

Imperial College London

Camdoop

Exploiting In-network Aggregation for Big Data Applications

Paolo Costa costa@imperial.ac.uk

joint work with
Austin Donnelly, Antony Rowstron, and Greg O'Shea (MSR Cambridge)

MapReduce Overview

Input file Intermediate results

Reduce Task

Chunk 0

Chunk 1

Chunk 2

Map Task

Reduce Task

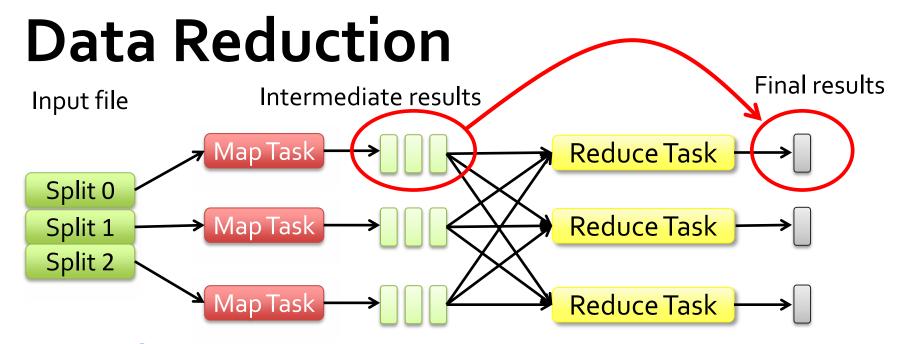
Reduce Task

Reduce Task

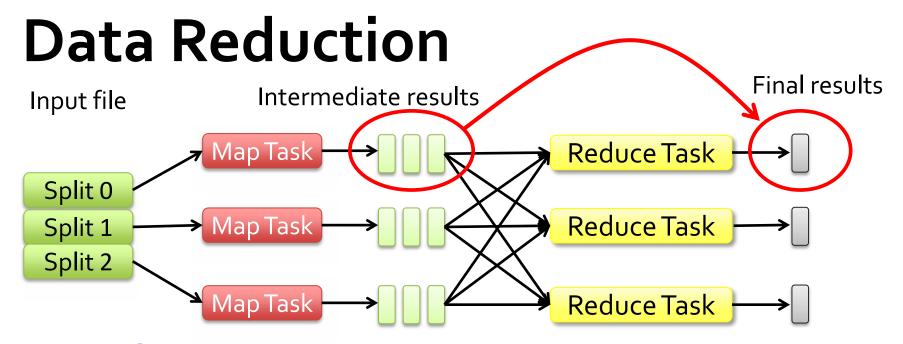
- Map
 - Processes input data and generates (key, value) pairs
- Shuffle
 - Distributes the intermediate pairs to the reduce tasks
- Reduce
 - Aggregates all values associated to each key

Problem

- Shuffle phase is challenging for data center networks
 - All-to-all traffic pattern with $O(N^2)$ flows
 - Led to proposals for full-bisection bandwidth



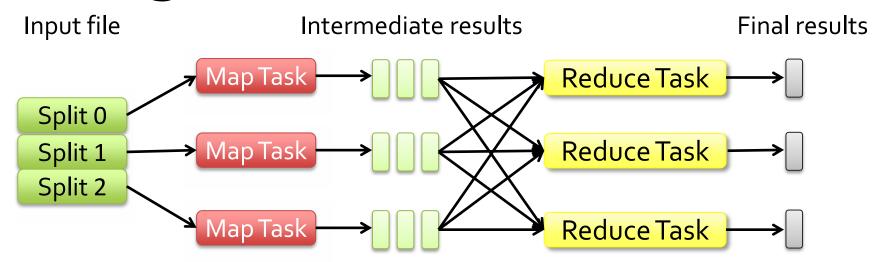
- The final results are typically much smaller than the intermediate results
- In most Facebook jobs the final size is 5.4 % of the intermediate size
- In most Yahoo jobs the ratio is 8.2 %



 The final results are typically much smaller than the intermediate results

How can we exploit this to reduce the traffic and improve the performance of the shuffle phase?

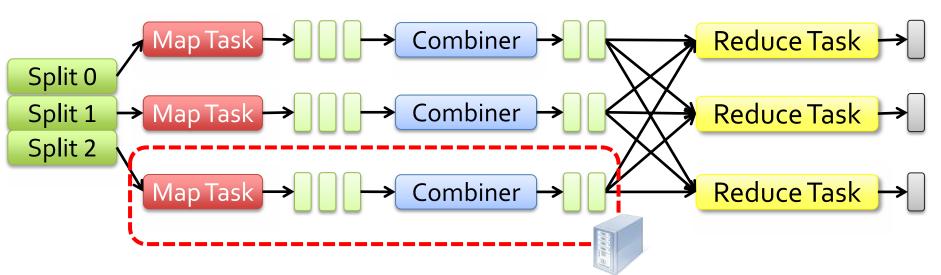
Background: Combiners



- To reduce the data transferred in the shuffle, users can specify a combiner function
 - Aggregates the local intermediate pairs
- Server-side only => limited aggregation

Background: Combiners

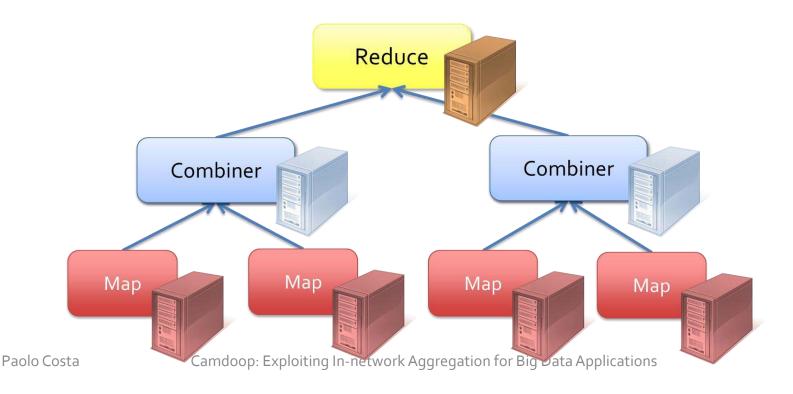
Input file Intermediate results Final results



- To reduce the data transferred in the shuffle, users can specify a combiner function
 - Aggregates the local intermediate pairs
- Server-side only => limited aggregation

Distributed Combiners

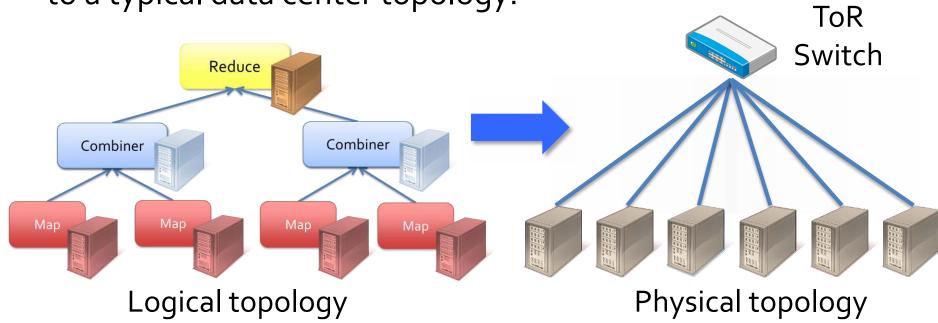
- It has been proposed to use aggregation trees in MapReduce to perform multiple steps of combiners
 - e.g., rack-level aggregation [Yu et al., SOSP'09]



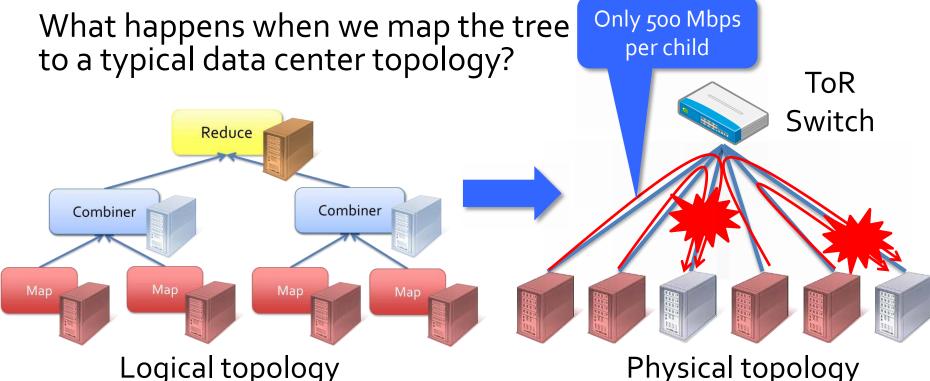
8/52

Logical and Physical Topology

What happens when we map the tree to a typical data center topology?

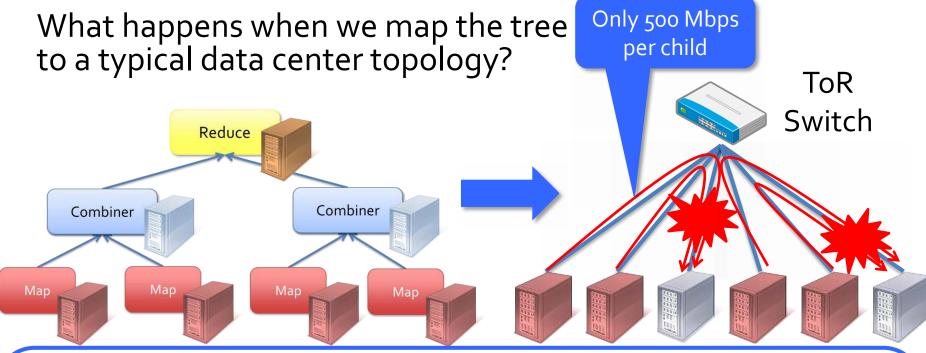


Logical and Physical Topology



The server link is the bottleneck Full-bisection bandwidth does not help here

Mismatch between physical and logical topology Two logical links are mapped onto the same physical link Logical and Physical Topology



Camdoop Goal

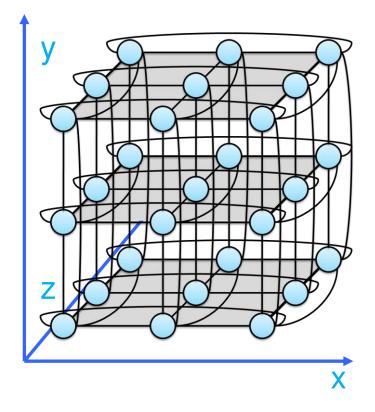
Perform the combiner functions within the network as opposed to application-level solutions

Reduce shuffle time by aggregating packets on path

How Can We Perform In-network Processing?

• We exploit CamCube

- Direct-connect topology
- 3D torus
- Uses no switches / routers for internal traffic



How Can We Perform In-network Processing?

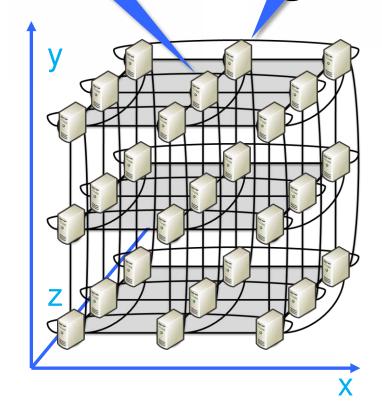
- We exploit CamCube
 - Direct-connect topology
 - 3D torus
 - Uses no switches / routers for internal traffic
- Servers intercept, forward and process packets



(1,2,1) (1,2,2)

How Can We Perform In-network rocessing:

- We exploit CamCube
 - Direct-connect topology
 - 3D torus
 - Uses no switches / routers for internal traffic
- Servers intercept, forward and process packets

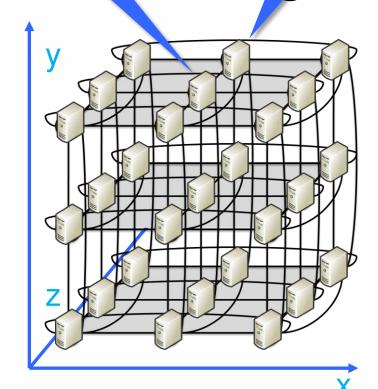


- Nodes have (x,y,z) coordinates
 - This defines a key-space (=> key-based routing)
 - Coordinates are locally re-mapped in case of failures

(1,2,1) (1,2,2)

How Can We Perform In-network rocessing:

- We exploit CamCube
 - Direct-connect topology
 - 3D torus
 - Uses no switches / routers for internal traffic
- Servers intercept, forward and process packets



Key property

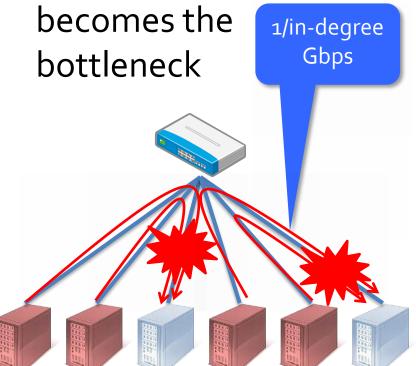
No distinction between network and computation devices

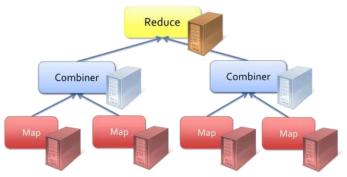
Servers can perform arbitrary packet processing on-path

Mapping a tree...

... on a switched topology

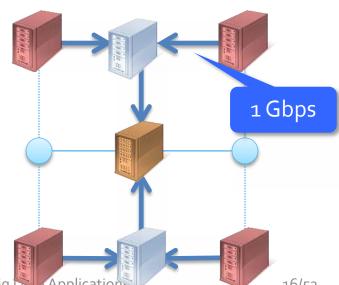
• The 1 Gbps link becomes the Gbps bottleneck





... on CamCube

- Packets are aggregated on path (=> less traffic)
- 1:1 mapping btw. logical and physical topology



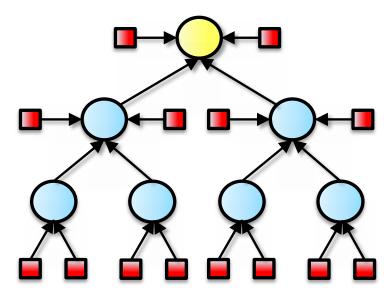
Camdoop Design

Goals

- 1. No change in the programming model
- 2. Exploit network locality
- 3. Good server and link load distribution
- 4. Fault-tolerance

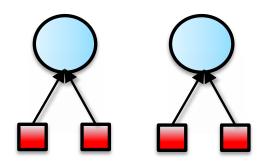
Programming Model

 Camdoop adopts the same MapReduce model



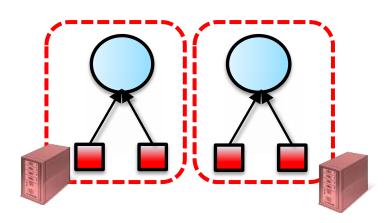
- GFS-like distributed file-system
 - Each server runs map tasks on local chunks
- We use a spanning tree
 - Combiners aggregate map tasks and children results (if any)
 and stream the results to the parents
 - The root runs the reduce task and generates the final output

Network locality



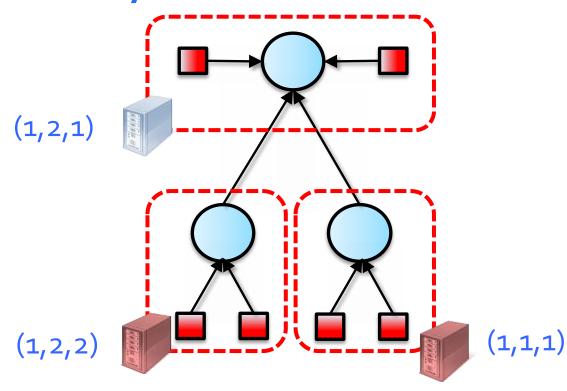
How to map the tree nodes to servers?

Network locality



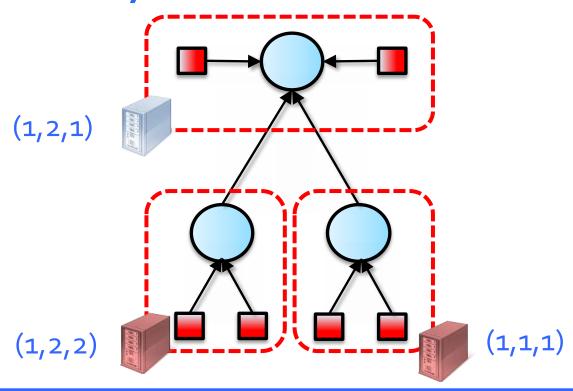
Map task outputs are always read from the local disk

Network locality



The parent-children are mapped on physical neighbors

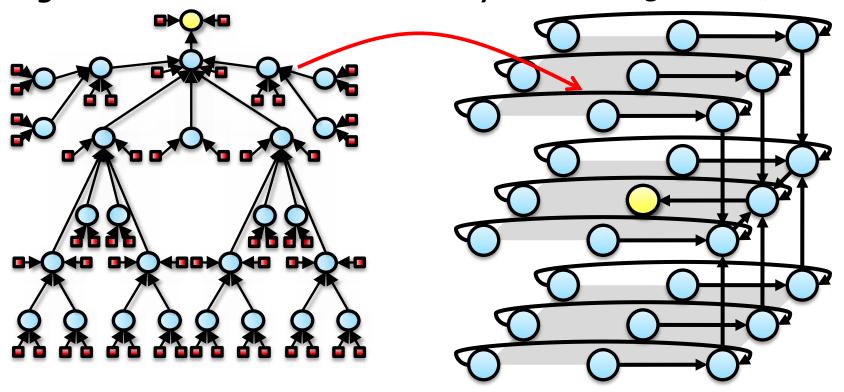
Network locality



This ensures maximum locality and optimizes network transfer

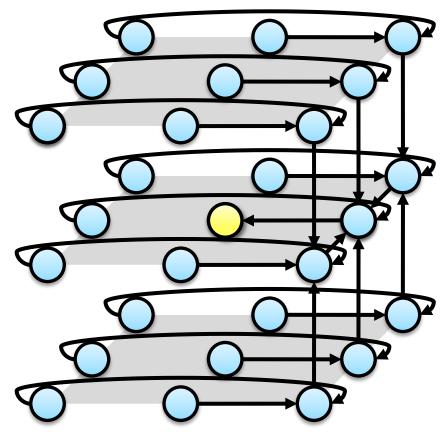
Network Locality

Logical View Physical View (3D Torus)

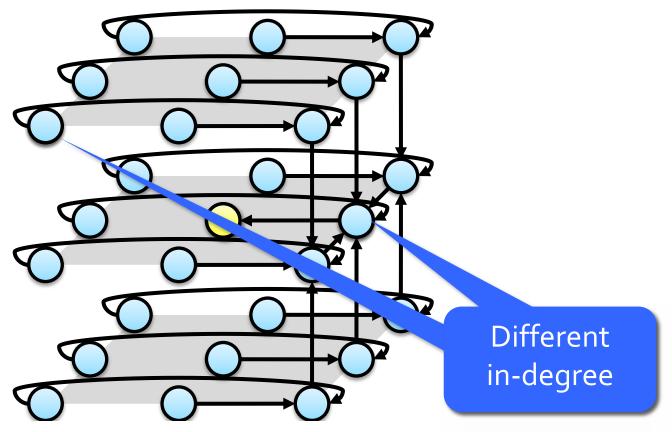


One physical link is used by one and only one logical link

Load Distribution



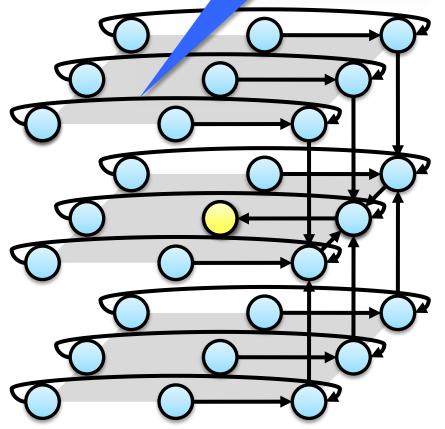
Load Distribution



Poor server load distribution

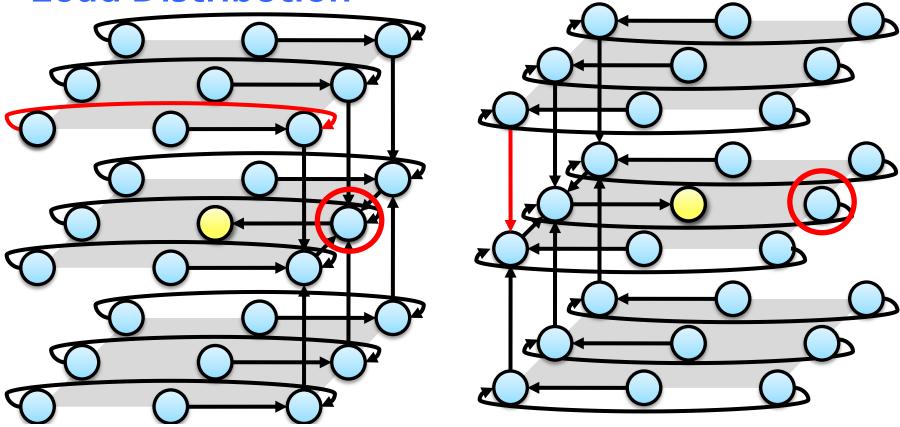
Only 1 Gbps (instead of 6) #3

Load Distriction



Poor bandwidth utilization

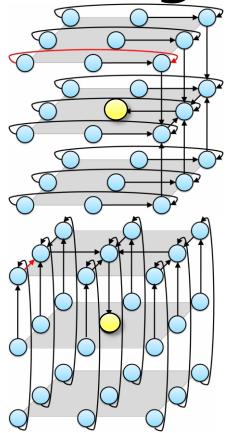
Load Distribution

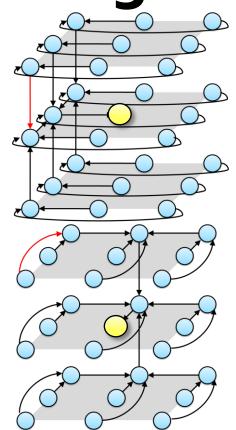


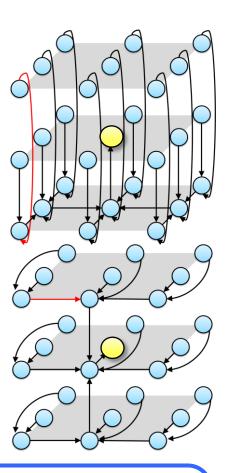
Solution: stripe the data across disjoint trees

✓ Different links are used

✓ Improves load distribution







Solution: stripe the data across 6 disjoint trees

✓ All links are used => (Up to) 6 Gbps / server
✓ Good load distribution

Fault-tolerance

- The tree is built in the coordinate space
 - CamCube remaps coordinates in case of failures
- Details in the paper

Testbed

- 27-server CamCube (3 x 3 x 3)
- Quad-core Intel Xeon 5520 2.27 Ghz
- 12GB RAM
- 6 Intel PRO/1000 PT 1 Gbps ports
- Runtime & services implemented in user-space

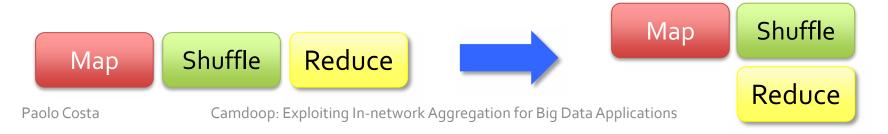
Simulator

- Packet-level simulator (CPU overhead not modelled)
- 512-server (8x8x8) CamCube

Design and implementation recap

	Camdoop
Shuffle & reduce parallelized	✓

- Reduce phase is parallelized with the shuffle phase
 - Since all streams are ordered, as soon as the root receive at least one packet from all children, it can start the reduce function
 - No need to store to disk intermediate results on reduce servers



Design and implementation recap

	Camdoop
Shuffle & reduce parallelized	√
CamCube	\checkmark
Six disjoint trees	\checkmark
In-network aggregation	√

Design and implementation recap

	Camdoop	TCP Camdoop (switch)
Shuffle & reduce parallelized	✓	✓
CamCube	\checkmark	×
Six disjoint trees	Six disjoint trees ✓	
In-network aggregation	✓	×

- TCP Camdoop (switch)
 - 27 CamCube servers attached to a ToR switch
 - TCP is used to transfer data in the shuffle phase

Design and implementation recap

	Camdoop	TCP Camdoop (switch)	Camdoop (no agg)
Shuffle & reduce parallelized	✓	✓	✓
CamCube	\checkmark	×	\checkmark
Six disjoint trees	\checkmark	×	\checkmark
In-network aggregation	\checkmark	×	×

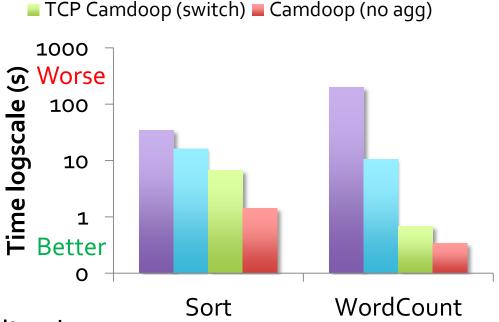
Camdoop (no agg)

- Like Camdoop but without in-network aggregation
- Shows the impact of just running on CamCube

Validation against Hadoop & Dryad

Hadoop

- Sort and WordCount
- Camdoop baselines are competitive against Hadoop and Dryad
- Several reasons:
 - Shuffle and reduce parellized
 - Fine-tuned implementation



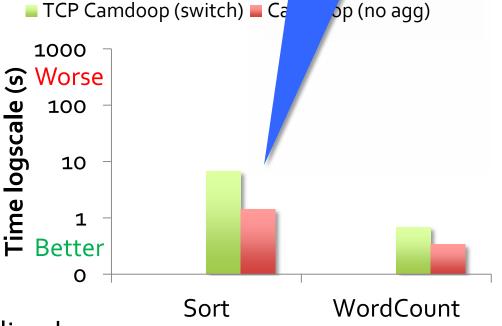
Dryad/DryadLINQ

Validation against Hadoop

We consider these as our baselines

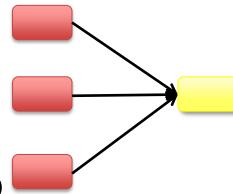
- Sort and WordCount
- Camdoop baselines are competitive against Hadoop and Dryad

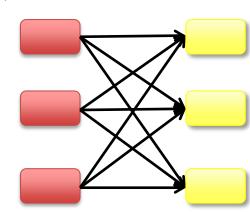
- Shuffle and reduce parellized
- Fine-tuned implementation

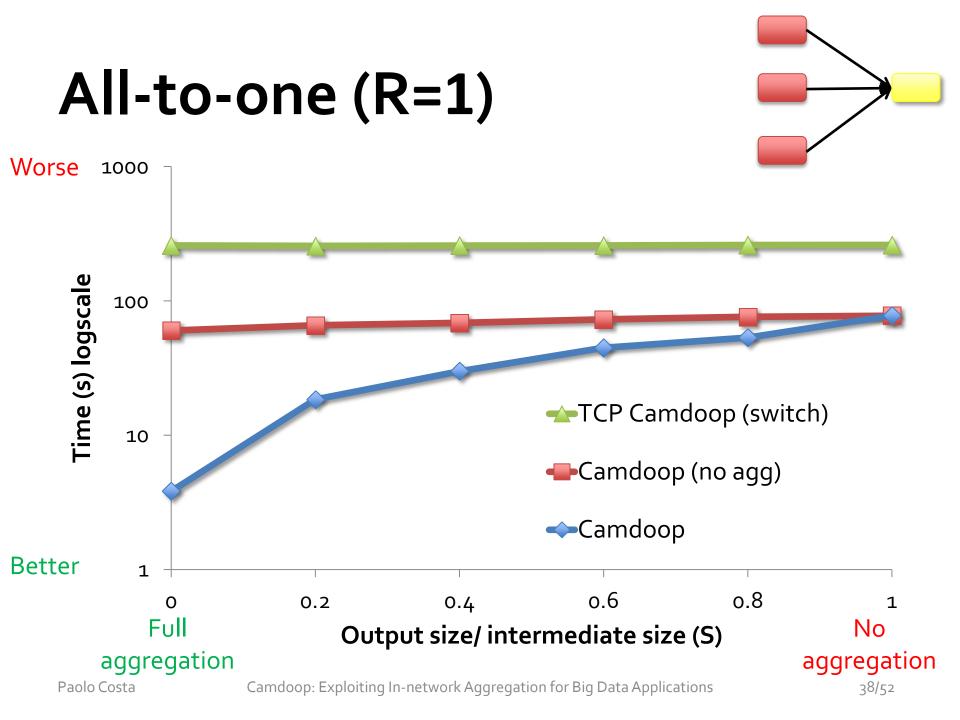


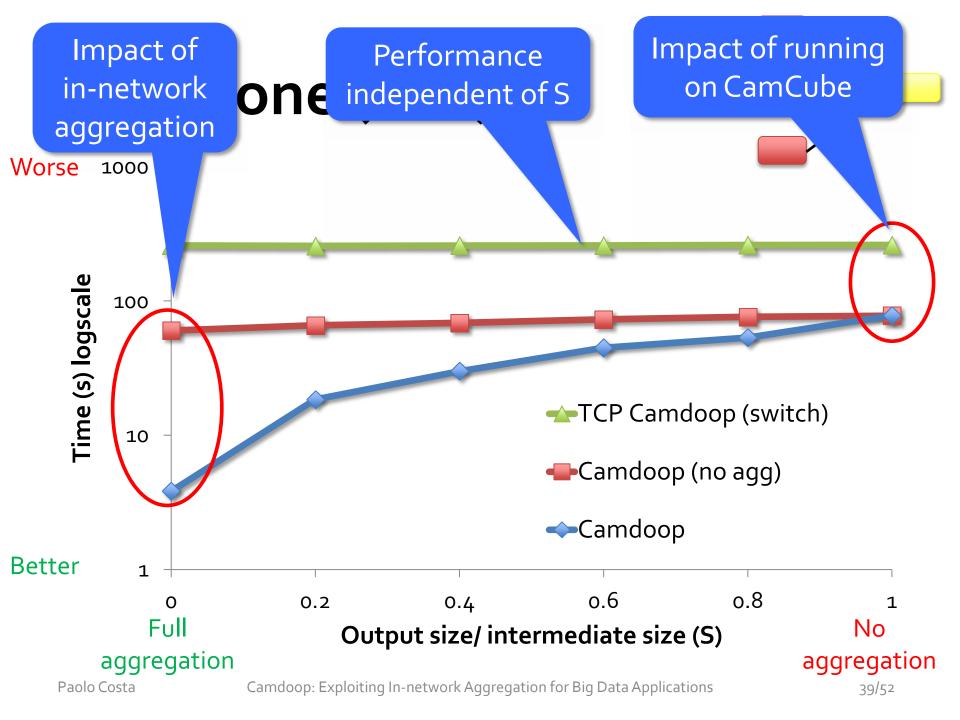
Parameter Sweep

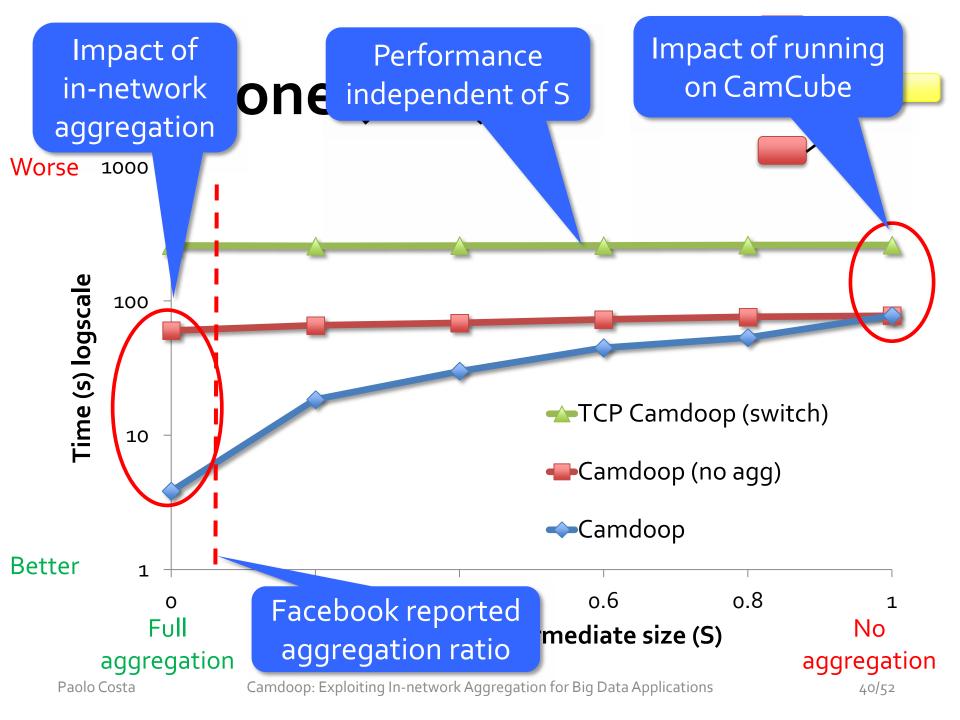
- Output size / intermediate size (S)
 - S=1 (no aggregation)
 - Every key is unique
 - $S=1/N \approx 0$ (full aggregation)
 - Every key appears in all map task outputs
 - We use synthetic workloads to explore different value of S
 - Intermediate data size is 22.2 GB (843 MB/server)
- Reduce tasks (R)
 - R= 1 (all-to-one)
 - E.g., Interactive queries, top-K jobs
 - R=N (all-to-all)
 - Common setup in MapReduce jobs
 - N output files are generated

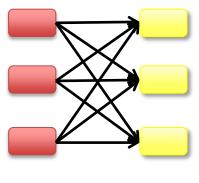


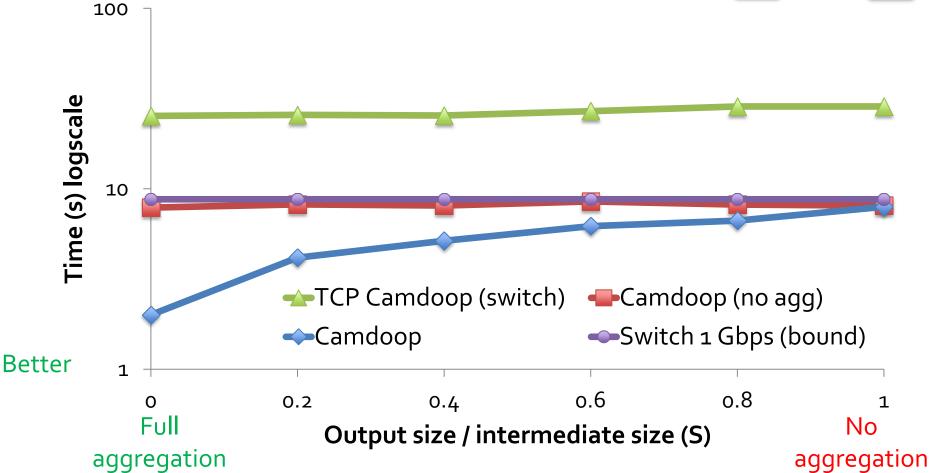


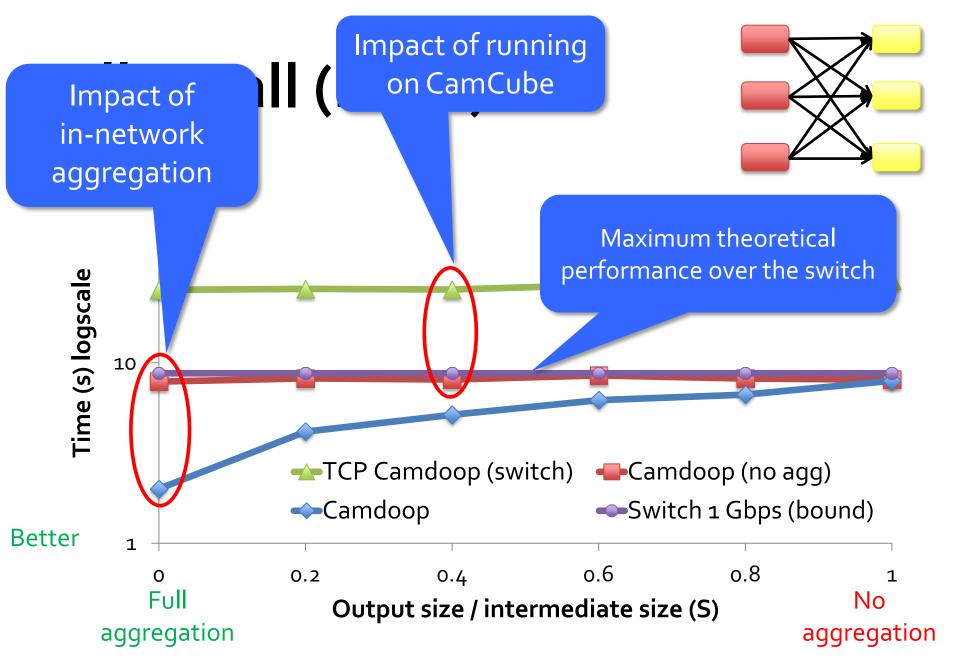




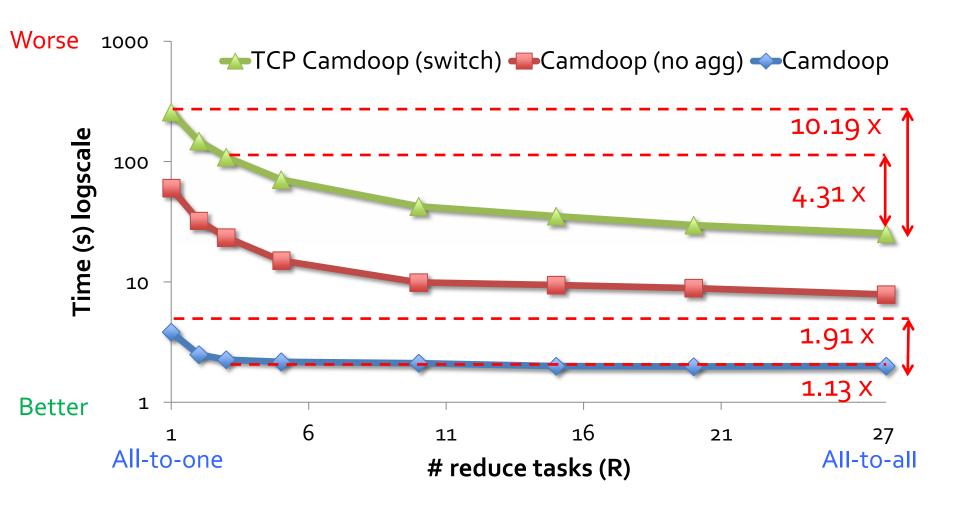




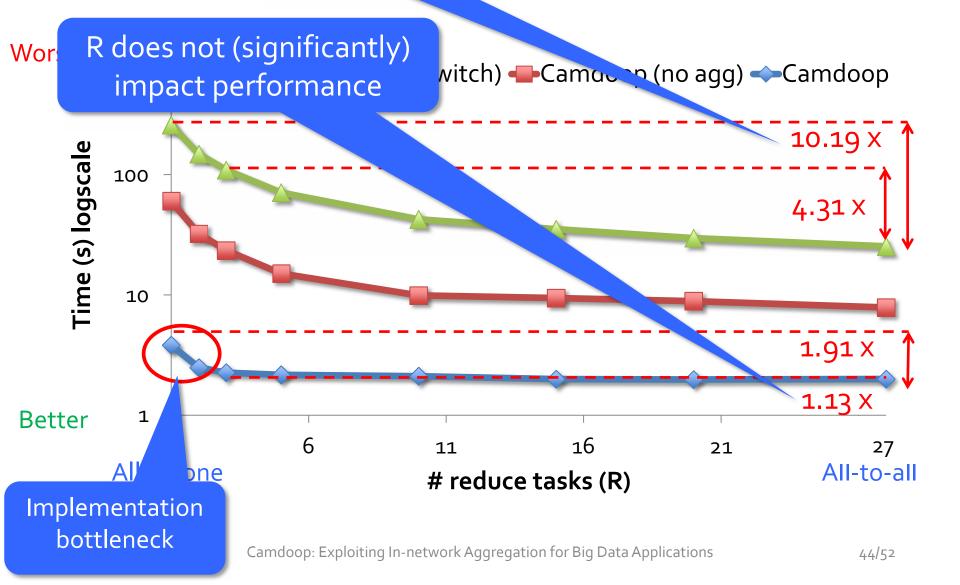




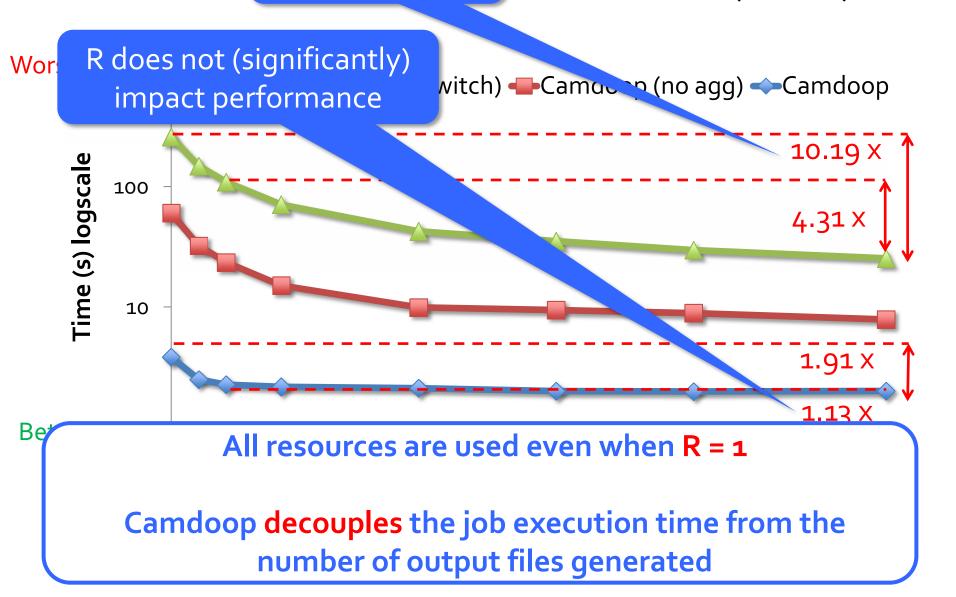
Number of reduce tasks (S=0)



Number | Performance | depends on R | ce tasks (S=0)

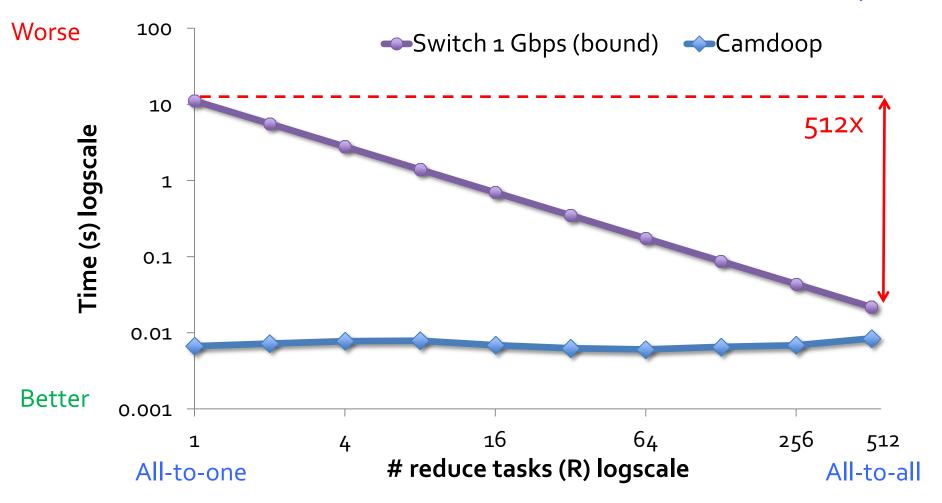


Number | Performance | depends on R | ce tasks (S=0)



Behavior at scale (simulated)

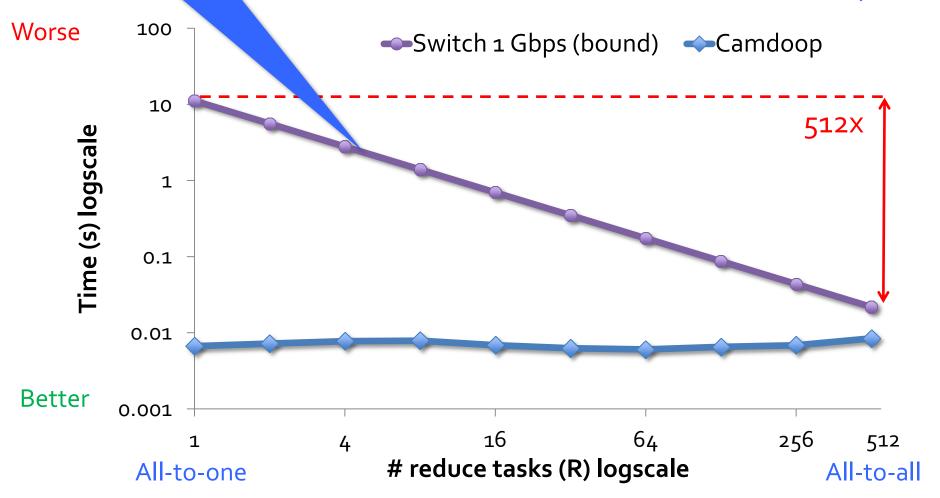
N=512, S=0



This assumes full-bisection bandwidth

r at scale (simulated)

N=512, S=0



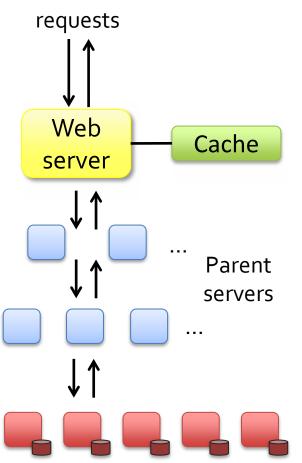
Beyond MapReduce

• More experiments (failures, multiple jobs,...) in the paper

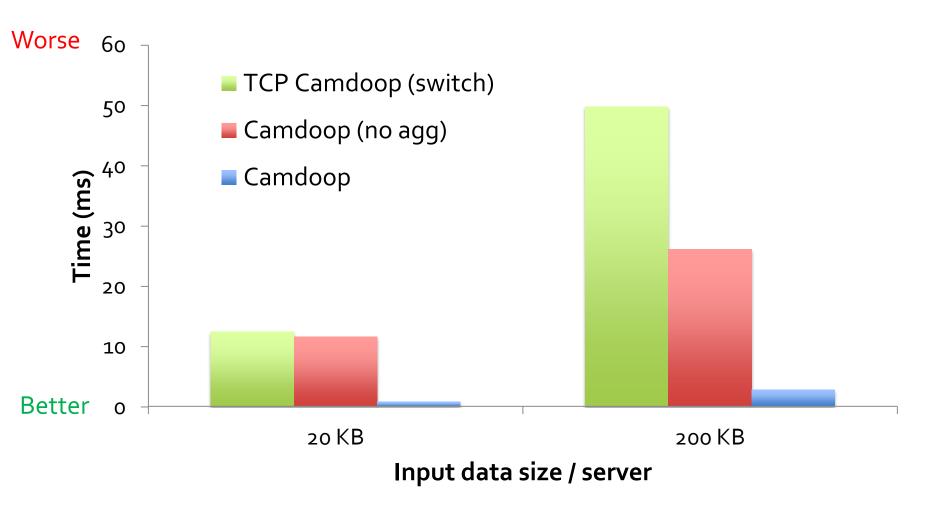
Beyond MapReduce

- The partition-aggregate model also common in interactive services
 - e.g., Bing Search, Google Dremel
- Small-scale data
 - 10s to 100s of KB returned per server
- Typically, these services use one reduce task (R=1)
 - Single result must be returned to the user

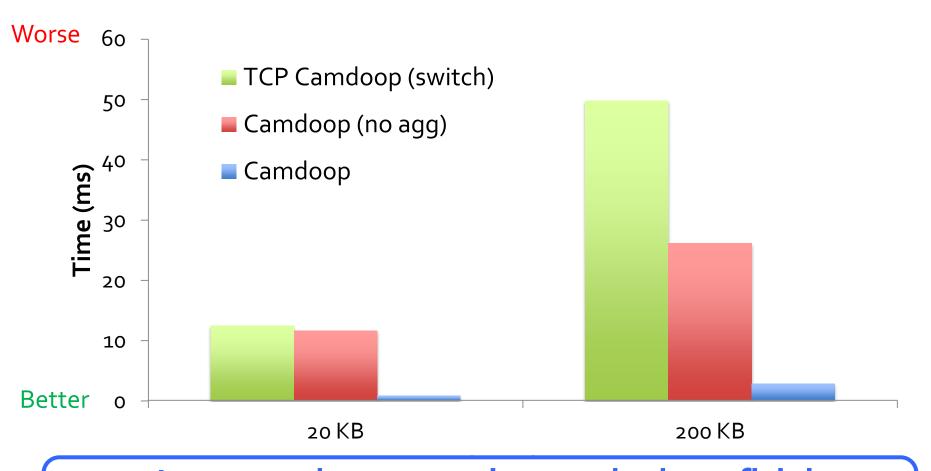
 E.g., N servers generate their best k responses each and the final result contains the best k responses



Small-scale data (R=1, S=0)



Small-scale data (R=1, S=0)



In-network aggregation can be beneficial also for (small-scale data) interactive services

Conclusions

- Camdoop
 - Explores the benefits of in-network processing by running combiners within the network
 - No change in the programming model
 - Achieves lower shuffle and reduce time
 - Decouples performance from the # of output files
- A final thought: how would Camdoop run on this?
 - AMD SeaMicro a 512-core cluster for data centers using a 3D torus
 - Fast interconnect: 5 Gbps / link

