may partially respond to an endogenous stimulus. Gianto-
masi et al. (2012) demonstrated, for the same tree species, a rapid response of cambial 
activity to changes in rainfall, at optimum temperatures between 18 and 20 °C.
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 Dünisch et al. (2002) investigated the cambial activity of Carapa guianensis (ever-
green - Dünisch & Moraes 2002), Cedrela odorata (deciduous - Dünisch & Moraes 
2002) and Swietenia macrophylla (semi-deciduous - Dünisch & Moraes 2002) in both 
natural and plantation areas in the Amazon Forest (Fig. 1; Tables 1 & 2). The authors 
followed cambial activity through four growing seasons and did not observe differences 
between the cambial seasonality of natural and planted trees; both cambial activity and 
vegetative phenology were strongly influenced by photoperiod and precipitation. They 
also observed differences in the development of the growth ring markers: the marginal 
parenchyma bands of S. macrophylla are formed during the dryer periods prior to cam-
bial dormancy while the marginal parenchyma bands of C. guianensis are formed in 
wet conditions –but without inundation and episodic droughts–, and C. odorata forms 
a the thicker-walled latewood fiber zone during dry periods prior to cambial dormancy 
and large earlywood vessels sheathed by axial parenchyma during cambial reactiva- 
tion in this ring-porous species.
 In a subsequent study, Dünisch et al. (2003) established tree-ring chronologies of 
Swietenia macrophylla and Cedrela odorata growing in primary forests of the southern 
Amazon basin. They determined tree ages and growth periodicity by dendrometer bands 
and the relationship between monthly precipitation and cambial activity. The correlation 
analyses revealed a significant relationship between precipitation at the beginning and 
at the end of the growing season of the cambium, which was correlated with the width 
of the increment zones in the adult xylem of S. macrophylla. In contrast, the width of 
the growth increment in the xylem of C. odorata was significantly correlated with the 
precipitation in March and May of the previous growing period.
 In a semi-deciduous seasonal forest of São Paulo, Brazil (Fig. 1; Tables 1 & 2), 
Marcati and Angyalossy (2005) analyzed the seasonal formation of acicular calcium 
oxalate crystals in fusiform and ray cell initials and their immediate derivative cells in 
Citharexylum myrianthum Cham. (Verbenaceae) and suggested that this characteristic 
is a probable consequence of droughts.
 Marcati et al. (2006) analyzed the seasonality of cambial activity in Cedrela fissilis 
Vell. (Meliaceae) from a semi-deciduous seasonal forest in São Paulo, Brazil (Fig. 1; 

Table 3. Species studied by Avila et al. (1995) in the arid sites of Chile and California. 

  Pairs* Chilean species** Californian species

 1 Kageneckia oblonga Ruíz & Pavón Heteromeles arbhatifolia (Lindl.) M. Roemer
  (Rosaceae) (Rosaceae)

 2 Quillaja saponaria Molina Rhus ovata S. Watson 
  (Quillajaceae) (Anacardiaceae)  
 3 Lithraea caustica (Molina) Hook. & Arn. Quercus dumosa Nutt.
  (Anacardiaceae) (Fagaceae) 

 4 Cryptocarya alba Looser Quercus agrifolia Née
  (Lauraceae) (Fagaceae)

 * Pairs of the analogous shrubs compared.  ** Only Chilean species were considered in this study.
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Tables 1 & 2) and described the different phases of the cellular cycle and the seasonal 
modifications in the number of cell layers in the cambial zone. The annual rhythm of 
the cambial activity of this species was associated with the rainy season and complete 
leaf expansion, while the dormancy period was related to the dry season and leaf loss. 
The analysis of intra-annual variations of the secondary xylem showed the formation 
of parenchyma bands and small diameter vessels at the beginning of the dry season, 
just before the cambium becomes dormant. When the cambium becomes reactivated 
during the next growing season, new layers of axial parenchyma appeared close to 
and around the large earlywood vessels. Therefore, the formation of this banded axial 
parenchyma occurs both at the end of the previous growing season and at the beginning 
of the following growing season.
 Marcati et al. (2008) studied the seasonality of the cambial activity and develop-
ment of secondary xylem and phloem in Schizolobium parahyba (Vell.) Blake trees 
(Fabaceae), growing in a semi-deciduous seasonal forest in São Paulo, Brazil (Fig. 
1; Tables 1 & 2). In this study, a standardization of terminology was presented and 
characteristics of the cambial zone and the recently formed xylem and phloem cells 
of S. parahyba trees were discussed. Seasonal differences in the cambial zone were 
observed, including a reduction of the cambial activity coincident with the dry season 
and leaf loss. High cambial activity was correlated with the rainy season and the leaf 
maturity phase. In the secondary xylem, a narrow band of axial parenchyma indicates 
the beginning of a new growth ring.
 Callado (2010), studying the radial growth dynamics of selected Atlantic rainforest 
trees (Fig. 1; Tables 1 & 2), showed the usefulness of fluorescence microscopy to better 
characterize the seasonality of the cambial activity in Cariniana estrellensis (Raddi) 
Kuntze (Lecythidaceae) (Fig. 2). With this technique, it was possible to determine that 
during dormancy, the conductive tissues adjacent to the cambial zone showed com-
pletely lignified xylem cell walls and callose deposits in sieve plates in the secondary 
phloem.
 Lima et al. (2010) analyzed the seasonality of cambial activity and the differentia-
tion process of derived cells in Tynanthus cognatus Miers (Bignoniaceae) from the 
semi-deciduous forest of southeast Brazil (Fig. 1; Tables 1 & 2). This species shows 
cambial variants, with formation of four phloem wedges in the xylem, and unlike other 
tropical trees and shrubs, the cambium of this liana reactivates at the phloem wedges 
through the end of the rainy season to the beginning of the dry period. However, this 
cambial behavior induced new questions: 1) is the start of cambial activity toward the 
end of the rainy season a feature common to most Bignonieae lianas or particular to T. 

cognatus? 2) what is the exact role of the secondary phloem, given that it influences 
the cambium so strongly and is this role related to either photosynthate transport or 
hormone translocation? and 3) in the context of development, does the short period 
of cambial activity explain why lianas have such narrow stems? All these questions 
should be addressed in future research (Lima et al. 2010).
 Volland-Voigt et al. (2011) studied the stem diameter increments of Tabebuia chry-

santha G. Nicholson in a tropical lower montane forest and in a dry forest in southern 
Ecuador (Fig. 1; Tables 1 & 2). The authors used high-resolution dendrometers to 
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measure the growth increment and they evaluated the interrelation of stem diameter 
increment with cambial activity by anatomical analysis of secondary xylem formation. 
These wood anatomical studies allow the determination of periods of active cambial 
growth and the timing of annual growth boundary formation. The period of cambial ac- 
tivity varied between the two studied sites and was shorter in the dry forest. The results  
indicate that rainfall plays a key role for tree growth, even in the lower montane forest. 
 Bräuning et al. (2009) constructed a tree-ring chronology of Cedrela montana  
Moritz ex Turcz. (Meliaceae). This chronology was the first tree-ring series established  
from southern Ecuador and the longest one from humid tropical mountain areas in 
South America (Fig. 1; Table 1). The chronology covers the time until 1840 but is 
only statistically robust back to 1910. In this study, the combination of dendrometer 
data and histological approaches shows the periods of intensive cambial activity and 
new xylem formation (Table 2). The authors described growth boundaries marked by 
marginal parenchyma bands, including more or less tangentially arranged vessels that  
seem to be formed at the beginning of the growing periods. They also observed that 
parenchyma bands are difficult to detect in some of the sections, suggesting the occur-
rence of missing or partly missing rings.
 Planted trees of native and exotic species have also shown annual rhythms of cambial 
activity even outside their areas of occurrence, a feature observed by Silva et al. (1991) 
and Tomazello-Filho & Cardoso (1999) in southeast Brazil for Swietenia macrophylla 

King (Meliaceae, from northern Brazil), Gmelina arborea Roxb. ex Sm. (Lamiaceae, 
from Asia), Terminalia ivorensis A. Chev. (Combretaceae, from western Africa) and 
Tectona grandis L. f. (Verbenaceae, from southeast Asia) (Fig. 1; Table 1). The cambial 
growth of these species was observed by a direct method and the results obtained were 
correlated with the local climate in which the plants were developing.

SYNTHESIS  AND  DISCUSSION

Among the 20 woody species reported here in studies of cambium activity, 17 are  
native to South America. The cambial activity of the Meliaceae family is the best known,  
involving five tree species (Carapa guianensis, Cedrela fissilis, C. montana, C. odorata 
and Swietenia macrophylla).
 Concerning the sampling time intervals used in these studies, this varied (Table 2)  
between weekly (Aljaro et al. 1972; Giantomasi et al. 2012 - during the growing sea-
son), monthly (Avila et al. 1975; Villalba 1985; Silva et al. 1991; Tomazello-Filho & 
Cardoso 1999; Dünisch et al. 2002; Bräuning et al. 2009; Volland-Voigt et al. 2011) 
or seasonal intervals in pre-defined periods during dormancy and/or cambial growth 
(Dünisch et al. 2003; Marcati & Angyalossy 2005; Marcati et al. 2006, 2008; Callado 
2010; Lima et al. 2010; Giantomasi et al. 2012).
 Cambial monitoring experiments were performed at different time lengths and in 
periods of one (Aljaro et al. 1972; Avila et al. 1975; Silva et al. 1991; Bräuning et al. 
2009), two (Villalba 1985; Tomazello-Filho & Cardoso 1999; Marcati & Angyalossy 
2005; Marcati et al. 2006, 2008; Lima et al. 2010), three (Dünisch et al. 2003; Volland-
Voigt et al. 2011; Giantomasi et al. 2012) or four years (Dünisch et al. 2002).

Downloaded from Brill.com08/25/2022 08:32:07AM
via free access



223Callado et al. – Cambial growth periodicity

 Concerning the fixation methods used to preserve the cambial zone and the recently 
formed tissues, the majority of the articles refer the use of 70% alcohol formalin-acetic 
acid-alcohol (FAA), CRAF III and/or Karnovzky solution. The protocols included  
dehydration in ascending series of alcohol or acetone and embedding in paraffin, poly-
ethylene glycol and/or resin glycol methacrylate. These techniques varied according to 
the type of analysis and the equipment and materials available in the various laboratories. 
Samples were sectioned by hand or by rotary or sliding microtomes and variable stain 
formulations were used, including Astrablue and basic Fuchsin, Astrablue and Chrys-
oidine, Safranin, Safranin and Alcian Green, Safranin and Astrablue, Safranin and Fast 
Green, or Toluidine Blue O and fluorochromes (e.g., Auramine O and Aniline Blue), 
according to standard protocols in plant anatomy defined by, e.g., Johansen (1940),  
Sass (1958), O’Brien et al. (1964), Karnovzky (1965), Feder & O’Brien (1968),  
Bennet et al. (1976), Berlyn & Miksche (1976), Gerlach (1977), O’Brien & McCully 
(1981), Tolivia & Tolivia (1987), and Ruzin (1999).
 The methods used directly influence the results. The fixative solution influences the 
preservation of the tissue content and cells, including their organelles, such as nuclei 
and vacuoles, which is crucial to understand cambium seasonal growth. The use of 
coagulating fixatives (e.g., Formalin-Acid-Alcohol, Chromium-containing fixatives or 
CRAF) results in a so-called acid fixation image, which is good for preserving chroma-
tin, nucleoli and spindles; however, some organelles are dissolved (e.g., mitochondria) 
and the cytoplasm becomes a stringy, coagulated mass (Ruzin 1999; Souza 2007). In 
these conditions, it could be difficult to evaluate cell division and impossible to dif-
ferentiate cambial cells from their derivatives because cambial cells are characterized 
by the presence of small vacuoles in the dormant stage and by intense Golgi activity 
and plasma membrane invaginations during reactivation (Evert 2006).
 The different microscopy contrast methods allow a better understanding of the cell  
differentiation processes, highlighting aspects of cell division and development. Micro-
scopic analysis was carried out in bright field (Aljaro et al. 1972; Avila et al. 1975; 
Villalba 1985; Silva et al. 1991; Tomazello-Filho & Cardoso 1999; Dünisch et al. 2002, 
2003; Marcati & Angyalossy 2005; Marcati et al. 2006, 2008; Bräuning et al. 2009; 
Callado 2010; Lima et al. 2010; Giantomasi et al. 2012; Volland-Voigt et al. 2011), in 
bright field combined with polarized light (Dünisch et al. 2002; Marcati & Angyalossy 
2005), and the previous techniques combined with fluorescence microscopy (Callado 
2010). We strongly recommend the use of different microscopy contrast methods, which 
allow a better understanding of a process as complex as radial growth.
 The staining methods also can influence the interpretation of the radial growth. There 
are many hystochemical and cytochemical staining methods that can detect proteins,  
lipids and cell wall components as well as some organelles. In the study of cambial cells,  
the use of fluorescent proteins to tag nuclei, plasma membrane, plastids and cell wall 
components could be valuable (e.g., Kitin et al. 2000; Kato et al. 2008; Thomas et al. 
2013). Cytological methods should be introduced in the study of cambial activity in  
South American tree species, as suggested by Chaffey (2002). Moreover, observations 
based on transmission electron microscopy techniques may introduce new insights for 
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analyzing seasonal changes in the cambial zone as revealed by Rao & Dave (1983), 
Farrar & Evert (1997a, b), Rensing & Samuels (2004), and Prislan et al. (2011).
 Radial growth is closely associated with whole plant physiology and a way to observe 
the physiological status of a plant is through phenology. Eight of the 15 papers showed 
aspects of the reproductive and vegetative phenology in the studied plants (Aljaro et al.  
1972; Villalba 1985; Tomazello-Filho & Cardoso 1999; Marcati & Angyalossy 2005; 
Marcati et al. 2006, 2008; Volland-Voigt et al. 2011; Giantomasi et al. 2012). In as-
sociation with the analysis of the seasonal climate records, the monitoring of the leaf-
shedding and budbreak stages is important for a better understanding of the cambial 
activity phases. It is important to establish if endogenous annual rhythms are under 
the control of internal clocks or calendars (Lüttge & Hertel 2009), as seems to be the 
case with the start of cambial activity in Prosopis flexuosa (Villalba 1985). Lüttge 
and Hertel (2009) also observed that purely environmentally controlled rhythms may 
be indicators of endogenous rhythms. It has been observed that arid, semi-arid and 
dry regions of Argentina, Chile and Ecuador are strongly affected by seasonal varia-
tions in precipitation, which induced radial growth rhythms that form annual rings in 
most woody species (Aljaro et al. 1972; Avila et al. 1975; Villalba 1985; Roig 2000; 
Volland-Voigt et al. 2011; Giantomasi et al. 2012). In the humid tropics of Brazil and 
Ecuador, cambial dormancy was observed in trees and lianas from different phyto-
geographic regions (Tomazello-Filho & Cardoso 1999; Dünisch et al. 2002, 2003; 
Marcati & Angyalossy 2005; Marcati et al. 2006, 2008; Bräuning et al. 2009; Callado 
2010; Lima et al. 2010; Volland-Voigt et al. 2011). Although these reports indicate a 
mean annual rainfall well above 1,200 mm, a water deficit arises when less than ~60 
mm of precipitation per month occurs yearly, in at least 2 to 3 consecutive months. 
According to Worbes (1995), this water threshold may induce cambial dormancy with 
a consequent annual ring formation in tropical trees. In a site near Manaus (Brazilian 
Amazon) where the annual rainfall is approximately 2,500 mm and no water deficit is 
observed throughout the year, trees such as Carapa guianensis (evergreen - Dünisch & 
Moraes 2002), Cedrela odorata (deciduous - Dünisch & Moraes 2002) and Swietenia 

macrophylla (semi-deciduous - Dünisch & Moraes 2002), experience seasonality of 
their cambial growth (Dünisch et al. 2002).
 Similar cambial seasonality was observed for Cedrela odorata and Swietenia  

macrophylla in other Brazilian phytogeographic regions (Silva et al. 1991; Dünisch 
et al. 2002, 2003). Radial periodicity in growth, without histological approaches but 
with dendrometers, Mariaux’s windows and /or dendrochronological techniques, was 
observed for these two species in other rain forests from Bolivia and Venezuela (Worbes 
1999; Brienen & Zuidema 2005, 2006). These results may be related to the concept 
of paradormancy (Lang et al. 1985), where physiological factors outside the affected 
structure (in this case the cambial cells) regulate dormancy (Lang 1994; Pallardy 2008). 
 Another aspect that received attention in the South American studies of cambial 
seasonality is the formation of marginal parenchyma (e.g., Dünisch et al. 2002; Marcati 
et al. 2006; Bräuning et al. 2009). The presence of these parenchyma cells may be 
explained by the need of fast availability of carbohydrates and nutrients (e.g., Zim-
mermann & Brown 1971; Zimmerman 1983; Langenfeld-Heyser 1987; Kozlowski  
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et al. 1991; Dünisch et al. 2002) at the stage of reactivation of cambial cell divisions 
after dormancy (Larson 1995). However, this marginal parenchyma band may be 
terminal or initial according to the tree species. For example, in Cedrela fissilis it was 
observed that the marginal band is formed both at the beginning and the end of the 
growing season (Marcati et al. 2006). However, recent results (Callado et al. in press) 
reinforce the need to characterize the nature of the marginal parenchyma to accurately 
determine the growth ring boundary, increasing the confidence of correlations with 
inductive or inhibiting growth factors.

CONCLUDING  REMARKS  AND  RECOMMENDATIONS

Despite the fact that only 15 papers referring to cambial activity have been produced 
up to now in South America, these studies highlight the importance of histology in 
monitoring the seasonal activity of the cambium in order to better understand resulting 
tissue reproductive rates and environmental factors influencing the intra- and inter-
annual radial growth dynamic of woody species.
 These results show that the annual periodicity of the radial growth of the studied 
species is strongly influenced by rainfall seasonality. Moreover, they also prove that 
cambial activity is periodic, resulting in a proof that growth rings in these species are 
annual despite the climate and ecosystem characteristic. Nevertheless, the studies of 
radial growth by monitoring cambial cell production are still scarce in South America, 
especially considering the high diversity of the continent’s flora and biomes.
 It is also clear that we need to standardize observational and sampling methodologies 
(Table 2) as well as histological procedures. As plant growth processes include three 
distinct phases of the cell development, division, expansion and differentiation (Evert 
2006), indirect methods cannot describe cambial activity itself. Thus, the use of direct 
methods is recommended if the objective is the understanding of cambial behavior.
 As the steps of differentiation occur within a short time interval, we also recommend 
weekly or monthly sampling intervals, which are considered adequate time intervals for 
xylogenesis studies. However, a high-frequency sampling might be difficult in plants 
with breast height stem diameters less than 20 cm. This is because the risk of injury, 
which may influence cambial activity and the consequent anomalous tissue formation 
in new sampling portions close to the former ones (cf. Sass et al. 1995). On the other 
hand, the number of samples per individual and the number of specimens per species 
must also be considered. The majority of the studies use one sample per tree and one 
specimen per species. An increase of this number is recommended to allow an analysis 
of the population behavior and to avoid misinterpretations due to small sample num-
bers.
 Long-term observations (e.g. a three-year period or higher) of the cambial phenol-
ogy may facilitate better interpretations of the cell differentiation phases (e.g., Rossi 
et al. 2012) which in turn may be combined with other analytical approach such as, 
for example, the analysis of the isotope content variability inside the growth ring, 
in order to reach a better understanding of the link between cambial seasonality and 
environmental conditions (Ogée et al. 2009).

Downloaded from Brill.com08/25/2022 08:32:07AM
via free access



226 IAWA Journal 34 (3), 2013

ACKNOWLEDGEMENTS
We thank the Universidade do Estado do Rio de Janeiro, Instituto de Pesquisas Jardim Botânico do Rio 
de Janeiro, CNPq (the Brazilian Research Council), FAPERJ (Rio de Janeiro Council for Research), 
CONICET-Argentina, and Petrobras Company for fellowships, funding and research grants. We also 
thank the journal editor and reviewers for comments and suggestions.

REFERENCES

Algan G. 1996. A comparative study of ultraestructure of resting and active cambium in Armenica 

vulgaris Lam. Commun. Fac. Sci. Univ. Ank. Series C. 14: 23–31.
Aljaro ME, Avila G, Hoffmann A & Kummerow J. 1972. The annual rhythm of cambial activ- 

ity in two woody species of the Chilean “matorral”. Amer. J. Bot. 59: 879–885.
Alvim P de T & Alvim R. 1964. Relation of climate to growth periodicity in tropical trees. In: 

Tomlison PB & Zimmermann MH (eds.), Tropical trees as living systems: 445–464. Cam-
bridge University Press, Cambridge.

Angyalossy V & Marcati CR. 2006. Câmbio. In: Appezzato-da-Glória B & Carmello-Guerreiro 
SM (eds.), Anatomia vegetal: 205–235. UFV, Viçosa.

Avila G, Aljaro ME, Araya S, Montenegro G & Kummerow J. 1975. The seasonal cambium 
activity of Chilean and Californian shrubs. Amer. J. Bot. 62: 473–478.

Bauch J & Dünisch O. 2000. Comparison of growth dynamics and wood characteristics of 
plantation-grown and primary forest Carapa guianensis in central Amazonia. IAWA J. 21:  
321–333.

Begum S, Nakaba S, Yamagishi Y, Oribe Y & Funada R. 2012. Regulation of cambial activity in 
relation to environmental conditions: understanding the role of temperature in wood forma-
tion of trees. Physiol. Plantarum 147: 46–54.

Bennet HS, Wirinck AD, Lee SW & McNeil JH. 1976. Science and art in preparing tissues em-
bedded in plastic for light microscopy, with special reference to glycol methacrylate, glass 
knives and simple stains. Stain Tech. 55: 71–97.

Berlyn GP & Miksche JP. 1976. Botanical microtechnique and cytochemistry. The lowa State 
University Press, Ames, lowa.

Botosso PC & Vetter RE. 1991. Alguns aspectos sobre a periodicidade e taxa de crescimento  
em 8 espécies arbóreas tropicais de Floresta de Terra Firme (Amazônia). Rev. Inst. Flor. 3: 
163–180.

Botosso PC, Vetter RE & Tomazello-Filho M. 2000. Perodicidade e taxa de crescimento de ár- 
vores de cedro (Cedrela odorata L., Meliaceae), jacareúba (Calophyllum angulare A.C. Smith,  
Clusiaceae) e muirapiranga (Eperua bijuga Mart. ex Benth, Leg. Caesalpinioideae) de Floresta 
de Terra Firme, em Manaus-AM. In: Roig FA (ed.), Dendrocronología en América Latina: 
357–380. EDIUNC, Mendoza.

Brandes AFN, Lisi CS & Barros CF. 2011. Dendrochronology of lianas of the Leguminosae 
family from the Atlantic Forest, Brazil. Trees 25: 133–144.

Bräuning A, Volland-Voigt F, Burchardt I, Ganzhi O, Nauss T & Peters T. 2009. Climatic control 
of radial growth of Cedrela montana in a humid mountain rain forest in southern Ecuador. 
Erdkunde 63: 337–345.

Brienen RJW & Zuidema PA. 2005. Relating tree growth to rainfall in Bolivian rain forests: a 
test for six species using tree ring analysis. Oecologia 146: 1–12.

Brienen RJW & Zuidema PA. 2006. Lifetime growth patterns and ages of Bolivian rain forest 
trees obtained by tree ring analysis. J. Ecology 94: 481–493.

Callado CH. 2010. Os anéis de crescimento no estudo da dinâmica populacional na Floresta 
Atlântica. In: Absy ML, Matos FDA & Amaral IL (eds.), Diversidade Vegetal Brasileira: 
Conhecimento, Conservação e Uso: 227–231. SBB, Manaus.

Downloaded from Brill.com08/25/2022 08:32:07AM
via free access



227Callado et al. – Cambial growth periodicity

Callado CH, Silva Neto SJ, Scarano FR, Barros CF & Costa CG. 2001b. Anatomic features  
of growth rings in flood-prone trees of the Atlantic rain forest in Rio de Janeiro, Brazil. 
IAWA J. 22: 29–42.

Callado CH, Silva Neto SJ, Scarano FR & Costa CG. 2001a. Periodicity of growth rings in some 
flood-prone trees of the Atlantic rain forest in Rio de Janeiro, Brazil. Trees 15: 492–497.

Callado CH, Silva-Neto SJ, Scarano FR & Costa CG. 2004. Radial growth dynamics of Tabebuia 

umbellata (Sond.) Sandwith (Bignoniaceae), a flood-tolerant tree from the Atlantic forest 
swamps in Brazil. IAWA J. 25: 175–183.

Callado CH, Vasconcellos TJ, Costa MS, Barros CF, Roig FA & Tomazello-Filho M. In press. 
Studies on cambial activity: advances and challenges in the knowledge of growth dynamics 
of Brazilian woody species. Anais da Academia Brasileira de Ciências.

Cardoso FCG, Marques R, Botosso PC & Marques MCM. 2012. Stem growth and phenology 
of two tropical trees in contrasting soil conditions. Plant Soil 354: 269–281.

Chaffey N. 2002. Introduction. In: Chaffey N (ed.), Wood formation in trees: cell and molecular 
biology techniques: 11–18. Taylor & Francis, London, New York

Conservation International. 2011. South America:
 www.conservation.org/where/south_america
Deslauriers A, Morin H, Urbinati C & Carrer M. 2003. Daily weather response of balsam fir 

(Abies balsamea (L.) Mill.) stem radius increment from dendrometer analysis in the boreal 
forests of Quebec (Canada). Trees 17: 477–484.

Détienne P. 1995. Nature et périodicité des cernes dans quelques bois guyanais. Bois et Fôrets 
dês Tropiques 243: 65–75.

Détienne P, Barbier C, Ayphassorho H & Bertin F. 1988. Rythmes de croissance de quelques 
essences de Guyane Française. Revue Bois et Fôrets dês Tropiques 217: 63–76.

Dünisch O. 2005. Influence of the El-Niño Southern Oscillation on cambial growth of Cedrela 

fissilis Vell in tropical and subtropical Brazil. J. Appl. Bot. Food Qual. 79: 5–11.
Dünisch O, Bauch J & Gasparotto L. 2002. Formation of increment zones and intra-annual 

growth dynamics in the xylem of Swietenia macrophylla, Carapa guianensis, and Cedrela 

odorata (Meliaceae). IAWA J. 23: 101–119.
Dünisch O, Montóia VR & Bauch J. 2003. Dendroecological investigations on Swietenia 

macrophylla King and Cedrela odorata L. (Meliaceae) in the central Amazon. Trees 17: 
244–250.

Dünisch O & Moraes RR. 2002. Regulation of xylem sap flow in an evergreen, a semi-decidu-
ous, and a deciduous Meliaceae species from the Amazon. Trees 16: 404–416.

Esau K. 1977. Anatomy of seed plants. Ed. 2. John Wiley & Sons, New York.
Evert RF. 1963. The cambium and seasonal development of the phloem in Pyrus malus. Amer. 

J. Bot. 50: 149–159.
Evert RF. 2006. Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their 

structure, function, and development. Ed. 3. John Wiley & Sons, New York.
Evert RF & Deshpande BP. 1970. An ultrastructural study of cell division in the cambium. Amer. 

J. Bot. 57: 942–961.
Farrar JJ & Evert RF. 1997a. Ultrastructure of cell division in the fusiform cells of the vascular 

cambium of Robinia pseudoacacia. Trees 11: 203–215.
Farrar JJ & Evert RF. 1997b. Seasonal changes in the ultrastructure of the vascular cambium of 

Robinia pseudoacacia. Trees 11: 191–202.
Feder N & O’Brien TP. 1968. Plant microtechnique: some principles and new methods. Amer. J.  

Bot. 55: 123–142.
Ferreira-Fedele L, Tomazello-Filho M, Botosso PC & Giannotti E. 2004. Periodicidade do 

crescimento de Esenbeckia leiocarpa Engl. (guarantã) em duas áreas de região sudeste do 
estado de São Paulo. Sci. For. 65: 141–149.

Downloaded from Brill.com08/25/2022 08:32:07AM
via free access



228 IAWA Journal 34 (3), 2013

Figueiredo-Filho A, Rode R, Figueiredo DJ de & Machado S do A. 2008. Seasonal diameter 
increment for 7 species from an Ombrophyllous Mixed Forest, Southern state of Paraná, 
Brazil. Floresta 38: 527–543.

Fritts HC. 1976. Tree rings and climate. Academic Press, London.
Gahan PB. 1989. How stable are cambial initials? Bot. J. Linn. Soc. 100: 319–321.
Gerlach D. 1977. Botanische mikrotechink. Georg Thieme Verlag, Stuttgart.
Giantomasi MA, Roig-Juñent FA, Patón-Domínguez D & Massaccesi G. 2012. Environmental 

modulation of the seasonal cambial activity in Prosopis fexuosa DC. trees from the Monte 
woodlands of Argentina. J. Arid Environm. 76: 17–22.

Johansen DA. 1940. Plant microtechnique. McGraw-Hill, New York.
Jura J, Wloch W, Kojs P, Wilczek A & Szendera W. 2005. Current trends in the structural inves-

tigations of the vascular cambium. Bull. of Bot. Gardens 14: 43–47.
Karnovzky MJ. 1965. A formaldehyde-glutaraldehyde fixative of high osmolality for use in 

electron microscopy. J. Cell Biol. 27:137–138.
Kato N, Reynolds D, Brown ML, Boisdorei M, Fujikawa Y, Morales A & Meisel LA. 2008. 

Multidimensional fluorescence microscopy of multiple organelles in Arabidopsis seedlings. 
Plant Methods 4: 9–13.

Kitin P, Funada R, Sano Y & Ohtani J. 2000. Analysis by confocal microscopy of the structure 
of cambium in the hardwood Kalopanax pictus. Annals of Botany 86: 1109–1117.

Kozlowski TT, Kramer PJ & Pallardy SG. 1991. The physiological ecology of woody plants. 
Academic Press, California.

Kozlowski TT & Pallardy SG. 1997. Growth control in woody plants. Academic Press, Cali-
fornia.

Kramer PJ. 1964. The role of water in wood formation. In: Zimmermann MH (ed.), The forma-
tion of wood in forest trees: 515–532. Academic Press, New York.

Kuroda K & Kiyono Y. 1997. Seasonal rhythms of xylem growth measured by the wounding 
method and with a band-dendrometer: an instance of Chamaecyparis obtusa. IAWA J. 18: 
291–299.

Lang GA. 1994. Dormancy - the missing links: molecular studies and integration of regulatory 
plant and environmental interactions. HortScience 29: 1255–1263.

Lang GA, Early JD, Arroyave NJ, Darnell RL, Martin GC & Stutte GW. 1985. Dormancy: to-
ward a reduced universal terminology. HortScience 20: 809–812.

Langenfeld-Heyser R. 1987. Distribution of leaf assimilates in the stem of Picea abies L. Trees 1:  
102–109.

Larson PR. 1995. The vascular cambium. Springer Verlag, Berlin.
Lima AC, Pace MR & Angyalossy V. 2010. Seasonality and growth rings in lianas of Bignoni-

aceae. Trees 24: 1045–1060.
Lisi CS, Tomazello-Filho M, Botosso PC, Roig FA, Maria VRB, Ferreira-Fedele L & Voigt  

ARA. 2008. Tree-ring formation, radial increment periodicity, and phenology of tree species 
from a seasonal semi-deciduous forest in southeast Brazil. IAWA J. 29: 189–207.

Lüttge U & Hertel B. 2009. Diurnal and annual rhythms in trees. Trees 23: 683–700.
Mäkinen H, Seo JW, Nöjd P, Schmitt U & Jalkanen R. 2008. Seasonal dynamics of wood forma-

tion: A comparison between pinning, microcoring and dendrometer measurements. Eur. J. 
Forest Res. 127: 235–245.

Marcati CR & Angyalossy V. 2005. Seasonal presence of acicular calcium oxalate crystals in the 
cambial zone of Citharexylum myrianthum (Verbenaceae). IAWA J. 26: 93–98.

Marcati CR, Angyalossy V & Evert RF. 2006. Seasonal variation in wood formation of Cedrela 

fissilis (Meliaceae). IAWA J. 27: 199–211.

Downloaded from Brill.com08/25/2022 08:32:07AM
via free access



229Callado et al. – Cambial growth periodicity

Marcati CR, Milanez CRD & Machado SR. 2008. Seasonal development of secondary xylem 
and phloem in Schizolobium parahyba (Vell.) Blake (Leguminosae: Caesalpinioideae). 
Trees 22: 3–12.

Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB & Kent J. 2000. Biodiversity hotspots 
for conservation priorities. Nature 403: 853–858.

O’Brien TP, Feder N & McCully ME. 1964. Polychromatic staining of plant cell walls by  
toluidine blue O. Protoplasma 59: 368–373.

O’Brien TP & McCully ME. 1981. The study of plant structure: principles and selected methods. 
Temarcarphy Pty Ltd, Melbourne.

Ogée J, Barbour MM, Wingate L, Bert D, Bosc A, Stievenard M, Lambrot C, Pierre M,  
Bariac T, Loustau D & Dewar RC. 2009. A single-substrate model to interpret intra-annual 
stable isotope signals in tree-ring cellulose. Plant Cell Environm. 32: 1071–1090.

Oliveira JM, Santarosa E, Pillar VD & Roig FA. 2009. Seasonal cambium activity in the sub-
tropical rain forest tree Araucaria angustifolia. Trees 23: 107–115.

Oliveira JM, Santarosa E, Roig FA & Pillar VD. 2007. Amostragem temporal de anéis de  
crescimento: Uma alternativa para determinar ritmo de atividade cambial. Revista Brasile- 
ria de Biociências 5: 616–617.

Pallardy SG. 2008. Physiology of woody plants. Chapter 3. Vegetative growth: 39–86. Ed. 3. 
Academic Press, California.

Pérez CA, Carmona MR, Aravena JC, Fariña JM & Armesto JJ. 2009. Environmental controls 
and patterns of cumulative radial increment of evergreen tree species in montane, temperate 
rainforests of Chiloé Island, southern Chile. Austral Ecology 34: 259–271.

Prance GT, Beent JH, Dransfield J & Johns R. 2000. The tropical flora remains undercollect- 
ed. Ann. Missouri Bot. Gard. 87: 67–71.

Prévost MF & Puig H. 1981. Acroissement diamétral des arbres en Guyane: observations sur 
quelques arbres de forêt primaire et de forêt secondaire. Adansonia 2: 147–171.

Prislan P, Schmitt U, Koch G, Gričar J & Čufar K. 2011. Seasonal ultrastructural changes in 
the cambial zone of beech (Fagus sylvatica) grown at two different altitudes. IAWA J. 32: 
443–459.

Rajput KS, Rao KS, & Kim YS. 2008. Cambial activity and wood anatomy in Prosopis spicigera 
(Mimosaceae) affected by combined air pollutants. IAWA J. 29: 209–219.

Rao KS & Dave YS. 1983. Ultrastructure of active and dormant cambial cells in teak (Tectona 

grandis L. f.). New Phytol. 93: 447–456.
Raven PH, Evert RF & Eichhorn SE. 2010. Biologia Vegetal. Ed. 7. Guanabara Koogan S.A., 

Rio de Janeiro.
Rensing KH & Samuels AL. 2004. Cellular changes associated with rest and quiescence in 

winter-dormant vascular cambium of Pinus contorta. Trees 18: 373–380.
Roig FA. 2000. Dendrocronología en los bosques del Neotrópico: Revisión y prospección futura. 

In: Roig FA (ed.), Dendrocronología en América Latina: 307–355. EDIUNC, Mendoza.
Rossi S, Morin H & Deslauriers A. 2012. Causes and correlations in cambium phenology: to-

wards an integrated framework of xylogenesis. J. Experim. Bot. 63: 2117–2126.
Rozendaal DMA & Zuidema PA. 2011. Dendroecology in the tropics. Trees 25: 3–16.
Ruzin SE. 1999. Plant microtechnique and microscopy. Oxford University Press, New York.
Sass E, Killmann W & Eckstein D. 1995. Wood formation in two species of Dipterocarpaceae 

in Penninsular Malaysia. IAWA J. 16: 371–384.
Sass JE. 1958. Elements of botanical microtechnique. McGraw-Hill Book Co., New York.
Savidge RA. 2000. Intrinsic regulation of cambial growth. J. Plant Growth Regul. 20: 52–77.
Schmid R. 1976. The elusive cambium – Another terminological contribution. IAWA Bull. n.s. 

1: 51–59.

Downloaded from Brill.com08/25/2022 08:32:07AM
via free access



230 IAWA Journal 34 (3), 2013

Schöngart J, Piedade MTF, Ludwigshausen S, Horna V & Worbes M. 2002. Phenology and 
stem-growth periodicity of tree species in Amazonian floodplain forests. J. Trop. Ecol. 18: 
581–597.

Schweingruber FH. 2007. Wood structure and environment. Springer, Berlin.
Silva EAM, Pereira LAR, Pinheiro AL & Ramalho RS. 1991. Variação sazonal na atividade 

cambial de três espécies florestais na região de Viçosa-MG. Rev. Seiva 50: 49–52.
Souza WS (ed.). 2007. Técnicas de microscopia eletrônica aplicadas às Ciências Biológicas.  

Td ed. Sociedade Brasileira de Microscopia.
Terrazas T, Aguilar-Rodríguez S & Ojanguren CT. 2011. Development of successive cambia, 

cambial activity, and their relationship to physiological traits in Ipomoea arborescens (Con-
volvulaceae) seedlings. Amer. J. Bot. 98: 765–774.

Thomas J, Ingerfeld M, Nair H, Chauhan SS & Collings DA. 2013. Pontamine fast scarlet 4B: 
A new fluorescent dye for visualising cell wall organisation in radiata pine tracheids. Wood 
Sci. Technol. 47: 5–75.

Tolivia D & Tolivia J. 1987. Fasga: a new polychromatic method for simultaneous and differen-
tial staining of plant tissues. J. Microscopy 148: 113–117.

Tomazello-Filho M, Botosso PC & Lisi C. 2000. Potencialidade da família Meliaceae para 
dendrocronologia em regiões tropicais e subtropicais. In: Roig FA (ed.), Dendrocronología 
en América Latina: 381–431. EDIUNC, Mendoza.

Tomazello-Filho M & Cardoso NS. 1999. Seasonal variations of the vascular cambium of teak 
(Tectona grandis L.) trees in Brazil. In: Wimmer R & Vetter RE (eds.), Tree-ring analysis. 
Biological, methodological and environmental aspects: 147–154. CABI Publishing, New 
York.

Villalba R. 1985. Xylem structure and cambial activity in Prosopis flexuosa DC. IAWA Bull. 
n.s. 6: 119–130.

Volland-Voigt F, Bräuning A, Ganzhi O, Peters T & Maza H. 2011. Radial stem variations of 
Tabebuia chrysantha (Bignoniaceae) in different tropical forest ecosystems of southern 
Ecuador. Trees 25: 39–48.

Worbes M. 1995. How to measure growth dynamics in tropical trees - a review. IAWA J. 16: 
337–351.

Worbes M. 1997. The forest ecosystem of the floodplains. In: Junk WJ (ed.), The Amazonian 
Floodplains: 223–265. Springer-Verlag, Berlin.

Worbes M. 1999. Annual growth rings, rainfall-dependent growth and long-term growth patterns 
of tropical trees from the Caparo Forest Reserve in Venezuela. J. Ecology 87: 391–403.

Worbes M. 2002. One hundred years of tree-ring research in the tropics: A brief history and an 
outlook to future challenges. Dendrochronologia 20: 217–231.

Zimmermann MH. 1983. Xylem structure and the ascent of sap. Springer Series in Wood Sci-
ence, Springer Verlag, New York.

Zimmermann MH & Brown CL. 1971. Trees: structure and function. Springer Verlag, New 
York.

Accepted: 3 June 2013

Downloaded from Brill.com08/25/2022 08:32:07AM
via free access


	CAMBIAL GROWTH PERIODICITY STUDIES OFSOUTH AMERICAN WOODY SPECIES – A REVIEW
	ABSTRACT
	INTRODUCTION
	Applied methodology
	Cambial studies using histological approaches

	SYNTHESIS AND DISCUSSION
	CONCLUDING REMARKS AND RECOMMENDATIONS
	ACKNOWLEDGEMENTS
	REFERENCES


