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camera integrated kinematic positioning
and navigation system
Nilesh S. Gopaul*, Jianguo Wang and Baoxin Hu

Abstract

This paper presents a novel two-step camera calibration method in a GPS/INS/Stereo Camera multi-sensor

kinematic positioning and navigation system. A camera auto-calibration is first performed to obtain for lens

distortion parameters, up-to-scale baseline length and the relative orientation between the stereo cameras. Then,

the system calibration is introduced to recover the camera lever-arms, and the bore-sight angles with respect to

the IMU, and the absolute scale of the camera using the GPS/INS solution. The auto-calibration algorithm employs

the three-view scale-restraint equations (SRE). In comparison with the collinearity equations (COL), it is free from

landmark parameters and ground control points (GCPs). Therefore, the proposed method is computationally more

efficient. The results and the comparison between the SRE and COL methods are presented using the simulated

and road test data. The results show that the proposed SRE method requires less computation resources and is

able to achieve the same or better accuracy level than the traditional COL.

Keywords: Camera auto-calibration, Lens distortion, Relative orientation, Lever arms, Bore-sight angles, GPS, IMU,

Scale restraint equation

Introduction

The high demand for low-cost multi-sensor kinematic

positioning and navigation systems as the core of

direct-georeferencing technique in mobile mapping is

continuously driving more research and development

activities. The effective and sufficient utilization of images

is among the most recent scientific research and high-tech

industry development subjects. In this particular field,

York University’s Earth Observation Laboratory (EOL) is

engaging in the study of the image-aided inertial integrated

navigation as the natural continuation of its past research

in the multi-sensor integrated kinematic positioning and

navigation (Qian et al. 2012; Wang et al. 2015).

An image-aided inertial navigation system (IA-INS)

implies that the errors of an inertial navigator are esti-

mated via the Kalman filter using measurements derived

from images. The image-based navigation algorithms,

such as visual odometry (VO) (Konolige et al. 2011;

Scaramuzza and Fraundorfer 2011; Gopaul et al. 2014,

2015) or visual Simultaneous Localization and Mapping

(SLAM) (Durrant-Whyte and Bailey 2006; Williams and

Reid 2010; Lategahn et al. 2011; Alcantarilla et al. 2012),

usually assume that a camera system is calibrated prior

to its use and the calibration parameters do not change

over time. The internal camera parameters (focal length,

principal point and lens distortion) and the external

camera parameters (baseline and relative orientation be-

tween cameras, lever-arms and bore-sight angles with

respect to the inertial measurement unit (IMU)) are re-

quired to relate the image coordinates with the object

coordinates in the scene. The process of estimating these

parameters is referred to as the camera calibration.

The traditional camera calibration consists of capturing

images containing an array of the reference targets in a

laboratory, whose coordinates are accurately known (Wolf

and Dewitt 2000). However, these parameters can be inva-

lidated during in-field operations, e.g., during camera

assembly/disassembly, replacement, bumps (Teller et al.

2010) or significant temperature variations. Recently many

developments have focused on the in-field camera auto-

calibration (or self-calibration) for image-inertial systems.

An auto-calibration refers to the determination of the* Correspondence: nileshgo@yorku.ca; nileshgopaul@gmail.com
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camera parameters from a sequence of the overlapping

images without necessarily setting up ground control

points (GCPs) or special calibration targets. Typically,

auto-calibration process is performed in a bundle adjust-

ment (BA) (Triggs et al. 1999) or in the SLAM framework

(Civera et al. 2009; Kelly and Sukhatme 2009; Kelly et al.

2011; Keivan and Sibley 2014). It involves the simultan-

eous estimation of the positions and orientations of the

camera, the positions of the stationary landmarks, and

the calibration parameters of the camera. The corre-

sponding mathematical equation system, which models

the parameters through the available measurements, is

usually solved by using non-linear least-squares, the

Levenberg-Marquardt algorithm or a Kalman filter.

These methods however are computationally expensive

due to the very large number of landmark position

parameters.

Accordingly, this paper proposes a novel camera cali-

bration method that can precisely calibrate the internal

and external camera parameters with a GPS/INS/Stereo

camera system exclusive of the landmark position parame-

ters. The method applies the three-view scale-restraint

equation (Bethel 2003; Ghosh 2005), with which the mea-

surements are processed exclusively in the image space

without landmark parameters. Therefore, it does not allo-

cate large memory and computation resources. The re-

mainder of the paper is organized as follows. Related

work section overviews the related work. Then, the

novel algorithm is proposed in Two-step camera calibra-

tion method section, which is followed by test results

using the simulated and real data as Test results and

analysis section. Conclusions section ends the paper with

discussions, and conclusions.

Related work

Bender et al. (2013) presented an in-flight graph based

the BA approach for system calibration between a rigidly

mounted camera and an inertial navigation system.

Image point features and GPS aided-INS position and

orientation solution were used as measurements. Their

method simultaneously computed the internal camera

parameters as well as the 6-dof transformation (i.e. lever

arms and relative orientation) between the two systems.

However their method also required at least one GCP

in-order to recover the z-component of the lever-arm.

Kelly and Sukhatme (2009) proposed a camera-IMU

self-calibration method within the SLAM framework im-

plemented by an unscented Kalman filter. The lever-

arms and mounting angles, the IMU gyroscope and

accelerometer biases, the local gravity vector and land-

marks could all be recovered from camera and IMU

measurements alone. However, they assumed that the

internal camera parameters were known beforehand.

(Mirzaei and Roumeliotis 2008) presented a similar

tightly-coupled approach using an iterative extended Kal-

man filter, but, in need of known landmark position.

The methods in (Bender et al. 2013; Kelly and Sukhatme

2009; Kelly et al. 2011) implemented structure-from-

motion (SfM) and contains stationary landmark parame-

ters. SfM algorithms, which compute 3D coordinates from

2D image correspondences, have some disadvantages. The

3D Cartesian coordinates of distant objects are biased

(Sibley et al. 2005) and are not well represented by

Gaussian distributions (Civera et al. 2008). Similar

problems arise when the baseline length between the

stereo cameras and the distance between the consecu-

tive frames are small in monocular vision (Scaramuzza

and Fraundorfer 2011). Furthermore, the inclusion of

landmark position in the parameter vector has two

main drawbacks. First, the BA and SLAM implementa-

tion requires a good initial guess which can be difficult

especially in monocular vision and when landmarks

that were far away. Second, the number of landmark

parameters can be very large which can result in diffi-

cult and computationally expensive estimation. Efforts

to reduce the computational load were introduced in

(Dang et al. 2009) where a 3D landmark position was

decomposed in to 1D feature depth parameter by algebra-

ically eliminating the x and y components using equations

from the stereo pair. However, it still required the estima-

tion of the landmark depth, a parameter not particularly

useful in the calibration procedure.

Auto-calibration algorithms require a minimal con-

straint to define the network datum, which can be done

by applying the minimum constraint, free-network adjust-

ment, or through an explicit minimal control point

(Remondino and Fraser 2006). In the free-network adjust-

ment situation, the absolute scale of the camera system

cannot be known without additional information. (Kelly

et al. 2011) focused on determining the absolute scale of

both the scene and the baseline in a stereo rig using GPS

measurements. Their approach was similar to photogram-

metric BA and the structure from motion algorithms.

They could recover the baseline and relative orientation

between the two cameras and lever-arms between the

GPS antenna and reference camera. Similar to their previ-

ous method in (Kelly and Sukhatme 2009), they assumed

that the internal camera parameters were known before-

hand. Three or more overlapping image frames are re-

quired in order to estimate the camera motion on a

common scale. Structure-free motion algorithms typically

relied on three-view constraints (Yu et al. 2006; Indelman

et al., 2013) for the same reason. The advantage is obvious.

They could be exclusive of landmark position parameters

and result in a more efficient algorithm.

The proposed method consists of two steps; firstly, the

three-view scale-restraint equation is used to perform

the free-network auto-calibration in a stereo camera
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system. This enables all images to operate on a common

scale. And then the GPS/INS solution is applied to

recover the absolute scale, as well as the bore-sight

angles and the lever-arms with respect to the IMU.

Methods

In essence, a non-linear least-squares algorithm is

employed to estimate the internal camera parameters,

the stereo baseline and the relative orientation, the

lever-arms and bore-sight angles using image mea-

surements together with the integrated GPS aided-

inertial solution. The method proceeds in two steps:

(a) the stereo auto-calibration using only image mea-

surements and then (b) the system calibration using

the GPS-aided inertial integrated navigation solution

(position and orientation) as external measurements.

It functions under the assumptions

� The object points in the scene are stationary;

� The raw measurements from the sensors are

synchronized;

� The GPS/INS blended solution has been processed;

� The GPS/INS position is referenced at the center of

the IMU.

Reference frames

The following four coordinate systems are used through-

out this paper (Fig. 1).

The navigation frame (n-frame) is a frame that moves

with the vehicle with its origin located at a predefine

point on the vehicle. Its z-axis is normal to the refer-

ence ellipsoid and points downwards while its x and y

axes point towards the geodetic North and East, re-

spectively forming a right-handed Cartesian coordinate

system.

The (n’-frame) has the same origin as the n-frame. Its

orientation is arbitrary but fixed with respect to the n-

frame.

Fig. 1 Reference frame definition

Fig. 2 Three view geometry

Gopaul et al. The Journal of Global Positioning Systems  (2016) 14:3 Page 3 of 15



The body frame (b-frame) shares the same origin with

the n-frame. Its x-axis points along the vehicle’s longitu-

dinal axis and the z-axis points down while its y-axis

forms a right-handed coordinate system.

The camera frame (c-frame) is a frame in which the

image measurements are taken. Its origin is at the perspec-

tive center of the reference camera. Its x-axis and y-axis

are parallel to the columns and rows of the charge-coupled

device (CCD) sensor while its z-axis points away from the

CCD sensor to form a right handed coordinate system.

The camera system is assumed to be rigidly mounted on

the vehicle. Hereafter, the left camera is set as the reference

camera in the stereo system.

Measurement equations

Collinearity equations

The algorithmic development starts with the well-known

extended collinearity equation (COL) which relates the

object point position vector X
n
i m½ � , its corresponding

image point (xi, yi)[px], the camera’s perspective center

X
n[m] and the direction cosine matrix DCMð ÞCn

c as

follows:

xi ¼ x0−f
Cn

c;11;C
n
c;21;C

n
c;31

h i

• X
n
i −X

n
� �

Cn
c;13;Cn

c;23;Cn
c;33½ �• X

n
i −X

nð Þ

 !

þ Δxd;i þ vxi

yi ¼ y0−f
Cn

c;12;C
n
c;22;C

n
c;32

h i

• X
n
i −X

n
� �

Cn
c;13;C

n
c;23;C

n
c;33

h i

• X
n
i −X

n
� �

 !

þ Δyd;i þ vyi

ð1Þ

Where (x0, y0), f and vxi ; vyi
� �

are the principal point, the

focal length and the measurement noises, respectively. In

the presence of lens distortion, the image coordinates of a

point deviate from its true ones by (Δxd,i,Δyd,i), which can

be modelled by (Brown 1971):

Δxd;i ¼ −Δx0−
x

f
Δf þ x k1r

2 þ k2r
4 þ k3r

6 þ…
� �

þ p1 r2 þ 2x2
� �

þ 2p2xy−A1x þ A2y

Δyd;i ¼ −Δy0−
y

f
Δf þ y k1r

2 þ k2r
4 þ k3r

6 þ…
� �

þ2p1xy þ p2 r2 þ 2y2
� �

ð2Þ

where r is the radial distance from the principal point to

the image point r2 ¼ x2 þ y2 ¼ xi−xoð Þ2 þ yi−yoð Þ2
� �

;Δf

is the focal length error, (Δx0, Δy0) is the principal point

error, ki and pi are the coefficients of radial distortion

and decentering distortion, respectively, and Ai are the

affine deformation parameters. Most of the radial lens

distortion is generally accounted by second term k2r
4

(Barazzetti et al. 2011). The terms with k3 and even with

k4 term are typically included in higher-accuracy applica-

tions and wide-angle lenses. Here, the decentering dis-

tortion and affine deformation models will not be

applied because they are generally very small. Further-

more, their errors will be absorbed by other terms, for

example, the principal point (Fraser 2013).

Fig. 3 Four view match

Table 1 Auto-calibration parameters (L and R denote left and

right camera)

Parameter Description

ΔfL, ΔfR Correction for focal lengths [px]

ΔxL;0 ;ΔyL;0ΔxR;0;ΔyR;0 Correction for principal points [px]

kL;1 ; kL;2; kL;3kR;1; kR;2; kR;3 Radial lens distortion parameters
[px−2, px−4, px−6]

bc
LR Stereo baseline vector [m]

Cc
cR Right camera to left camera DCM defined

by Euler angles θccR deg½ �

ΔXn′

L;k;k−1 Position difference of the left camera
between two consecutive frames [m]

Cn′

c;k Camera to n’-frame DCM defined by
Euler angles θn

′

c;k deg½ �
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Scale restraint equation

The scale restraint equation (SRE) is a robust three-view

constraint that forces the images to operate on one com-

mon scale. Let’s consider image point vectors x
n
1; x

n
2 and

x
n
3 (Fig. 2):

where

x
n
i¼1;2;3

¼ Cn
c;i

xi−xo−Δxd;i −vxi
yi−yo−Δyd;i−vyi

−f

0

@

1

A ð3Þ

and b
n
12 , b

n
23 are the baselines [m] between images 1 and

2, and between images 2 and 3, respectively. If image 1

is relatively oriented to image 2, and image 2 is relatively

oriented to image 3, there is no guarantee that image 1

and image 3 are also relatively oriented to each other

(Bethel 2003). As a result, three vectors x
n
1; x

n
2 , and x

n
3

will fail to intersect at a common point due the scale

variations of the three views. The ‘mismatch’ vector d
n
12

is perpendicular to both of xn1 and x
n
2 , and is computed

as d
n
12 ¼ x

n
1 � x

n
2 . Similarly the ‘mismatch’ vector d

n
23

¼ x
n
2 � x

n
3 . Midway along the vectors d

n
12 and d

n
23 is the

point where the two adjacent vectors are the closest.

With the vectors in Fig. 2, one can give

k1x
n
1−k2x

n
2 þ k12d

n
12 ¼ b

n
12

k′2x
n
2−k

′

3x
n
3 þ k′23d

n
23 ¼ b

n
23

ð4Þ

where k1; k2; k12; k
′

2; k
′

3 and k′23 are unknown scalars with

unique values as follows (Ghosh 2005)

k1 ¼
b
n
12•d

n
12 � x

n
2

xn1•d
n
12 � xn2

k′2 ¼
b
n
23•d

n
23 � x

n
3

xn2•d
n
23 � xn3

k2 ¼
x
n
1•d

n
12 � b

n
12

xn1•d
n
12 � xn2

k′3 ¼
x
n
2•d

n
23 � b

n
23

xn2•d
n
23 � xn3

k12 ¼
x
n
1•b

n
12 � x

n
2

xn1•d
n
12 � xn2

k′23 ¼
x
n
2•b

n
23 � x

n
3

xn2•d
n
23 � xn3

ð5Þ

Their analysis in detail can be found in Appendix A.

In order for all the vectors to intersect at the same point,

k2 þ k′2 must equal to zero (Ghosh 2005), i.e.

x
n
1•d

n
12 � b

n
12

xn1•d
n
12 � xn2

−

x
n
2•d

n
23 � b

n
23

xn2•d
n
23 � xn3

¼ 0 ð6Þ

where in d
n
12 ¼ x

n
1 � x

n
2 and d

n
23 ¼ x

n
2 � x

n
3 . Equation (6)

is the scale restraint equation that forces the independ-

ent scale factors for the common ray between the stereo

pair 1–2 and stereo pair 2–3 to be equal (Bethel 2003).

Fig. 4 SREs and the four views

Table 2 Dimension of the parameter vector (COL vs. SRE)

COL SRE

Number of image frames nx nx

Number of observed landmarks nlm nlm

Focal length, principal point 2x3 2x3

Lens distortion (k1, k2, k3) 2x3 2x3

Stereo baseline and relative orientation 2 + 3 2 + 3

Camera position and orientation 6 (nx−1) 6 (nx−1)

Landmark parameters 3nlm 0

Total 11 + 6nx + 3nlm 11 + 6nx
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This equation is mainly used in successive relative orien-

tation of image pairs and scale transfer.

Camera auto-calibration

Table 1 lists the relevant calibration parameters. At a

given epoch k, the algorithm uses point features

matched from four views which are stereo pairs from

two consecutive epochs, i.e., xcL;k ; x
c
R;k ; x

c
L;k−1 and x

c
R;k−1

as depicted in Fig. 3.

Point features can be extracted using the Harris corner

detector (Harris and Stephens 1988) and matching can be

performed using the Sum of Absolute Differences (SAD)

in an 11 × 11 window. To improve the matching results

between stereo pairs, the search is performed along the

epipolar lines (Bin Rais et al. 2003). Furthermore, to im-

prove the matching between the consecutive frames, the

locations of the features in the current frame can be pre-

dicted from the previous frame using the inertial sensors

(Veth et al. 2006).

Fig. 6 The 2D trajectory and landmarks

Fig. 5 Flops vs. number of stereo points (m)
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The matched points are constrained by two SREs. The

first SRE relates x
c
R;k ; x

c
L;k and x

c
L;k−1 while the second

one relates xcL;k−1; x
c
R;k−1 and x

c
R;k (Fig. 4).

The equations can be expressed as

xR;k
n
′• x

n′

R;k � x
n′

L;k

� �

� Cc;k
n′

b
c
LR

xR;k
n′ • xn

′

R;k � xn
′

L;k

� �

� xn
′

L;k

−

x
n′

L;k• x
n′

L;k � x
n′

L;k−1

� �

� ΔX
n′

L;k;k−1

xn
′

L;k• xn
′

L;k � xn
′

L;k−1

� �

� xn
′

L;k−1

¼ 0

ð7Þ

x
n′

L;k−1• x
n′

L;k−1 � x
n′

R;k−1

� �

� Cn′

c;k−1b
c
LR

xn
′

L;k−1• xn
′

L;k−1 � xn
′

R;k−1

� �

� xn
′

R;k−1

−

x
n′

R;k−1• x
n′

R;k−1 � x
n′

R;k

� �

� ΔX
n′

R;k;k−1

xn
′

R;k−1• xn
′

R;k−1 � xn
′

R;k

� �

� xn
′

R;k

¼ 0

ð8Þ

where x
n′

L;k ¼ Cn′

c;kx
c
L;k ; x

n′

R;k ¼ Cn′

c;kC
c
cRx

cR
R;k and ΔX

n′

R;k;k−1

¼ ΔX
n′

L;k;k−1 þ Cn′

c;k−C
n′

c;k−1

� �

b
c
LR . In auto-calibration, the

orientation of the camera with respect to the n-frame is

Fig. 7 The height, roll, pitch and heading profiles

Fig. 8 The simulation algorithm
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not required and can be put aside. At this point the glo-

bal frame is set to the n’-frame. In order to obtain a

free-network adjustment, one component of the baseline

vector b
c
LR must be free (i.e. 2 dof) and one of the θ

n′

c

orientation parameters must be fixed (ideally θn
′

c;k¼1 ¼ 0).

This fixes both the orientation and scale of the system.

Note that ΔXn0

L;k and Cn0

c;k contain transport rate error in

this formulation. Under the assumption that the calibra-

tion area is within a few hundred meters, this error ef-

fect is negligibly small.

Camera system calibration

The camera system calibration determines the lever-arms

la
b
L , the absolute scale sc of the camera and the bore-sight

angle vector θ
b
c . The relationship between the GPS/INS

and the left camera can be expressed as the following 7-

parameter transformation:

X
n
GPSINS;k ¼ scC

n
n′X

n0

L;k−C
n
b;GPSINS;k la

b
L ð9Þ

where in Cn
b;GPSINS;k is the GPS/INS DCM as the func-

tion of attitude angles (roll, pitch and heading) and Cn
n′

Fig. 9 Number of stereo points per frame (top) and number of cumulative stereo points (bottom)

Fig. 10 Estimated standard deviation of the focal length error and principal point error
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is determined by the orientation of the camera system

with respect to the n-frame at the first epoch

Cn
n′ ¼ Cn

c;1 ¼ Cn
b;GPSINS;1C

b
c ð10Þ

where Cb
c is the DCM from the camera to body repre-

sented by the bore-sight angle vector θbc . Differencing (8)

between epochs k − 1 and k gives

ΔXGPSINS;k
n ¼ scC

n
n′ΔX

n0

L;k− Cn
b;GPSINS;k−C

n
b;GPSINS;k−1

� �

la
b
L

ð11Þ

The relationship between Cn
b;GPSINS;k and the camera

DCM Cn′

c;k (from Eqs. (7) and (8)) can be written as

Cn
b;GPSINS;kC

b
c ¼ Cn

n′C
n0

c;k ð12Þ

Equations (11) and (12) equate the GPS/INS informa-

tion ΔX
n
GPSINS;k ;C

n
b;GPSINS;k

� �

and the auto-calibration es-

timates ΔX
n0

L;k and Cn0

c;k . All of seven parameters can be

solved by using the least-squares.

Computation complexity of COL and SRE

This section compares the number of parameters and

the number of floating point operations (flops) between

COL and SRE auto-calibration algorithms.

Table 2 shows the number of parameters with COL

and SRE auto-calibration system with nx stereo image

frames and nlm visible landmarks. One component of

the stereo baseline is left free (i.e., only two stereo

Fig. 11 Estimated standard deviation of the focal length error and principal point vs. flops

Table 3 Left camera lens distortion parameters

Parameter True value COL SRE1 SRE2

Δf (px) −2 −1.825 −2.713 −2.318

±0.438 ±0.875 ±0.417

Δx0 (px) 2.5 2.393 2.665 2.432

±0.230 ±0.309 ±0.142

Δy0 (px) −3 −3.232 −2.851 −3.061

±0.219 ±0.266 ±0.122

k1 (px
−2) 5.0e−7 5.03e−07 5.07e−07 5.06e−07

±6.47e−09 ±6.97e−09 ±3.21e−09

k2 (px
−4) 4.0e−13 7.16e−14 6.49e−13 3.92e−13

±1.03e−13 ±1.04e−13 ±4.75e−14

k3 (px
−6) 4.5e−19 1.78e−18 4.89e−18 3.72e−18

±4.86e−19 ±4.89e−19 ±2.20e−19

Table 4 Right camera lens distortion parameters

Parameter True value COL SRE1 SRE2

Δf (px) +2 2.082 2.534 2.078

±0.441 ±0.884 ±0.421

Δx0 (px) −2 −2.003 −2.250 −2.029

±0.226 ±0.319 ±0.146

Δy0 (px) 1 0.391 1.217 1.233

±0.217 ±0.243 ±0.112

k1 (px
−2) 5.0e−07 5.08e−07 5.04e−07 5.06e−07

±6.72e−09 ±8.02e−09 ±3.76e−09

k2 (px
−4) 4.0e−13 2.85e−13 2.38e−13 3.60e−13

±1.08e−13 ±1.28e−13 ±6.03e−14

k3 (px
−6) 4.5e−19 9.01e−19 5.89e−18 5.82e−18

±5.21e−19 ±6.22e−19 ±2.93e−19
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baseline parameters). The number of the camera pos-

ition and orientation parameters is 6 (nx−1) in total be-

cause the first camera position and orientation is fixed

(practically they are set to zero). The advantage of

employing SRE is to have the number of the estimated

parameters far less than the one with COL.

The flop count is the total number of textbook multi-

plication and addition operations required to obtain a

least squares (LS) solution. The factors taken into ac-

count in the analysis are the number of the matched ste-

reo points (i.e. number of measurements), the number

of the image frames, the number of the landmarks in

view and the percentage overlap between consecutive

frames. The percentage overlap encompasses camera

rate, the velocity and the angular rate of the camera.

Furthermore, COL employs the LS algorithm in the ex-

plicit form (i.e., z = h(x)) to estimate the parameters

while the SRE uses implicit LS (i.e., h(x, z) = 0)); where x

is the parameter vector, z is the measurement vector and

h(.) is the functional model. The flop counts between

the two will be different under a given number of mea-

surements and parameters.

In order to simplify the analysis, the number of image

frames is kept constant (here set to 92, the same num-

ber used in the test results). Furthermore, the number

of measurements, landmarks and the overlapping per-

centage is assumed to have the following predictive

relationship

m′ ¼
m

nlm
¼

1

1−p
ð13Þ

where m′ is the average number of the matched stereo

pairs per landmark, m is the total number of the

matched stereo pairs and p is the average overlapping

percentage. For instance, if p = 75% then m′ = 4. This

means on average a landmark is viewed on four images.

By keeping the average percentage overlap constant, the

number of landmarks in the system can be predicted

with a given number of stereo points. The number of

measurements and parameters in the LS are now known

and therefore the flop count can be predicted. Figure 5

shows the number of flops vs. number of stereo points

required in COL and SRE with overlapping of 70, 80

and 90%.

As expected, the plot shows that COL uses more flops

than SRE. As percentage overlap increases, the number

of flops in COL decreases because the number of the

matched stereo pairs per landmark becomes larger.

Therefore, given the same number of measurements, the

number of the landmark parameters becomes smaller.

As percentage overlap increases, the number of flops in

SRE increases because more matrix inversion operations

are needed in the implicit LS algorithm. The accuracy

analysis is presented in Auto-calibration results section.

Results and discussion

In this section test results from the simulated, laboratory

and real data are presented. Simulations were performed

to validate the proposed SRE auto-calibration algorithm

and to show how its performance (both computation

and accuracy) in comparison with the one from the

COL auto-calibration method. Finally results from land

vehicle data are presented.

Results from the simulated data

The simulations were conducted to compare the per-

formance of COL and SRE auto-calibration algorithms

based on a typical land vehicle trajectory (i.e. large hori-

zontal motion and heading variation). Figure 6 shows

the vehicle’s trajectory and the landmarks. The vehicle’s

height and attitude profiles are given in Fig. 7.

The camera resolution and the field of view (FOV)

were set to 640 × 480 pixels and 50° (equivalent to 686.2

pixels), respectively. The baseline between the two cam-

eras is 0.65m long. Figure 8 describes the simulation pa-

rameters. The number of the epochs is 92. To simulate

Table 5 Relative orientation of right camera w.r.t left camera

Parameter True value COL SRE1 SRE2

bcLR:x mð Þ 0.01 0.011 0.007 0.007

±0.001 ±0.002 ±0.001

bcLR:y mð Þ a 0.65 0.650 0.650 0.650

bcLR:y mð Þ −0.1 −0.013 −0.013 −0.012

±0.004 ±0.004 ±0.002

θ
c
cR;x degð Þ −0.25 −0.257 −0.266 −0.260

±0.007 ±0.008 ±0.004

θ
c
cR;y degð Þ 0.5 0.504 0.500 0.494

±0.008 ±0.014 ±0.006

θ
c
cR;z degð Þ 0 0.002 −0.003 −0.002

±0.002 ±0.002 ±0.001

aFree parameter

Table 6 Number of points and parameters

COL SRE1 SRE2

Number of stereo points 17,074 17,074 77,945

Number of parameters 8417 563 563

log10 (flops) 12.4 8.8 9.4

Table 7 IMU440CA Specification

Angular Rate Bias Stability [deg/h] <10.0

Angle Random Walk [deg/√hr] <4.5

Acceleration Bias Stability [mg] <1.0

Velocity Random Walk [m/s/√hr] <1.0
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the urban scenario, the landmarks between the ranges

15 and 25 were selected to be in view of the camera.

Furthermore, the measurement noise was set to zero

mean Gaussian noise with the standard deviation of

0.5px. The initial value for each camera calibration par-

ameter was set to zero except the baseline component

bcLR:y as the free parameter and equal to 0.65m.

Auto-calibration accuracy analysis

The accuracy analysis on COL and SRE algorithms is

presented in this section. Auto-calibration results from

one COL and two SREs are presented (i.e. SRE1 and

SRE2). The estimates from COL and SRE1 were ob-

tained using the same number of the measurements,

i.e., 17,074 stereo points (m) whilst SRE2 used 4.5 times

more measurements. The average percentage overlap

for all three cases was 74%. Figure 9 shows the number

of stereo points per frame and the number of accumu-

lated stereo points.

Figure 10 shows the estimated standard deviation of

the focal length error and principal point obtained from

the three estimates w.r.t. epoch. The results showed that

with a given number of measurements, SRE1 performed

worse than COL. However SRE2 required 4.5 times

more to be equivalent or better than COL. Figure 11

shows the estimated standard deviation w.r.t. the num-

ber of flops. The results showed that both SRE1 and

SRE2 required less computation resources to achieve the

same level of the accuracy as COL.

Auto-calibration results

This section presents the final results from COL, SRE1 and

SRE2. Tables 3, 4 and 5 show the true values, estimates

and their standard deviations for the left, right and relative

camera orientation calibration parameters, respectively.

The results showed that the accuracy of the focal length

error from COL and SRE2 were similar and better than

SRE1. SRE2 estimated the best principal point error, but

SRE1 gave the worst. The radial distortion coefficients

Fig. 12 The 2D overview of the trajectory (left), the velocity and attitude profiles (right)

Fig. 13 The calibration period (left). A stereo pair with matched points (right)
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from COL and SRE1 were similar. However, SRE2 deliv-

ered the best coefficients.

The relative orientation parameters from SRE2 were

the best whilst the ones from COL and SRE1 were simi-

lar to each other. Table 6 shows the total number of the

used stereo points, the number of parameters and the

flop count for each of the auto-calibration algorithm.

COL and SRE1 employed the same number of measure-

ments, as SRE2 used 4.5 times more measurements.

SRE1 and SRE2 estimated the same number parameters,

but COL estimated 7854 more parameters. Even though

SRE2 processed more measurements than COL, it still

used 1000 times less flops since less number of parame-

ters were estimated. Furthermore the accuracy is higher

since more measurements were employed.

Results from road test data

Test results from both the camera auto-calibration and

system calibration using road test data are presented in

this section. The road data were collected by the land

vehicle navigation system developed at the Earth Obser-

vation Laboratory of York University (Qian et al. 2012)

with two newly integrated cameras. The system consists

of two NovAtel OEM GPS receivers, one Crossbow

IMU440CA and the two PointGrey Flea3 cameras as de-

scribed in the lab test section. Two GPS receivers pro-

vided the absolute heading measurements and a third

GPS receiver was used as the base station so that RTK

level GPS positioning accuracy was achieved. The lever-

arm vectors of the GPS receivers and cameras with re-

spect to the IMU unit were measured beforehand at the

accuracy of 0.5cm. The observation rates were set to 1.0,

100 and 7.5 Hz for GPs, IMU and cameras, respectively.

The IMU specification is in Table 7.

The data was collected in Vaughan, Ontario and was

518 s long. Figure 12 shows the top view of the vehicle’s

trajectory, the velocity profile and the attitude profiles.

One hundred images in the interval shown in Fig. 13

(left) were used to test the camera calibration algo-

rithms. This section of the trajectory was chosen be-

cause the vehicle dynamics favor lever-arm estimation.

Furthermore, the images were highly textured which

could be important in detecting point features. Figure 13

(right) shows the 53rd stereo image with the matched

feature points. Similar to the tests performed in Results

from road test data section, the calibration results from

one COL and two SREs are presented (i.e. still as SRE1

and SRE2). COL and SRE1 estimates were obtained

using the same number of stereo points whilst SRE2

used 5.1 times more measurements. The average per-

centage overlap for all three cases is 73%.

Auto-calibration results

The estimated lens distortion parameters together with

their standard deviations of the left and right cameras

are shown in Tables 8 and 9, respectively. The results

showed the focal length error estimates from COL and

SRE2 were similar, but SRE1 performed the worst. SRE2

estimated the best principal point error, followed by

COL and SRE1. Noticeably, ∆x0 is better estimated than

∆y0 because the distribution of the points on the images

in the x component was more varied and thus benefited

the ∆x0 estimation. The results showed that the coeffi-

cients k1 and k2 accounted for most of the radial

Table 8 Left camera lens distortion parameters

Parameter COL SRE1 SRE2

Δf (px) −1.651 −1.815 −1.785

±0.468 ±0.961 ±0.458

Δx0 (px) 0.049 0.157 0.178

±0.134 ±0.177 ±0.112

Δy0 (px) −0.245 −0.262 −0.155

±0.756 ±0.819 ±0.452

k1 (px
−2) −3.63e−07 −3.59e−07 −3.46e−07

±7.42e−09 ±7.51e−09 ±3.73e−09

k2 (px
−4) −7.45e−12 −8.61e−13 −6.61e−13

±1.03e−13 ±1.02e−13 ±5.80e−14

k3 (px
−6) 8.02e−18 5.97e−18 6.64e−18

±3.45e−19 ±4.81e−19 ±3.54e−19

Table 9 Right camera lens distortion parameters

Parameter COL SRE1 SRE2

Δf (px) 1.141 1.244 1.050

±0.468 ±0.968 ±0.442

Δx0 (px) 1.652 1.577 1.601

±0.132 ±0.174 ±0.106

Δy0 (px) 1.451 1.407 1.305

±0.725 ±0.780 ±0.345

k1 (px
−2) −3.34e−7 −3.82e−07 −3.62e−07

±7.45e−09 ±7.71e−09 ±3.84e−09

k2 (px
−4) −1.09e−12 −4.65e−13 −4.46e−13

±9.84e−14 ±1.04e−13 ±7.14e−14

k3 (px
−6) 7.26e−18 4.32e−18 6.54e−18

±4.42e−19 ±4.83e−19 ±3.72e−19

Table 10 Relative orientation of right camera w.r.t left camera

Parameter COL SRE1 SRE2

bcLR:x mð Þ 0.002 ± 0.001 0.004 ± 0.001 0.003 ± 0.001

bcLR:y mð Þ 0.65 0.65 0.65

bcLR:y mð Þ −0.002 ± 0.001 −0.001 ± 0.001 −0.001 ± 0.001

θ
c
cR;x degð Þ 0.250 ± 0.010 0.247 ± 0.014 0.251 ± 0.009

θ
c
cR;y degð Þ −0.211 ± 0.003 −0.220 ± 0.004 −0.220 ± 0.003

θ
c
cR;z degð Þ −0.093 ± 0.002 −0.092 ± 0.002 −0.091 ± 0.002
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distortion. Their standard deviations were the lowest

from SRE2, while they were similar in COL and SRE1.

Table 10 shows the estimated relative orientation pa-

rameters and their standard deviations. The results

showed that the estimated baseline vectors were simi-

lar. The angles in the y and z components were also

similar, whereas the x component was similar from

COL and SRE2. The worst came from SRE1. Table 11

shows the total number of the used stereo points, num-

ber of parameters and the flop count for each of the

auto-calibration algorithms. COL used 3162 times more

flops than SRE2. The most important finding in the

tests was that despite the fact SRE2 used more mea-

surements; it outperformed COL both in terms of ac-

curacy and computational efficiency.

System calibration results

Table 12 shows the estimated lever-arms, absolute scale

factor and bore-sight angles of the stereo camera system.

The results showed that the lever-arms from COL and

SRE2 were comparable, whereas the one from SRE1 was

the worst. SRE2 estimated the best bore-sight angles

followed by COL and SRE1. The absolute scale factors

were similar in all three calibration results.

The standard deviation of the lever-arm in the z-com-

ponent was almost three times larger than the ones in x

and y components as there was little variation in the ve-

hicle’s pitch angle and the accuracy of the GPS position

was worse vertically than horizontally. The lever-arms

were measured beforehand using a measuring tape at

the accuracy of 0.1cm. Table 13 shows the difference be-

tween the estimated and the measured lever-arms, and

the standard deviations. The differences were within two

times the standard deviations (95%) which showed that

the lever-arms were correctly estimated.

Conclusions

This paper presented a novel two-step camera calibration

method in a GPS/INS/Stereo camera integrated kinematic

positioning and navigation system. The first step performs

the camera auto-calibration for a stereo system by

employing two scale-restraint equations to constrain the

matched features from two consecutive stereo pairs. The

lens distortion parameters, the up-to-scale baseline length

and the relative orientation between the two cameras are

estimated using the least-squares method. The second

step performs system calibration where the auto-

calibration estimates are fused with the blended GPS/INS

solution to recover the camera lever-arms, the absolute

scale of the camera and the bore-sight angles. The main

advantage of the proposed novel method lies that it is free

from landmark parameters and results in computation

and memory savings. There are two main drawbacks in

employing the scale-restraint equation over the collinear-

ity equations for stereo auto-calibration. Firstly the accur-

acy cannot be increased by performing loop closures

when the same scene is revisited. Secondly the scale-

restraint equation is highly non-linear and therefore the

LS estimator can diverge if a good approximation of the

parameters is not available.

The results from the simulated and real road test data

were presented and showed that the proposed auto-

calibration method requires less computation resources

to achieve equal or better accuracy than applying the

traditional collinearity equations despite the fact it using

more measurements.

Appendix A

From the principles of vector analysis, any four vectors

a, b, c and d in three-dimensional space can be related

to each other through

a� bð Þ � c� dð Þ ¼ a:c� dð Þb− b:c� dð Þa
¼ a:b� dð Þc− a:b� cð Þd

This implies,

Table 13 Difference between the estimated lever-arm and the

measured lever arm components

Measured lever-arm (m) COL (m) SRE1 (m) SRE2 (m)

−0.060 0.023 ± 0.016 0.035 ± 0.026 −0.005 ± 0.013

0.325 0.027 ± 0.019 0.009 ± 0.031 0.006 ± 0.018

−0.050 0.032 ± 0.047 −0.117 ± 0.090 −0.043 ± 0.040

Table 12 Lever-arm, Scale and Bore-sight

Parameter COL SRE1 SRE2

labL;x mð Þ −0.037 ± 0.016 −0.025 ± 0.026 −0.065 ± 0.013

labL;y mð Þ 0.352 ± 0.019 0.334 ± 0.031 0.331 ± 0.018

labL;z mð Þ −0.018 ± 0.047 −0.167 ± 0.090 −0.093 ± 0.040

sc 0.983 ± 0.001 0.989 ± 0.001 0.981 ± 0.001

θ
b
c;x degð Þ 90.445 ± 0.010 90.721 ± 0.013 90.654 ± 0.008

θ
b
c;y degð Þ −0.195 ± 0.014 −0.161 ± 0.029 −0.174 ± 0.011

θ
b
c;z degð Þ −90.401 ± 0.031 −90.365 ± 0.054 −90.452 ± 0.024

Table 11 Number of points, parameters and flops

COL SRE1 SRE2

Number of stereo points 26,564 26,564 109,652

Number of parameters 9260 617 617

log10 (flops) 13.0 9.0 9.5
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a:b� dð Þc ¼ a:c� dð Þb− b:c� dð Þaþ a:b� cð Þd

c ¼
ða:c� dÞ

a:b� dð Þ
b−

ðb:c� dÞ

a:b� dð Þ
aþ

ða:b� cÞ

a:b� dð Þ
d

c ¼ bb−aaþ dd

Where the scalar multipliers a, b and d are

a ¼
ðb:c� dÞ

a:b� dð Þ

b ¼
ða:c� dÞ

a:b� dð Þ

d ¼
ða:b� cÞ

a:b� dð Þ
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