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Abstract— In this paper, we describe a system that enables
a low-cost quadrocopter coupled with a ground-based laptop
to navigate autonomously in previously unknown and GPS-
denied environments. Our system consists of three components:
a monocular SLAM system, an extended Kalman filter for
data fusion and state estimation and a PID controller to
generate steering commands. Next to a working system, the
main contribution of this paper is a novel, closed-form solution
to estimate the absolute scale of the generated visual map
from inertial and altitude measurements. In an extensive set of
experiments, we demonstrate that our system is able to navigate
in previously unknown environments at absolute scale without
requiring artificial markers or external sensors. Furthermore,
we show (1) its robustness to temporary loss of visual tracking
and significant delays in the communication process, (2) the
elimination of odometry drift as a result of the visual SLAM
system and (3) accurate, scale-aware pose estimation and
navigation.

I. INTRODUCTION

In recent years, research interest in autonomous micro-

aerial vehicles (MAVs) has grown rapidly. Significant

progress has been made, recent examples include aggressive

flight maneuvers [1, 2], ping-pong [3] and collaborative

construction tasks [4]. However, all of these systems require

external motion capture systems. Flying in unknown, GPS-

denied environments is still an open research problem. The

key challenges here are to localize the robot purely from its

own sensor data and to robustly navigate it even under poten-

tial sensor loss. This requires both a solution to the so-called

simultaneous localization and mapping (SLAM) problem as

well as robust state estimation and control methods. These

challenges are even more expressed on low-cost hardware

with inaccurate actuators, noisy sensors, significant delays

and limited onboard computation resources.

For solving the SLAM problem on MAVs, different types

of sensors such laser range scanners [5], monocular cameras

[6, 7], stereo cameras [8] and RGB-D sensors [9] have been

explored in the past. In our point of view, monocular cameras

provide two major advantages above other modalities: (1)

the amount of information that can be acquired is immense

compared to their low weight, power consumption, size and

cost, which are unmatched by any other type of sensor

and (2) in contrast to depth measuring devices, the range

of a monocular camera is virtually unlimited – allowing a

monocular SLAM system to operate both in small, confined

and large, open environments. The drawback however is,

that the scale of the environment cannot be determined from

monocular vision alone, such that additional sensors (such

as an IMU) are required.

J. Engel, J. Sturm and D. Cremers are with the Department
of Computer Science, Technical University of Munich, Germany
{engelj,sturmju,cremers}@in.tum.de

Fig. 1. A low-cost quadcopter navigates in unstructured environments
using the front camera as its main sensor. The quadrocopter is able to hold a
position, fly figures with absolute scale, and recover from temporary tracking
loss. Picture taken at the TUM open day.

The motivation behind our work is to showcase that robust,

scale-aware visual navigation is feasible and safe on low-cost

robotic hardware. As a platform, we use the Parrot AR.Drone

which is available for $300 and, with a weight of only 420 g

and a protective hull, safe to be used in public places (see

Fig. 1). As the onboard computational resources are utterly

limited, all computations are performed externally.

The contribution of this paper is two-fold: first, we derive

a maximum-likelihood estimator to determine the map scale

in closed-form from metric distance measurements. Second,

we provide a robust technique to deal with large delays in

the controlled system, which facilitates the use of a ground

station in the control loop. Two videos demonstrating the

robustness of our approach, its ability to eliminate drift

effectively and to estimate the absolute scale of the map are

available online:

http://youtu.be/tZxlDly7lno

http://youtu.be/eznMokFQmpc

II. RELATED WORK

Previous work on autonomous flight with quadrocopters

can be categorized into different research areas. One part of

the community focuses on accurate quadrocopter control and

a number of impressive results have been published [10, 1,

3]. These works however rely on advanced external tracking

systems, restricting their use to a lab environment. A similar

approach is to distribute artificial markers in the environment,

simplifying pose estimation [11]. Other approaches learn a

map offline from a previously recorded, manual flight and

thereby enable a quadrocopter to again fly the same trajectory

[12]. For outdoor flights where GPS-based pose estimation

is possible, complete solutions are available as commercial

products [13].

http://youtu.be/tZxlDly7lno
http://youtu.be/eznMokFQmpc


In this work we focus on autonomous flight without previ-

ous knowledge about the environment nor GPS signals, while

using only onboard sensors. First results towards this goal

have been presented using a lightweight laser scanner [5], a

Kinect [9] or a stereo rig [8] mounted on a quadrocopter as

primary sensor. While these sensors provide absolute scale

of the environment, their drawback is a limited range and

large weight, size and power consumption when compared

to a monocular setup [14, 7].

In our work we therefore focus on a monocular camera for

pose estimation. Stabilizing controllers based on optical flow

were presented in [15], and similar methods are integrated

in commercially available hardware [16]. Such systems how-

ever are subject to drift over time, and hence not suited for

long-term navigation.

To eliminate drift, various monocular SLAM methods

have been investigated on quadrocopters, both with off-board

[14, 5] and on-board processing [7]. A particular challenge

for monocular SLAM is, that the scale of the map needs

to be estimated from additional metric sensors such as IMU

or GPS, as it cannot be recovered from vision alone. This

problem has been addressed in recent publications such as

[17, 18]. The current state of the art is to estimate the scale

using an extended Kalman filter (EKF), which contains scale

and offset in its state. In contrast to this, we propose a novel

approach which is based on direct computation: Using a

statistical formulation, we derive a closed-form, consistent

estimator for the scale of the visual map. Our method

yields accurate results both in simulation and practice, and

requires less computational resources than filtering. It can

be used with any monocular SLAM algorithm and sensors

providing metric position or velocity measurements, such

as an ultrasonic or pressure altimeter or occasional GPS

measurements.

In contrast to the systems presented in [14, 7], we deliber-

ately refrain from using expensive, customized hardware: the

only hardware required is the AR.Drone, which comes at a

costs of merely $300 – a fraction of the cost of quadrocopters

used in previous work. Released in 2010 and marketed as

high-tech toy, it has been used and discussed in several

research projects [19, 20, 21]. To our knowledge, we are the

first to present a complete implementation of autonomous,

camera-based flight in unknown, unstructured environments

using the AR.Drone.

III. HARDWARE PLATFORM

As platform we use the Parrot AR.Drone, a commercially

available quadrocopter. Compared to other modern MAV’s

such as Ascending Technology’s Pelican or Hummingbird

quadrocopters, its main advantage is the very low price, its

robustness to crashes and the fact that it can safely be used

indoor and close to people. This however comes at the price

of flexibility: Neither the hardware itself nor the software

running onboard can easily be modified, and communication

with the quadrocopter is only possible over wireless LAN.

With battery and hull, the AR.Drone measures 53cm×52cm

and weights 420 g.
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Fig. 2. Approach Outline: Our navigation system consists of three major
components: a monocular SLAM implementation for visual tracking, an
EKF for data fusion and prediction, and PID control for pose stabilization
and navigation. All computations are performed offboard, which leads to
significant, varying delays which our approach has to compensate.

A. Sensors

The AR.Drone is equipped with a 3-axis gyroscope and

accelerometer, an ultrasound altimeter and two cameras. The

first camera is aimed forward, covers a field of view of

73.5◦× 58.5◦, has a resolution of 320× 240 and a rolling

shutter with a delay of 40 ms between the first and the last

line captured. The video of the first camera is streamed to a

laptop at 18 fps, using lossy compression. The second camera

aims downward, covers a field of view of 47.5◦×36.5◦ and

has a resolution of 176×144 at 60fps. The onboard software

uses the down-looking camera to estimate the horizontal

velocity. The quadcopter sends gyroscope measurements and

the estimated horizontal velocity at 200Hz, the ultrasound

measurements at 25Hz to the laptop. The raw accelerometer

data cannot be accessed directly.

B. Control

The onboard software uses these sensors to control the roll

Φ and pitch Θ, the yaw rotational speed Ψ̇ and the vertical

velocity ż of the quadrocopter according to an external

reference value. This reference is set by sending a new

control command u = (Φ̄,Θ̄,
¯̇z, ¯̇Ψ) ∈ [−1,1]4 every 10 ms.

IV. APPROACH

Our approach consists of three major components running

on a laptop connected to the quadrocopter via wireless LAN,

an overview is given in Fig. 2.

1) Monocular SLAM: For monocular SLAM, our solu-

tion is based on Parallel Tracking and Mapping (PTAM) [22].

After map initialization, we rotate the visual map such that

the xy-plane corresponds to the horizontal plane according

to the accelerometer data, and scale it such that the average

keypoint depth is 1. Throughout tracking, the scale of the

map λ ∈ R is estimated using a novel method described in

Section IV-A. Furthermore, we use the pose estimates from

the EKF to identify and reject falsely tracked frames.



prediction:

Φ,Θ,Ψ:
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Fig. 3. Pose Prediction: Measurements and control commands arrive
with significant delays. To compensate for these delays, we keep a history
of observations and sent control commands between t−∆tvis and t+∆tcontrol

and re-calculate the EKF state when required. Note the large timespan with
no or only partial odometry observations.

2) Extended Kalman Filter: In order to fuse all available

data, we employ an extended Kalman filter (EKF). We

derived and calibrated a full motion model of the quadro-

copter’s flight dynamics and reaction to control commands,

which we will describe in more detail in Section IV-B. This

EKF is also used to compensate for the different time delays

in the system, arising from wireless LAN communication

and computationally complex visual tracking.

We found that height and horizontal velocity measure-

ments arrive with the same delay, which is slightly larger than

the delay of attitude measurements. The delay of visual pose

estimates ∆tvis is by far the largest. Furthermore we account

for the time required by a new control command to reach

the drone ∆tcontrol. All timing values given subsequently are

typical values for a good connection, the exact values depend

on the wireless connection quality and are determined by

a combination of regular ICMP echo requests sent to the

quadrocopter and calibration experiments.

Our approach works as follows: first, we time-stamp all

incoming data and store it in an observation buffer. Control

commands are then calculated using a prediction for the

quadrocopter’s pose at t +∆tcontrol. For this prediction, we

start with the saved state of the EKF at t−∆tvis (i.e., after

the last visual observation/unsuccessfully tracked frame).

Subsequently, we predict ahead up to t + ∆tcontrol, using

previously issued control commands and integrating stored

sensor measurements as observations. This is illustrated in

Fig. 3. With this approach, we are able to compensate

for delayed and missing observations at the expense of

recalculating the last cycles of the EKF.

3) PID Control: Based on the position and velocity

estimates from the EKF at t+∆tcontrol, we apply PID control

to steer the quadrocopter towards the desired goal location

p = (x̂, ŷ, ẑ,Ψ̂)T ∈R4 in a global coordinate system. Accord-

ing to the state estimate, we rotate the generated control

commands to the robot-centric coordinate system and send

them to the quadrocopter. For each of the four degrees-of-

freedom, we employ a separate PID controller for which we

experimentally determined suitable controller gains.

A. Scale Estimation

One of the key contributions of this paper is a closed-

form solution for estimating the scale λ∈R+ of a monocular

SLAM system. For this, we assume that the robot is able to

make noisy measurements of absolute distances or veloci-

ties from additional, metric sensors such as an ultrasound

altimeter.

As a first step, the quadrocopter measures in regular

intervals the d-dimensional distance traveled both using only

the visual SLAM system (subtracting start and end position)

and using only the metric sensors available (subtracting start

and end position, or integrating over estimated speeds). Each

interval gives a pair of samples xi,yi ∈R
d , where xi is scaled

according to the visual map and yi is in metric units. As both

xi and yi measure the motion of the quadrocopter, they are

related according to xi ≈ λyi.

More specifically, if we assume Gaussian noise in the

sensor measurements with constant variance1, we obtain

xi ∼N (λµi,σ
2
x I3×3) (1)

yi ∼N (µi,σ
2
y I3×3) (2)

where the µi ∈ R
d denote the true (unknown) distances

covered and σ2
x ,σ

2
y ∈ R

+ the variances of the measurement

errors. Note that the individual µi are not constant but depend

on the actual distances traveled by the quadrocopter in the

measurement intervals.

One possibility to estimate λ is to minimize the sum of

squared differences (SSD) between the re-scaled measure-

ments, i.e., to compute one of the following:

λy
∗

:= argmin
λ

∑
i

‖xi−λyi‖
2 =

∑i xT
i yi

∑i yT
i yi

(3)

λx
∗

:=

(

argmin
λ

∑
i

‖λxi−yi‖
2

)−1

=
∑i xT

i xi

∑i xT
i yi

. (4)

The difference between these two lines is whether one aims

at scaling the xi to the yi or vice versa. However, both

approaches lead to different results, none of which converges

to the true scale λ when adding more samples. To resolve

this, we propose a maximum likelihood (ML) approach, that

is estimating λ by minimizing the negative log-likelihood

L(µ1 . . .µn,λ ) ∝
1

2

n

∑
i=1

(

‖xi−λµi‖
2

σ2
x

+
‖yi−µi‖

2

σ2
y

)

(5)

By first minimizing over the µi and then over λ , it can be

shown analytically that (5) has a unique, global minimum at

µ
∗
i =

λ
∗
σ2

y xi +σ2
x yi

λ
∗2

σ2
y +σ2

x

(6)

λ
∗ =

sxx− syy + sign(sxy)
√

(sxx− syy)2 +4s2
xy

2σ
−1
x σysxy

(7)

with sxx := σ2
y ∑

n
i=1 xT

i xi, syy := σ2
x ∑

n
i=1 yT

i yi and sxy :=
σyσx ∑

n
i=1 xT

i yi. Together, these equations give a closed-form

solution for the ML estimator of λ , assuming the measure-

ment error variances σ2
x and σ2

y are known. By analyzing

this result, it can be concluded that

1) λ
∗

always lies in between λx
∗

and λy
∗
, and

1The noise in xi does not depend on λ as it is proportional to the average
keypoint depth, which is normalized to 1 for the first keyframe.
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Fig. 4. Comparison of λ∗ with Other Estimators: The plot shows the
estimated scale as more samples are added. It can be seen that the proposed
estimator λ∗ is the only consistent estimator, i.e., the only one converging
to the correct value. For this plot we used λ = 2, σx = 1, σy = 0.3 and
µi ∼N (03,13×3).

2) λ
∗→ λx

∗
for σ2

x → 0, and λ
∗→ λy

∗
for σ2

y → 0, i.e., these

naı̈ve estimators correspond to the case when one of

the measurement sources is noise-free.

We extensively tested our approach on artificially generated

data according to (2) and compared it to other, simple

estimators, that is the arithmetic mean, geometric mean and

the median of the set of quotients
‖xi‖
‖yi‖

. It can be observed

that out of all presented possibilities, our approach is the only

consistent estimator, i.e., the only one converging to the true

scale for all dimensions d, values for σ2
x , σ2

y and values for

µi. An example is shown in Fig. 4. Furthermore, λ
∗

can be

computed efficiently, as each new sample pair only requires

one update of the three sums, and the re-evaluation (7). Note

that in practice approximations for σ2
x and σ2

y are sufficient,

as their influence on λ
∗

decreases rapidly the more accurate

the measured distances are. More results on the accuracy of

this method will be presented in Section V-A.

B. State Prediction and Observation

In this section, we describe the state space, the observation

models and the motion model used in the EKF. The state

space consists of a total of ten state variables

xt := (xt ,yt ,zt , ẋt , ẏt , żt ,Φt ,Θt ,Ψt ,Ψ̇t)
T ∈ R

10
, (8)

where (xt ,yt ,zt) denotes the position of the quadrocopter in

m and (ẋt , ẏt , żt) the velocity in m/s, both in world coordinates.

Further, the state contains the roll Φt , pitch Θt and yaw Ψt

angle of the drone in deg, as well as the yaw-rotational speed

Ψ̇t in deg/s. In the following, we define for each sensor an

observation function h(xt) and describe how the respective

observation vector zt is composed from the sensor readings.

1) Odometry Observation Model: The quadrocopter

measures its horizontal speed v̂x,t and v̂y,t in its local co-

ordinate system, which we transform into the global frame

ẋt and ẏt . The roll and pitch angles Φ̂t and Θ̂t measured by

the accelerometer are direct observations of Φt and Θt . To

account for yaw-drift and uneven ground, we differentiate

the height measurements ĥt and yaw measurements Ψ̂t and

treat them as observations of the respective velocities. The

resulting observation function hI(xt) and measurement vector

zI,t is hence given by

hI(xt) :=

















ẋt cosΨt − ẏt sinΨt

ẋt sinΨt + ẏt cosΨt

żt

Φt

Θt

Ψ̇t

















(9)

zI,t := (v̂x,t , v̂y,t ,(ĥt − ĥt−1),Φ̂t , Θ̂t ,(Ψ̂t − Ψ̂t−1))
T (10)

2) Visual Observation Model: When PTAM success-

fully tracks a video frame, we scale the pose estimate by

the current estimate for the scaling factor λ
∗

and transform

it from the coordinate system of the front camera to the

coordinate system of the quadrocopter, leading to a direct

observation of the quadrocopter’s pose given by

hP(xt) := (xt ,yt ,zt ,Φt ,Θt ,Ψt)
T (11)

zP,t := f (EDCEC,t) (12)

where EC,t ∈ SE(3) is the estimated camera pose (scaled with

λ ), EDC ∈ SE(3) the constant transformation from the camera

to the quadrocopter coordinate system, and f : SE(3)→ R
6

the transformation from an element of SE(3) to our roll-

pitch-yaw representation.

3) Prediction Model: The prediction model describes

how the state vector xt evolves from one time step to the next.

In particular, we approximate the quadrocopter’s horizontal

acceleration ẍ, ÿ based on its current state xt , and estimate

its vertical acceleration z̈, yaw-rotational acceleration Ψ̈ and

roll/pitch rotational speed Φ̇,Θ̇ based on the state xt and the

active control command ut .

The horizontal acceleration is proportional to the horizon-

tal force acting upon the quadrocopter, which is given by

(

ẍ

ÿ

)

∝ facc− fdrag (13)

where fdrag denotes the drag and facc denotes the accelerating

force. The drag is approximately proportional to the horizon-

tal velocity of the quadrocopter, while facc depends on the

tilt angle. We approximate it by projecting the quadrocopter’s

z-axis onto the horizontal plane, which leads to

ẍ(xt) = c1 (cosΨt sinΦt cosΘt − sinΨt sinΘt)− c2 ẋt (14)

ÿ(xt) = c1 (−sinΨt sinΦt cosΘt − cosΨt sinΘt)− c2 ẏt (15)

We estimated the proportionality coefficients c1 and c2 from

data collected in a series of test flights. Note that this model

assumes that the overall thrust generated by the four rotors

is constant. Furthermore, we describe the influence of sent

control commands ut = (Φ̄t , Θ̄t ,
¯̇zt ,

¯̇Ψt) by a linear model:

Φ̇(xt ,ut) = c3 Φ̄t − c4 Φt (16)

Θ̇(xt ,ut) = c3 Θ̄t − c4 Θt (17)

Ψ̈(xt ,ut) = c5
¯̇Ψt − c6 Ψ̇t (18)

z̈(xt ,ut) = c7 ¯̇zt − c8 żt (19)



Again, we estimated the coefficients c3, . . . ,c8 from test flight

data. The overall state transition function is now given by
































xt+1

yt+1

zt+1

ẋt+1

ẏt+1

żt+1

Φt+1

Θt+1

Ψt+1

Ψ̇t+1

































←

































xt

yt

zt

ẋt

ẏt

żt

Φt

Θt

Ψt

Ψ̇t

































+δt

































ẋt

ẏt

żt

ẍ(xt)
ÿ(xt)

z̈(xt ,ut)
Φ̇(xt ,ut)
Θ̇(xt ,ut)

Ψ̇t

Ψ̈(xt ,ut)

































(20)

using the model specified in (14) to (19). Note that, due to

the many assumptions made, we do not claim the physical

correctness of this model. It however performs very well

in practice, which is mainly due to its completeness: the

behavior of all state parameters and the effect of all control

commands is approximated, allowing “blind” prediction, i.e.,

prediction without observations for a brief period of time

(∼ 125ms in practice, see Fig. 3).

V. EXPERIMENTS AND RESULTS

We conducted a series of real-world experiments to ana-

lyze the properties of the resulting system. The experiments

were conducted in different environments, i.e., both indoor

in rooms of varying size and visual appearance as well as

outdoor under the influence of sunlight and wind. A selection

of these environments is depicted in Fig. 5.

In the following, we present our results on the convergence

behavior and accuracy of scale estimation in Section IV-

A, the accuracy of the motion model in Section V-B, the

responsiveness and accuracy of pose control in Section V-C,

and the long-term stability and drift elimination in Section V-

D.

As ground truth at time t we use the state of the EKF after

all odometry and visual pose information up to t have been

received and integrated. It can only be calculated at t+∆tvis,

and therefore is not used for drone control – in practice it is

available ∼ 250ms after a control command for t has been

computed and sent to the quadrocopter.

A. Scale Estimation Accuracy

To analyze the accuracy of the scale estimation method

derived in IV-A, we instructed the quadrocopter to fly a

fixed figure, while every second a new sample is taken

and the scale re-estimated. In the first set of flights, the

quadrocopter was commanded to move only vertically, such

that the samples mostly consist of altitude measurements.

In the second set, the quadrocopter was commanded to fly

a horizontal rectangle, such that primarily the IMU-based

velocity information is used. After each flight, we measured

the ground truth λ̂ by manually placing the quadrocopter at

two measurement points, and comparing the known distance

between these points with the distance measured by the

visual SLAM system. Note that due to the initial scale

normalization, the values for λ̂ roughly correspond to the

vertical motion horizontal motion
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Fig. 6. Scale Estimation Accuracy: The plots show the mean and standard
deviation of the the estimation error e, corresponding to the estimated length
of 1m, from horizontal and vertical motion. It can be seen that the scale
can be estimated accurately in both cases, it is however more accurate and
converges faster if the quadrocopter moves vertically.
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Fig. 7. Comparison of Predicted and Real State. The black curve
shows the ground truth, it can only be computed with a delay of ∼ 250ms
(dashed curve). At t = 5s, the quadrocopter is manually pushed away which
cannot be predicted – hence the brief deviation. This plot shows (1) that
the prediction approximates the ground truth well and in particular without
notable delay and (2) that using visual information, the EKF rapidly recovers
from large external disturbances – however with a small delay.

mean feature depth in meters of the first keyframe, which in

our experiments ranges from 2 m to 10 m. To provide better

comparability, we analyze and visualize the estimation error

e := λ
∗

λ̂
, corresponding to the estimated length of 1m.

Fig. 6 gives the mean error as well as the standard

deviation spread over 10 flights. As can be seen, our method

quickly and accurately estimates the scale from both types

of motion. Due to the superior accuracy of the altimeter

compared to the horizontal velocity estimates, the estimate

converges faster and is more accurate if the quadrocopter

moves vertically, i.e., convergence after 2s versus 15s, and

to a final accuracy ±1.7% versus ±5%. Note that in practice,

we allow for (and recommend) arbitrary motions during scale

estimation so that information from both sensor modalities

can be used to improve convergence. Large, sudden changes

in measured relative height can be attributed to uneven

ground, and removed automatically from the data set.

B. State Prediction Accuracy

In this section we give a qualitative evaluation of the

accuracy of the predicted state of the quadrocopter, used

for control. Fig. 7 shows both the predicted state for time

t as well as the ground truth, i.e., the state computed after
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Fig. 5. Testing Environments: The top row shows an image of the quadrocopter flying, the bottom row the corresponding image from the quadrocopter’s
frontal camera. This shows that our system can operate robustly in different, real-world environments.

TABLE I
CONVERGENCE SPEED IN POSITION CONTROL

relative motion (x,y,z) [m] (1,0,0) (4,0,0) (0,0,1) (1,1,1)

tconv [s] 3.1±1.3 4.5±0.8 3.1±0.1 3.9±0.5

all sensor measurements have been evaluated. This is only

possible ∼ 250ms after the respective control command

has been issued. It can be observed that the prediction

approximates the ground truth very well and without notable

delay, which is crucial for oscillation-free control.

C. Positioning Accuracy and Convergence Speed

In this Section, we evaluated the performance of the

complete system in terms of position control. In particular,

we measured the average time to approach a given goal

location and the average positioning error while holding

this position. Considering the large delay in our system,

the pose stability of the quadrocopter heavily depends on

an accurate prediction from the EKF: the more accurate the

pose estimates and in particular the velocity estimates are,

the higher the gains can be set without leading to oscillations.

To determine the stability, we instructed the quadrocopter

to hold a target position over 60 s in different environments

and measure the root mean square error (RMSE). The results

are given in Fig. 10: the measured RMSE lies between 4.9 cm

(indoor) and 18.0 cm (outdoor).

To evaluate the convergence speed, we repeatedly let the

quadrocopter fly a given distance and measure the con-

vergence time tconv, corresponding to the time required to

reach the target position and hold it for at least 5s. We

consider the quadrocopter to be at the target position if the

Euclidean distance is less than 10 cm. An example of flying

a long distance in x-direction is shown in Fig. 8: the plot

clearly shows that the quadrocopter accelerates initially with

maximum pitch, and de-accelerates before reaching the target

location at t = 3.5s. Fig. 9 shows an example trajectory in all

three dimensions. We repeated this experiment ten times and

summarized the results in Tab. I. Reaching a target location

at a distance of 4 m took on average 4.5 s.
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Fig. 8. Flying a Large Distance: The plot shows the behavior of the
controller for a large distance. As can be seen, the quadrocopter accelerates
with maximum pitch for the first second and decelerates before converging
on the setpoint.
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Fig. 9. Example Flight: Flying a simple figure consisting of four
waypoints. This plot illustrates the typical behavior of the quadrocopter
when holding and approaching waypoints (tconv is indicated, see also Tab. I).

−0.4
0

0.4

−0.4
0

0.4

−0.4
−0.2

0
0.2
0.4

−0.4
0

0.4

−0.4
0

0.4

−0.4
−0.2

0
0.2
0.4

−0.4
0

0.4

−0.4
0

0.4

−0.4
−0.2

0
0.2
0.4

y
[m

]

kitchen

RMSE = 4.9 cm

y [m] x [m]

large indoor area

RMSE = 7.8 cm

y [m] x [m]

outdoor

RMSE = 18.0 cm

y [m] x [m]

Fig. 10. Flight Stability: Path taken and RMSE of the quadrocopter when
instructed to hold a target position for 60 s, in three of the environments
depicted in Fig. 5. It can be seen that the quadrocopter can hold a position
very accurately, even when perturbed by wind (right).
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Fig. 11. Elimination of Odometry Drift: Horizontal path taken by the
quadrocopter as estimated by the EKF compared to the raw odometry (i.e.,
the integrated velocity estimates). Left: when flying a figure; right: when
being pushed away repeatedly from its target position. The odometry drift
is clearly visible, in particular when the quadrocopter is being pushed away.
When incorporating visual pose estimates, it is eliminated completely.

D. Drift Elimination

To verify that the incorporation of a visual SLAM sys-

tem eliminates odometry drift, we compare the estimated

trajectory with and without the visual SLAM system. Fig. 11

shows the resulting paths, both for flying a fixed figure (left)

and for holding a target position while the quadrocopter is

being pushed away (right). Both flights took approximately

35 s, and the quadrocopter landed no more than 15 cm away

from its takeoff position. In contrast, the raw odometry

accumulated an error of 2.1 m for the fixed figure and 6m

when being pushed away. This experiment demonstrates that

the visual SLAM system efficiently eliminates pose drift

during maneuvering.

E. Robustness to Temporary Loss of Visual Tracking

The system as a whole is robust to temporary loss of

visual tracking, e.g. due to occlusions or large rotations, as it

continues to navigate based only on odometry measurements.

As soon as visual tracking recovers, the EKF state is updated

with the absolute pose estimate, eliminating accumulated

estimation error. This is demonstrated in the attached video.

VI. CONCLUSION

In this paper, we presented a visual navigation system for a

low-cost quadrocopter using offboard processing. Our system

enables the quadrocopter to visually navigate in unstructured,

GPS-denied environments and does not require artificial

landmarks nor prior knowledge about the environment. The

contribution of this paper is two-fold: first, we presented

a robust solution for visual navigation with a low-cost

quadrocopter. Second, we derived a maximum-likelihood

estimator in closed-form to recover the absolute scale of the

visual map, providing an efficient and consistent alternative

to predominant filtering-based methods. Our system was able

to estimate the map scale up to ±1.7% of its true value,

with which we achieved an average positioning accuracy

of 4.9 cm (indoor) to 18.0 cm (outdoor). Furthermore, our

approach is able to robustly deal with communication delays

of up to 400 ms. We tested our system in a set of extensive

experiments in different real-world indoor and outdoor en-

vironments. With these experiments, we demonstrated that

accurate, robust and drift-free visual navigation is feasible

even with low-cost robotic hardware.
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