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Abstract

Experimental Modal Analysis (EMA) allows to assess the dynamical properties of a mechanical
component or structure by estimating the modal parameters. Whereas EMA is usually based
on local accelerometers or laser vibrometer data, in this paper we focus on camera-based EMA
as cameras offer full field and contact-less data. However, besides few very specific controlled
cases, camera-based EMA is limited by the low frame rate of the camera in comparison to ac-
celerometers and vibrometers. In this paper we propose a novel acquisition scheme that allows
to estimate modal parameters above the Nyquist-Shannon limit (i.e., half of the camera frame
rate) by employing a random sampling scheme in time in combination with one accelerome-
ter. With this information we reconstruct the Impulse Response Function (IRF) modal model
through a nonlinear optimization problem, where the accelerometer ensures a global solution
by providing an initial guess of the eigenfrequencies. We investigate numerically the accuracy
of the methodology by simulating multiple damped sine waves. Furthermore, we present an
experimental validation on a clamped-clamped beam excited by an impact hammer. Thereby,
the displacement information is captured by a single camera triggered by random pulses, and
computed by Lucas-Kanade (LK) optical flow. The complexity and modal assurance criterion
(MAC) of the modes show that all modes whose amplitudes are higher than the noise level are
measured successfully with only one excitation hit, where the highest mode, at 218 Hz, is mea-
sured with a random sampling scheme comparable to 50 fps (to reach 218 Hz, a regular sampling
with 436 fps would be required).
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1. Introduction

Modal parameters (eigenfrequencies, damping factors, mode shapes) reflect the dynamic
properties of structures and are employed in various phases of the life cycle of mechanical sys-
tems. For example, they can be parameters in the design of structures to prevent resonance dur-
ing operation, or for damage identification on structures [1, 2]. Modal analysis is a well-known5

experimental technique to determine the modal parameters, and can be divided into Experimen-
tal Modal Analysis (EMA) and Operational Modal Analysis (OMA). The main difference is
that EMA requires the system excitation to be known (e.g., impact hammer or shaker), whereas
OMA can deal with an unknown and possibly also uncontrolled excitation. Therefore, OMA
is preferred when measuring the excitation is difficult or when operational conditions strongly10

influence the dynamics [3, 4, 5, 6], whereas EMA is well suited to a lab environment, and is
more reliable for damping estimation [7, 8, 9].

Both techniques require the measurement of the system response, and a common choice is to
employ accelerometers, which provide information at discrete points. However, accelerometers
have the drawback that their additional mass may impact the dynamic behavior of the system. A15

spatially dense mode shape can be obtained by an overwhelming number of sensors or by mul-
tiple excitation (roving excitation, which is time consuming). Alternatively, non-contact meth-
ods count on Laser Doppler Vibrometry (LDV) [10], Electronic Speckle Pattern Interferometry
(ESPI)[11], etc. LDV is limited to steady excitation as multiple points need to be measured by a
scanning system, whereas the optical setup of ESPI is complex because the object and reference20

laser beam need to be aligned to measure their phase difference.
Cameras can provide spatially dense information for modal analysis, do not require any scan-

ning system (and thus camera-based EMA is not limited to steady-state excitation), and consist
of a simple optical setup, making them appealing in comparison with LDV and ESPI. In contrast
to accelerometer-based and vibrometer-based modal analysis (which process acceleration and25

velocity, respectively), cameras capture displacement data by tracking the displacement of an
object through the variation of the image intensity, with the help of image processing algorithms
[12, 13]. For example, Phase-based Motion Magnification (PMM) aims to visualize and mea-
sure movement through phase measurements [14, 15]. Compared with intensity-based method,
it is robust to illumination changes but requires setting kernel functions to calculate the phase of30

the image subset. Digital Image Correlation (DIC) measures displacements as well as strains via
image subset correlation [16]. The correlation function in DIC involves an affine transformation
model, hence extra computation time is needed in comparison with the translation-only model.
Concerning displacement-only measurements, Lucas-Kanade (LK) optical flow simplifies the
correlation function in DIC into the translation-only model. LK is valid under the assumption35

that the deformation is negligible compared to the translation and the overall brightness is con-
stant [17, 18, 19]. OMA [5, 6, 20] and EMA [21, 22] can be performed on the outcome of
camera-based displacement measurements.

Compared with an accelerometer, the sampling frequency (frame rate) of a camera is gener-
ally much lower. For instance, a typical frequency range of piezoelectric accelerometers is 1 Hz40

to 10 000 Hz [23], whereas the frequency range for microelectromechanical or optomechani-
cal accelerometers technology is usually higher[24]. In contrast, a typical high-speed camera
operates at a frame rate of around 1000 fps (frames per second)[25], whose in-plane and out-of-
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plane displacement accuracies are approximately 0.01 pixel and 0.03 pixel, respectively [26, 27].
Cameras with a high frame rate are expensive, and there is a trade-off between the frame rate45

and spatial resolution. When the frame rate is too low, two different sine waves may have the
same value at the sampling points. This issue is called aliasing and can be avoided by applying
a low-pass filter. For example, we can set a long exposure time of the camera, and the light
intensity variation from high frequency vibration will be averaged and filtered out [28].

Various works aim to improve the frequency range in the camera-based modal analysis. If a50

camera with a rolling shutter is utilized, column pixels (or row pixels depending on the orienta-
tion) in the image are recorded sequentially, offering the possibility to exploit the phase shifts of
different columns to measure natural frequencies which are higher than the camera frame rate
[29]. However, most industrial cameras (including the camera used in this paper) have a global
shutter (i.e., they take a snapshot of the entire scene at a single time instant), which is also fa-55

vorable for the LK optical flow. In the specific case of a vibration signal dominated by a known
single frequency component, aliasing can be exploited in order to remap the high frequency sig-
nal to the low frequency band thus can be measured with a low sampling frequency [16]. How-
ever, if the frequency of vibration is unknown, low sampling frequency is problematic, and data
processing algorithms are used to recover frequency content higher than the Nyquist frequency.60

For instance, Blind Source Separation (BSS) for OMA [6, 30] can separate displacements in a
wide frequency band into individual modal coordinates and extract the modal parameters from a
randomly re-sampled video. Moreover, OMA can also be performed with compressed data via
a power spectrum blind multi-coset sampling approach [31]. In the case of the free vibration
without damping, Atomic Norm Minimization (ANM) can estimate mode shapes and eigenfre-65

quencies from random temporal compressed data[32, 33], and Singular Value Decomposition
(SVD) can also be used to obtain mode shapes from randomly compressed measurements [34].
Previous works about BSS, ANM and SVD prove the feasibility of reducing the averaged sam-
pling frequency of the camera by random re-sampling and then recovering the modal response
of the structure. This feasibility motivates us to utilize random sampling as a data acquisition70

method to handle the sub-Nyquist sampling frequency in the case of EMA on a damped struc-
ture.

Random sampling has been investigated in the field of Compressive Sensing (CS) since 2006
[35, 36, 37]. A basic requirement in CS is that the measured signal can be represented by nearly
orthogonal bases. Various CS-based frameworks have been proposed to recover the compressed75

sparse data, e.g. re-weighted basis pursuit de-noising [38] and group sparse optimization [39]
with Discrete Fourier Transform (DFT) orthonormal basis. The orthonormal property is charac-
terized by the Restricted Isometry Property (RIP) [40, 41], but the RIP is difficult to meet in the
modal space. To recover higher frequency content than the Nyquist frequency without the RIP,
J. Javh et al. excited the structure in a predetermined frequency band. After repeating the mea-80

surements in various frequency bands and merging these frequency bands, they demonstrated
the advantageous use of aliasing for measurements above the Nyquist frequency [42]. Similarly,
in time domain, if the signal is repeatable and its phase is manipulable, repetitions with different
phases are also a feasible approach [43]. When the illumination is modulated harmonically, high
frequency content related to the harmonic light can also be measured by using Fourier integrals.85

By changing the frequency of the light, other frequency content can be measured [44]. Nev-
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ertheless, the repetition of measurements is time-consuming, and the requirement of having a
repeatable excitation signal also limits the application of these approaches.

To improve the camera’s frequency bandwidth in the modal space, thus going beyond the
Nyquist-Shannon sampling frequency, in this paper we propose a time domain random sampling90

acquisition scheme and subsequent modal sparse recovering for the case of impact excitation.
The dynamical response to an impact is considered as a combination of damped sine waves,
which can be regarded as basis. The implementation details are described in the upcoming sec-
tions. Section 2 introduces camera-based EMA and the LK optical flow algorithm. Section 3
elaborates on the practicalities of random sampling with restricted sampling time interval of the95

camera, and on the optimization method to recover the modal response from the randomly sam-
pled data. Section 4 evaluates the accuracy of optimization with simulated randomly sampled
data. Section 5 shows an experimental application on a clamped-clamped beam and discusses
the experiment results. Section 6 concludes this paper and discusses possibilities for future
research.100

2. Camera-based EMA and image processing algorithms

In this section, the basics of EMA are illustrated in section 2.1, followed by details on
camera-based displacement measurement in section 2.2 and the procedure of camera-based
EMA in section 2.3.

2.1. Basics of EMA105

Fig. 1 shows the workflow of EMA in the case of accelerometer measurements, requiring
a Data Acquisition Systems (DAS) to record the system input (hammer force) together with
the acceleration (Acc.) signals. These signals are used to estimate the Frequency Response
Functions (FRFs), which constitute the foundation of EMA [23]. The system can also be excited
in a controlled way by a shaker. However, in this paper we only consider hammer excitation110

since an impact force results in a constant power spectral density (within a certain frequency
range depending on the range of interest and the hardness of the hammer tip [23]). An impact
force can also easily be represented in the random sampling model.

Acc.
Hammer

Post-
processing

DAS

(a) Measurement

Mode shape

(b) Frequency response (c) EMA

Figure 1: Procedure of conventional EMA.
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To estimate the modal parameters, we require a modal model as described in frequency
domain by eq. (1) [23].115

H(jω) =
N∑
i=1

(
Liψ

>
i

jω − λi
+

L∗iψ
∗>
i

jω − λ∗i

)
+ UR− LR

ω2

X(jω) = H(jω)F (jω)

(1)

H(jω) is the estimated FRF, Li = Qiψi are modal participation factors and represent the
interaction between modes and excitation, where Qi is a scaling factor and ψi is a modal vector.
λi = −σi + jωi are (complex) poles, and depend on the damping and on the eigenfrequency
of their correspondent mode. Superscript > and ∗ are the transpose and complex conjugate,
respectively. LR and UR are the lower and upper residual terms, and are used to approximate120

the effects of modes outside the frequency range of interest. The vibration output X(ω) is
obtained by multiplying the system input F (jω) and the FRF H(jω). FRFs and modal model
allow to estimate the modal parameters, where the PolyMAX method can be used to obtain
stabilization diagrams and therefore to select the modes [45].

PolyMAX consists of two steps, the LSCF (Least-Squares Complex Frequency) step and the125

LSFD (Least-Squares Frequency Domain) step. LSCF starts from a right matrix-fraction model
[46, 47]. Fitting the fraction model with experimental FRFs yields several system poles among
which consistent and stable poles (λi) have to be selected by making use of the stabilization
diagram [48]. This procedure can be automatized by introducing stabilization tolerances [48].
In the LSFD step, the mode shapes are obtained by estimating the modal vectors ψi and scaling130

factors Qi with the selected λi and corresponding Li.
Besides working in frequency domain with the above mentioned FRFs, the dynamic re-

sponse of a structure can be represented in the time domain by Impulse Response Functions
(IRFs) h(ts), which are the inverse Fourier transforms of H(jω) without the residual terms.

h(ts) =

N∑
i=1

(
Qiψiψ

>
i e

λits +Q∗iψ
∗
i ψ
∗>
i eλ

∗
i ts
)

x(ts) = h(ts) ∗ f(ts)

(2)

h(ts) is a sum over the modal contributions indicated by the mode number i. The convolution135

of the system input f(ts) and the IRFs h(ts) leads to the vibration output x(ts) of the system
in time domain. The time vector ts has a constant time step in the case of regular sampling,
whereas in section 3.2 we will discuss how to deal with the proposed irregular sampling scheme
(where the time time steps are generated by a uniformly distributed random variable).

2.2. Camera-based displacement measurements140

When working with cameras, the first step is a calibration to define the projection from the
3D scene to 2D pixel coordinates (fig. 2), which is represented by the camera projection matrix
(P = K[R| − RC]). Here, [R| − RC] is the extrinsic matrix and represents the translation
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and rotation between the 3D scene and the camera plane, whereas K is the intrinsic matrix
consisting of scaling factors and axis shift from the camera plane to the sensor plane. P is145

computed thanks to a few pictures of a checkerboard pattern with known dimensions taken at
different orientations, whose corners are detected by image processing algorithm [49].

Furthermore, lens distortions can be taken into account to improve measurement accuracy
within the whole field of view. This involves higher order terms in the projection matrix [50]
instead of a linear approximation, and hence it is more accurate.150

Camera coordinate

Pixel coordinate 

3D World 
coordinate 

Figure 2: Projection in camera calibration.

Once all calibration parameters are known, the measurements of the vibrating structure can
take place. Markers (e.g., checkerboards, dots, speckle pattern) can be attached or printed on
the specimen under investigation to create sufficient high-contrast feature points (e.g., a sharp
corner). Natural feature points on the specimen are also applicable but may not be ubiquitous.
Each frame of the video needs to be corrected by the calibration parameters, after which various155

image processing algorithms (some examples were mentioned in the introduction) can be used to
measure the displacement at the points of interest. This can involve a single camera or multiple
views (e.g., stereo camera) depending on the application. In this paper we adopt a single camera
since we are interested in the vibrations of a beam in a single plane. In case of a stereo vision
system, an extra step is required to match the feature points from each camera such that 3D160

displacements can be calculated by triangulation [16].
In this paper we adopt the Lucas-Kanade (LK) optical flow method to track the displace-

ments, because it is well suited for sub-pixel displacement estimation. The LK optical flow has
a simple objective function and is fast in computation in comparison with other tracking methods
[17]. Its basic idea is to minimize the difference of tracked image subsets in two frames (fig. 3):165

arg min
u,v

E =
∑

Ω

[
I(x+ u, y + v, t+ 1)− I(x, y, t)

]2 (3)

where I(x, y, t) are gray levels within Ω in the current frame, and I(x+u, y+ v, t+ 1) are gray
levels within Ω in the next frame. Ω indicates an image subset around the tracked point. E is
the Sum of Squared Differences (SSD) of the subsets gray levels. x, y represent the position of
the tracked point, whose displacement is u, v during the tracking.170

An interpolation of I(x + u, y + v, t + 1) is required to get a continuous function and thus
allowing to calculate the displacement

[
u v

]
at sub-pixel level, and this is usually implemented

in form of a locally convex cubic function [17]. To find the minimum of the objective function in
eq. (3), we adopt a linear approximation I(x, y, t)+It+

[
u v

] [
Ix Iy

]> of I(x+u, y+v, t+1),
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Feature point 

Current frame Next frame 

Image
subset

Figure 3: Principle of the Lucas-Kanade optical flow.

where It is the temporal derivative and Ix, Iy are spatial gradients of the image, and pursuit to175

make
[
∂E/∂u ∂E/∂v

]>
= 0. Other numerical methods are discussed in [17].

Consequently, the displacement of the image subset
[
u v

]
can be calculated as:[

u
v

]
=

[
I2
x IxIy

IyIx I2
y

]−1 [−ItIx
−ItIy

]
(4)

To minimize the linearization error, we apply an iterative calculation of
[
u v

]
, where the initial

guess of
[
u v

]
in the next iteration comes from the current output of the calculation. This

linear approximation method tracks feature points individually and thus is a subset-based local180

approach. The external factors may impact the success of tracking (e.g., a periodic pattern within
the image subset, image noise, light conditions and motion blur). Otherwise, we can adjust the
experimental setup to avoid external factors (e.g., modify the image subset size, increase the
image resolution, apply additional light sources, set a proper exposure time).

2.3. Camera-based EMA185

Camera-based EMA follows the same workflow of EMA, where displacement measurements
are used instead of acceleration or velocity (fig. 1). For a single frequency, (i.e., a damped
sine wave), the displacement amplitude relates to the acceleration by the square of the angular
frequency, while its phase shifts by π and the damping factor remains the same. Mathematically,
F(x) = F(α)/(jω)2, where F indicates the Fourier transform, and x and α = d2x/dt2 are190

displacement and acceleration, respectively.
The camera-based EMA workflow is summarized in fig. 4. The structure is excited by a

hammer or a shaker, and at the same time displacements information are acquired by a camera
and processed as described in section 5 (fig. 4(b)). Moreover, the excitation signal is measured by
an impedance head (at the hammer tip or at the shaker), and afterwards the FRFs are calculated.195

Finally, the modal parameters are estimated using e.g. the PolyMAX method [45]. An example
is given in section 5.

3. Random sampling in time and optimization model

Although camera-based EMA offers spatially dense data without the influence of the ac-
celerometers mass in comparison with accelerometer-based EMA, it is generally limited by the200
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Hammer

Cam.
Post-

processing

Cam. software

DAS Sync Box

(a) Experiment (b) Image processing

Recording

Detect corners(and match)

Track corners(and triangulate)

Camera calibration

(c) EMA

Mode shape

FRF

Acc.

Figure 4: Procedure of camera-based EMA.

frame rate of the camera. Our proposed methodology for camera-based EMA aims at going be-
yond the Nyquist-Shannon sampling frequency, i.e., we want to estimate mode shapes above the
frequency limit equal to half the camera’s frame rate. To capture the necessary high frequency
information, we propose to use a random sampling scheme [35].

Firstly, section 3.1 describes the procedure of conducting random sampling with a camera.205

Secondly, section 3.2 builds an optimization model to recover high frequency modal responses
from randomly sampled vibrations. Finally, section 3.3 analyzes the feasibility of the optimiza-
tion to find the global minimum of the objective function.

3.1. Sampling strategy

Time

2

Regular 
sampling

Random 
sampling

Figure 5: Random sampling of the camera frames.

Time data signals are usually regularly sampled at a predefined frame rate. In fig. 5 the210

highest frame rate of the camera (1/∆tmin) in regular sampling is limited by the exposure time
and data transfer rate. According to the Nyquist-Shannon sampling theorem in regular sampling,
the highest frequency of signals we can measure without aliasing is 1/(2∆tmin). In the random
sampling, the ambiguity in aliasing is eliminated, and two different sine waves have distinct
values. Therefore, reconstruction of the higher frequency signal than 1/∆tmin is feasible.215

To apply a random sampling acquisition scheme, we randomly trigger the camera. Due to
the limitation of the frame rate, the time interval between two consecutive frames cannot exceed
∆tmin. On the other hand, we want to acquire sufficient frames, and thus we set a maximum
interval to 2∆tmin. Therefore, the resulting trigger for the camera is between ∆tmin and 2∆tmin
(shown by the dashed lines in fig. 5), and the sampling interval ∆t is then a continuous random220
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variable uniformly distributed on the interval [∆tmin, 2∆tmin], i.e., ∆t ∼ U(∆tmin, 2∆tmin),
where U represents the continuous uniform distribution.

3.2. Optimization model of random sampling
To reconstruct high frequency modal responses, the IRF model needs now to be applied on

the randomly sampled signal. Similar to the regularly sampled IRF model in eq. (2), the IRF225

in random sampling is h(t) =
∑N

i=1<(Aie
λit), where the time vector is changed from ts in

eq. (2) to t, and Qi and ψi are represented by a complex amplitude Ai at every sampling point in
space. Both Ai and λi are complex numbers, and consequently Ai = <(Ai) + =(Ai)j can also
be represented as Ai = aie

jϕi , where ai is the amplitude and ϕi is the phase of mode i. Finally,
λi = 2πfij − σi consists of the frequency fi and the damping σi of mode i.230

The IRF indicates that the displacement response of a mechanical component can be de-
composed into damped sine waves also in case of random sampling. If we substitute the IRF
with random sampling into eq. (2), where the convolution of the IRF and the excitation equals
to the measured response, their difference is expected to be zero. Therefore, we can minimize
the squared residual to obtain Ai and λi:235

arg min
Ai,λi

∑
t

[∑N
i=1<(Aie

λit) ∗ f(t)− y(t)
]2
− ε (5)

where f(t) is the excitation signal, N is the number of eigenfrequencies, ε is a constant number
representing a possible offset, and y(t) is the measured response. In this paper, the rigid body
motion is not analyzed, thus the rigid body motion term is not included in eq. (5), which makes
eq. (5) only applicable to the clamped-clamped boundary conditions because the rigid body
motion is negligible in this case. Expansion of the current model to include general boundary240

conditions is one of our future steps, since it is possible to distinguish deformation from the rigid
body motion or decompose the rigid body motion into damped sine waves.

The solution of the least square problem in eq. (5) followed by a modal analysis can be
used to recover the complete modal response. Equation (5) is applicable to different excitation
types. In fact, by substituting the measured excitation signal f(t) in time domain into eq. (5),245

we can still optimize Ai and λi by time convolution. Nevertheless, if we assume an impact
excitation, the IRF equals the measured response without the convolution operation, and thus
the optimization takes less computation time compared with other excitation types. Moreover,
choosing a shaker excitation is beneficial in case of high damping, as the impulse response would
quickly decay to the noise level of the measurements.250

3.3. Feasibility of the optimization problem in eq. (5)
Eq. 5 is a nonlinear optimization problem, whose solution can be obtained via a gradient-

based algorithm with warm start. To analyze the feasibility of the optimization, we can inves-
tigate the convexity of the objective function g(Ai, λi), i.e., the deviation between a fitted sum
of damped sine waves and the measured response. Meta-heuristic algorithms may also be em-255

ployed to optimize the problem with less strict requirements on convexity, but they were not
chosen here as they can end up into local optima [51]. Future research may further investigate
this aspect.
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As this paper focuses on impact excitation (and consequently f(t) is an impulse function),
we have simulated a measured response as as a damped sine wave, i.e., y(t) = <(e2πjt−t), and260

consequently eq. (5) becomes:

g(Ai, λi) =
∑
t

[∑N
i=1 aie

−σit cos(2πfit+ ϕi)− e−t cos(2πt))
]2
− ε (6)

The solutions A?i , λ
?
i of g(Ai, λi) satisfy the definition of the local minimum:

∇2g(A?i , λ
?
i ) � 0,∇g(A?i , λ

?
i ) = 0 (7)

To analyze the feasibility of obtaining A?i , λ
?
i by a gradient-based algorithm, we visualize

how the objective function g(Ai, λi) changes with respect to perturbations of Ai, λi, as shown
in fig. 6. Regarding the damping, the real and imaginary parts of Ai, g(Ai, λi) are globally265

quasiconvex, i.e., along any segment in the error curve the highest point is one of the endpoints.
Concerning the frequency, the error curve is only locally quasiconvex when the curve segment is
close to the global minimum [52]. In other words, for any θ ∈ [0, 1] and for any frequency inter-
val [fl, fr] which is close to the global minimum, g|fi=θfl+(1−θ)fr ≤ max

{
g|fi=fl , g|fi=fr

}
holds [52].270

0 0.5 1 1.5 2

Damping/Freq

0

2

4

6

8

10

12

E
rr

or

Damping
Freq

-4 -3 -2 -1 0 1 2 3 4
Real/Imag part of A

0

5

10

15

20

25

30

35

40

E
rr

or

Real
Imag

Figure 6: Objective function g(Ai, λi) under perturbations of the variables.

Before starting the iterative search, if an initial guess of the frequency γi which lies in the
local quasiconvex segment is provided, a global minimum is achievable by using a gradient-
based solver. In this paper, a trust-region-reflective algorithm [53] is adopted, where the step
size and search direction are calculated based on the gradient of the objective function. To
improve the reproducibility of the optimization, some stopping criteria can be set, e.g., a lower275

bound on the change of step size and a lower bound on the objective function during iteration,
which in this paper are set to 1× 10−6 and 1× 10−10 , respectively. In general, these values are
case-dependent and should not be lower than the precision of floating-point numbers in order to
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avoid the risk of convergence issues. The initial guess of the eigenfrequencies can be obtained
from an accelerometer, which can measure the eigenfrequencies at a higher frequency than the280

camera.
The objective function in eq. (6) (for a single damped sine wave) can be decomposed into a

series of operations as shown in fig. 7. For multiple damped sine waves (i > 1) the preservation
of quasiconvexity is not guaranteed, and consequently a local minimum is not always a global
minimum (cf. eq. (7)). In signal processing this indicates aliasing, where the proposed random285

sampling scheme can eliminate the ambiguity happening in aliasing, thus making it possible to
differentiate the contribution of each damped sine waves have in the summation

∑
i.

(                    )

[  ]

Figure 7: Expression tree of eq. (6).

Because of the local quasiconvexity over the frequency, the bound ∆γi of the frequency γi
is set as a value close to the global minimum. Therefore, we add a constraint to eq. (5), and the
final version of the optimization model is:290

arg min
Ai,λi

∑
t

[∑N
i=1<(Aie

λit) ∗ f(t)− y(t)
]2
− ε

s.t. γi −∆γi ≤ =(λi)/(2π) ≤ γi + ∆γi, i = 1, . . . , N

(8)

The global minimum is thus achieved when the initial guess of the frequency is close to
the global minimum. In the case of multiple damped sine waves, random sampling is adopted
to ensure quasiconvexity. In the single damped sine wave case, simple method mentioned in
the introduction are applicable [16]. As an alternative to the use of accelerometers to provide
an initial guess of the eigenfrequencies, a CS-based framework (i.e., exploiting the sparsity of295

the modal response in the frequency domain) can extract it directly from the randomly sampled
displacements. However, the state-of-the-art in modal analysis mostly adopts Fourier basis func-
tions [38], which are not suited for damped structures, resulting in an incomplete set of initial
guesses. Nonetheless, we see the potential of CS to avoid the need of having an accelerometer,
and in future work we will investigate the use of different basis functions.300
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Table 1: Simulation setup (base case).

Name Value
Number of waves 20
Frequency 1 Hz to 500 Hz

Damping 1× 10−3 to 1

Amplitude 1× 10−4 mm to 1 mm

Phase 0 to 2π rad
SNR (Signal-to-Noise Ratio) 20 dB

Frame rate < 100 fps

Time interval 0.01 s to 0.02 s

Measurement time ∼ 6 s

Number of time samples 400

4. Numerical validation of the proposed approach

To assess the proposed methodology numerically, displacements are simulated by a combi-
nation of damped sine waves. In this section we present the simulation setup in section 4.1, we
discuss the simulation results in section 4.2, and finally we analyze the influence of the amount
of modes in section 4.3.305

4.1. Simulation setup

As stated in section 3.1, there is a minimum to the sampling time interval. In the simulation,
we set ∆tmin = 0.01 s, and the time interval is thus randomly selected from 0.01 s to 0.02 s. The
simulated damped sine waves are

∑N
i=1<(Aie

λit), where Ai = aie
jϕi and λi = 2πfij − σi.

Among these predefined parameters, the frequency fi and phase ϕi are randomly selected and310

their ranges are listed in table 1. The damping σi and amplitude ai are represented in scientific
notation, i.e., p × 10q, where p, q are selected randomly. Noise is added to the modal response
and its maximum amplitude is one-tenth of the minimum amplitude of the sine waves, resulting
in a 20 dB signal-to-noise ratio.

With these parameters we have generated a set of randomly sampled damped sine waves,315

and we have verified that the optimization model in eq. (5) can recover the complete signal. The
highest frequency of the displacement to be reconstructed is approximately 500 Hz, and conse-
quently the sampling frequency should be at least 1000 Hz with a regular sampling. However,
the equivalent sampling frequency (expected number of captured frames in one second) in case
of the proposed random sampling scheme is less than 100 Hz, i.e., approximately 1/10 of the320

required (regular) sampling frequency.
To simulate a realistic error of the eigenfrequencies calculated with the accelerometer data,

we shifted the target frequencies by 0.05 Hz to be used as initial guesses, while the frequency
bound ∆γi in eq. (8) is 0.09 Hz around those frequencies. Finally, we set the lower bound of the
damping values to zero, as damping factors are always positive.325
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4.2. Simulation results
For the considered numerical example, the accuracy of the optimization, indicated by the

Mean Squared Error (MSE) over the time samples, is 6.74× 10−12 mm2, which is lower than
the squared amplitude of all damped sine waves, and thus the recovered signal overlaps well
with the original signal as fig. 8(a) shows in the frequency domain.

(a) Signal in frequency domain (b) Error of the recovered amplitude and frequency
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Figure 8: Simulation error for the 20 components.

330

In time domain, thanks to the optimized signal parameters we recovered the regularly sam-
pled response with the sampling frequency 1× 104 Hz and the measurement time 5 s. Compared
with the original signal generated from predefined variables, the overall MSE of recovered signal
over time is 2.63× 10−11 mm2.

By comparing the estimated frequencies with the target values, we notice that the errors are335

lower than 3× 10−4 Hz as fig. 8(b) indicates. Similarly to the Non-Harmonic Fourier Analysis
(NHFA) [54], the recovered signal from the proposed nonlinear optimization is not affected by
spectral leakage, and the accuracy of frequency depends on the parameter estimation. However,
the amplitudes cannot be directly compared because of the presence of damping. Performing
the Fourier transform on the recovered signal, we can evaluate the accuracy of the recovered340

amplitudes in the frequency domain by deviation from their predefined values in table 1. We
notice that the highest relative error occurs at the 7th component (0.065%) as shown in fig. 8(b),
which is the lowest peak in the frequency spectrum (2.48× 10−4 mm). Therefore, given the
simulated SNR of 20 dB, we conclude that the nonlinear optimization did recover the correct
signal.345

4.3. Influence of the number of modes
As the frequency range of interest of a certain application may include several relevant

modes, in this section we analyze the influence of the number of modes on the accuracy of
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the reconstructed signal. To this purpose, we randomly generated the parameters of 100 damped
sine waves. Starting from 5 modes, we gradually appended more modes to the starting modal re-350

sponse, and calculated the MSE of both the curve fitting with randomly sampled time instances
and of the recovered signal with (high frequency) regular sampling.

As fig. 9 shows, when increasing the number of modes the MSE increases. When the number
of modes exceeds 100, the optimization becomes an underdetermined problem, given that 4
unknown variables exist in one damped sine wave, and there are only 400 samples in time. In355

addition, the damping leads to correlated damped sine waves, and consequently the error of
the recovered signal becomes large when the number of mode approaches 100, starting already
around 60 whose MSE of the recovered signal is 6.58× 10−8 mm2.
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Figure 9: Error of curve fitting at randomly sampled time instances and the recovered complete signal when increas-
ing the number of modes.

Finally, our simulation indicated that it is of paramount importance that the accelerometer
provides a starting value for every modes of interest, i.e., omitting a mode results in an error,360

whereas including extra (wrong) modes does not jeopardize the results, as it is barely noticeable
in the reconstructed signal. Compared with the CS-based frameworks, accelerometer based
selection is more straightforward, hence the latter is more advantageous in this case.

5. Experimental validation

To test experimentally the proposed methodology, we performed a camera-based EMA on365

an aluminum beam [55]. In this section, the experimental setup is described in section 5.1.
Section 5.2 illustrates the procedure of recovering the modes from a randomly captured video,
and finally section 5.3 discusses the recovered modes to validate the proposed approach.

5.1. Experimental setup

The beam is mounted to two vertical mounts in a clamped-clamped configuration. Two370

accelerometers (cf. fig. 12) are mounted on the beam to measure the eigenfrequencies. Theo-
retically one accelerometer is sufficient, but a redundant one avoids missing eigenfrequencies in
case the accelerometer would be positioned at a modal node. Vibration of the beam is captured
by a single camera as shown in fig. 4. The camera used in the experiment is a Ximea xiB-64
CB120RG-CM-X8G3 [56]. With regular sampling, its maximum frame rate is 66 fps at full375
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resolution (4096 × 3072 pixels) and full bit depth (12 bit). As the length of the beam is 1 m,
the resulting resolution is 3332 pixel/m. A higher frame rate can be obtained by reducing the
spatial resolution, as the bottle neck is the data transfer rate, but by doing so the displacement
accuracy decreases. The camera is triggered by the rising edge of a square wave, whose time
interval is randomly selected from 0.02 s to 0.04 s (cf. fig. 10), and the equivalent frame rate is380

less than 50 fps.
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Figure 10: Probability of the time intervals between trigger pulses.

The bit depth of the images is set to 12 bit to reduce the Intensity Discretization Bias (IDB)
in comparison with 8 bit. The IDB is due to the quantization of the gray level intensity values in
the digital camera, and it was found experimentally in [27] that the IDB of an 8-bit image set is
100 times the IDB of a 12-bit set (i.e., 10−5 ). 8-bit image set is acceptable if its IDB and noise385

level do not increase the residual considerably during the optimization.
The exposure time was set as 0.001 s. This value is feasible from a hardware point of view,

and it is short enough to have sufficient brightness, SNR (in general, reducing exposure time
prevents the oversaturation of pixels and motion blur, but the captured image will have a low
brightness level and a low SNR especially under scarce illumination [57]), and finally to capture390

the targeted frequency range (as an increased exposure time acts as low-pass filter [28]).
As introduced in section 2.2, eq. (4) of the LK optical flow indicates that an accurate tracking

requires a sharp spatial gradient in gray level. Therefore, on the beam we have attached some
high-contrast checkerboard markers, otherwise the number of sharp corners on the beam is not
sufficient for the displacement measurement.395

5.2. Workflow
The workflow from image acquisition to EMA is illustrated in fig. 11, and is discussed in the

following list:

(a) We randomly trigger the camera and capture a video of the vibrating beam after a hammer
hit.400

(b) Using the first frame of the video as the reference image, we extract the corner points. These
are fitted by a cubic function to remove the points located in the background. We track the
1D mesh points on the cubic curve by the LK optical flow, and the number of points is
approximately 1× 3000 as shown in fig. 12. We extract the y-axis (vertical) displacements
of the mesh points, apply a median filter to the displacements and average displacements to405

reduce noise and obtain displacements of 500 points (fig. 13).
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Figure 11: Data processing procedure.

Hammer excitation
Accelerometers

Figure 12: 1D mesh (red line) on the beam.

(c) To obtain the initial guess of the eigenfrequencies, we measure the acceleration response us-
ing accelerometers (fig. 16(a)). Afterward we apply PolyMAX partially on the acceleration
to automatically select eigenfrequencies [48]. There are 8 dominant modes below 500Hz
observed from the acceleration, i.e., 25.575, 63.595, 73.013, 134.825, 218.373, 316.289,410

397.041, and 428.231 (Hz). The frequency bound ∆γi in eq. (8) is set to the resolution of
the accelerometers, i.e., 0.09 Hz. With the initial guess and bound, we optimize eq. (8) and
obtain frequency, damping, amplitude, and phase of the modal response (fig. 14).

(d) Finally, we recover the displacements by using the estimated parameters with higher sam-
pling frequency, allowing us to obtain the mode shapes of the beam through PolyMAX [45]415

(fig. 15).

In step (b) we mentioned that we set the first frame as a static reference image. This is
acceptable for the low amplitude displacements of our experiment. The tracking error would
accumulate if we update the reference image at every step, i.e., considering the first frame be-
tween every two consecutive frames as the reference image. In the case of higher amplitude, the420

coarse-to-fine estimation with a multi-level of the image pyramid can be applied.
The feature point detection is achieved by the minimum eigenvalue algorithm [49], which

is simple and suitable for LK optical flow algorithm. During detection, if the eigenvalues of
an image subset in two directions are all higher than a prescribed threshold, the image subset
contains a sharp corner or salt-and-pepper textures, both of which can be tracked well by the LK425

optical flow.
To remove any feature points related to the background, we fitted a 1D mesh on these corner

points to track in step (b). The points in the 1D mesh are close to the detected points by the
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minimum eigenvalue algorithm, and an image subset around them will contains both of them,
hence the LK optical flow (as a subset-based tracking algorithm) can track the subset around430

the 1D mesh successfully. In the beam’s case, we used the a priori knowledge of the beam’s
geometry to remove the feature points in the background, and the general procedure is shown in
fig. 4, where we can also remove irrelevant feature points or manually delete them by combining
a priori knowledge (e.g., a static background in comparison with the dynamic specimen) in the
case of other specimens.435

5.3. Experimental results

Dominated by the motion of the first mode, the measured displacement in fig. 13 has its
largest value in the center of the beam. To calculate the noise level in the measurement, the rela-
tion between the standard deviation of the camera noise (stdcam) and the estimated displacement
(stdy) is derived as std2

y = (I>y Iy)
−1std2

cam [58]. In the experiment, stdcam = 3 in gray scale440
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values. With the highest spatial gradient (i.e., 4096) for a 12 bit image, the smallest standard
deviation of the displacement in the y direction (stdy) is 7.3× 10−4 pixel, and stdx = stdy.

To compare our camera-based EMA with an accelerometer-based EMA, we integrate twice
the accelerometer measurements (as mentioned in section 2.3) by F(xpx) = βF(α)/(jω)2 in
the frequency domain, where β = 3332 pixel/m is the spatial resolution of the images, and xpx445

is the displacement in pixel.
To evaluate the accuracy of the camera-based measurements, we focused on the displace-

ment of two feature points located next to the two accelerometers (fig. 12). A comparison be-
tween the camera-based displacement and the first accelerometer shows that the peaks of the
lowest 5 modes overlap well (fig. 16(a)), whereas the peaks of the highest 3 modes are below450

the noise level. The comparison with the second accelerometer also confirms that the highest 3
modes were not recovered successfully. The deviation of the measured modes between camera
and accelerometers is in the range of 3× 10−3 pixel (fig. 16(b)), which is higher than the am-
plitude of modes 6, 7 and 8. (The amplitudes of the measured signal at 427.8 Hz (mode 8) from
accelerometer 1 and 2 are 9× 10−4 pixel and 6× 10−4 pixel, respectively, which are close to455

stdy and thus unidentifiable, as we can see in fig. 15). The noise is also the reason for stopping
the eigenfrequency selection at mode 8, as peaks of higher modes are below stdy.

Due to the frequency bound ∆γi in eq. (8), the “S” points are aligned in the stabilization
diagram fig. 15, indicating that the modes estimated by PolyMAX are stable [45].

The mode shapes in fig. 15 show that the first 5 modes match well the theoretical modes460

of a clamped-clamped beam. This is also verified by checking the complexity of the modes,
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Figure 16: Comparison between displacements derived from accelerometer data and recovered from camera data.

indicated by the Mean Phase Deviation (MPD), the Modal Phase Collinearity (MPC) and the
phase scatter, as table 2 shows. The modal response of a vibrating beam with no damping and
no noise is a superposition of sine waves, and the phase and imaginary parts of the modes should
be zero, i.e., MPD is zero, MPC is 100% and there is no phase scatter. In our case, damping465

exists (due to energy loss through thermal effects and internal friction during deformation) but
is rather low (<1%), and thus the MPD and phase scatter are expected to be low while the MPC
is expected to be high. According to these indicators, the mode shapes of modes 1 to 4 are real
modes because of the low complexity (MPC> 95% and MPD<15°), whereas modes 6 to 8 are
not identifiable due to noise.470

The Modal Assurance Criterion (MAC) can quantify the correlation among different mode
shapes. If the weighted factors of the mass are evenly spread over the beam, the MAC matrix
is diagonal, and the correlation among different mode shapes is zero. In the MAC matrix of
the experiment (fig. 15) we can distinguish mode 5 by its low correlation with the other modes
(close to 0%), although its complexity is higher than mode 1 to 4. The MAC of modes 2 and475

3 also shows that the similarity of their correspondent mode shapes is high (almost 90%). The
dynamical behavior of the experimental structure (i.e., the beam) is described in detail in [59],
where it becomes clear that the contribution of the vertical mounts is not negligible. Accordingly,
it is possible that mode 2 relates to the vertical mounts. Nevertheless, the beam’s vibration is
dominant in the captured video.480

6. Conclusions and next steps

In this paper, we proposed a methodology to go beyond the Nyquist-Shannon sampling fre-
quency in the case of a camera-based EMA with impact excitation. This is achieved thanks to a
random sampling scheme in time, one accelerometer and an optimization problem. Specifically,
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Table 2: Modal validation.

Property Frequency (Hz) MPC (%) MPD (°) Phase scatter
Mode 1 25.595 99.963 0.604 low
Mode 2 63.678 95.578 13.509 low
Mode 3 73.054 99.370 6.482 low
Mode 4 134.914 99.750 2.962 low
Mode 5 218.418 91.827 26.884 ?
Mode 6 316.384 28.621 37.185 high
Mode 7 397.011 89.210 26.227 high
Mode 8 428.198 90.132 25.444 ?

we measured modes up to 218 Hz with a sampling scheme comparable to a regular sampling of485

50 fps. The nonlinear optimization is robust (i.e., the global minimum of the error function is
guaranteed) thanks to the data coming from an accelerometer providing an initial eigenfrequency
value and a bound.

The modes obtained by the proposed approach have a high spatial resolution (500 points),
without repetitions of the experiment. Furthermore, the number of images to be transferred and490

stored is lower in comparison to regular sampling. For the experiment discussed in this paper,
the number of randomly triggered frames is 372 during a measurement period of 11 s, whereas
the same experiment would require approximately 4800 frames in case of the standard regular
sampling respecting the Nyquist-Shannon sampling theorem.

In the camera measurements, the noise level is higher than that of accelerometer measure-495

ments. Averaging the camera data may reduce the noise as what conventional EMA employs,
because FRFs in different experiments are correlated whereas the noise should not be correlated.

Although the proposed methodology is derived for (and applied to) an impact excitation, it
is possible to extend it to other excitation types by substituting the excitation signal (e.g., from a
shaker) into the IRF model by convolution, followed by theAi, and λi optimization as described500

in section 3. Furthermore, the proposed random sampling strategy can also be applied to OMA.
In the proposed approach, at least one accelerometer is needed to provide an initial guess of

the eigenfrequencies. However, this information can potentially be extracted directly from the
available camera-based displacement signals. To go in this direction, Compressive Sensing (CS)
can be employed based on a well-chosen set of basis functions. The authors have performed505

a preliminary analysis where a few peaks could be retrieved from the randomly sampled dis-
placement measurements via CS. However, the retrieved number of eigenfrequencies was not
sufficient to replace the accelerometers yet. Nevertheless, we believe that by using a different
set of basis functions together with an advanced solver we will be able to retrieve all eigenfre-
quencies. As such, this is a promising topic to be investigated in future research with the aim of510

making the approach completely contactless.
Finally, we will cope with rigid body motion by formulating it into the optimization model,

to make the proposed methodology applicable to other boundary conditions in addition to the
clamped-clamped condition.
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