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Abstract

In this paper, parallelepipeds and their use in camera
calibration and 3D reconstruction processes are studied.
Parallelepipeds naturally characterize rigidity constraints
present in a scene, such as parallelism and orthogonality.
A subclass of parallelepipeds – the cuboids – has been fre-
quently used over the past to partially calibrate cameras.
However, the full potential of parallelepipeds, in camera
calibration as well as in scene reconstruction, has never
been clearly established. We propose a new framework for
the use of parallelepipeds which is based on an extensive
study of this potential. In particular, we exhibit the com-
plete duality that exists between the intrinsic metric char-
acteristics of a parallelepiped and the intrinsic parameters
of a camera. Our framework allows to fully exploit paral-
lelepipeds and thus overcomes several limitations of cal-
ibration approaches based on cuboids. To illustrate this
framework, we present an original and very efficient in-
teractive method for 3D reconstruction from single images.
This method allows to quickly build a scene model from a
single uncalibrated image.

1. Introduction
In this paper we describe how to use rigidity constraints
through parallelepipeds to infer information on a camera, as
well as on the environment, from images. The motivation is
to propose straightforward and practical methods for cam-
era calibration and scene modeling with few interactions
and little requireda priori knowledge. The interest arises
in 3D modeling applications using images with no informa-
tion on the cameras being used, for example applications
using single images obtained from the web.

Rigidity constraints have been widely studied in the
computer vision community over the last decade. In a sem-
inal work, Caprile and Torre [2] used cuboids, i.e. par-
allelepipeds with right angles, to estimate some camera
parameters. Their approach is based on vanishing points
defined by the cuboid’s projected edges. Such vanishing
points correspond to perpendicular directions in space and
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impose therefore constraints on the transformation between
3D space and the image plane. Following this idea, several
approaches, which make use of vanishing points and lines,
have been proposed to either partially calibrate cameras or
reconstruct scenes [8, 4, 10, 5, 12, 7]. However, comput-
ing vanishing points and lines in the image is often numeri-
cally unstable. Moreover, dealing with individual vanishing
points does not allow to fully exploit the redundancy con-
tained in the input, i.e. that all the vanishing points stem
from the projection of a single parallelepiped. In contrast to
the above mentioned approaches, we do not compute van-
ishing points or lines but projection matrices such that par-
allelepiped’s projections fit the concerned image points.

Recently, calibration results have also been obtained us-
ing planar patterns and homographies [11, 13, 14, 15].
While more flexible than standard calibration techniques,
homography based approaches require either Euclidean in-
formation or, for self-calibration, many images in general
position. In addition, planar structures used for calibration
are often part of parallelepipedic structures which are not
fully exploited, much as the vanishing point/line methods
cited above. In this sense, our approach is a generalization
of plane-based methods with metric information to three-
dimensional, parallelepipedic patterns.

Other works partially use parallelepipeds. For example,
in [6] cuboids are used for 3D reconstruction, but several
calibrated images are required. Also, in [3] parallelepipeds
are used for calibration in augmented reality applications.
However, the proposed approach has a limited application
domain since: the camera must satisfy a strong constraint –
unit aspect ratio – and only partial knowledge on the paral-
lelepiped – angles – can be used for calibration.

Our approach is based on the duality between the intrin-
sic characteristics of a camera and those of a parallelepiped.
Given an image of a parallelepiped, each known intrinsic
parameter of either camera or parallelepiped gives a con-
straint on the parameter sets of both entities. Since par-
allelepipeds are frequently present in man-made environ-
ments (roofs, facades, etc), a rich variety of images can be
calibrated using this approach. Furthermore, little knowl-
edge on parallelepipeds is generally required. For exam-
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ple, two right angles associated to provably valid assump-
tions on camera intrinsics are sufficient for calibration. This
makes parallelepipeds a very flexible tool which is well
adapted to unknown environments. Moreover, parallelepi-
pedic structures are a natural building block for realistic
models of man-made scenes which can be easily extended
using simple subsequent constraints, such as coplanarity of
points etc. We present a method for interactive scene mod-
eling from single images, using these constraints.

The paper is organized as follows. Section 2 introduces
definitions that are used in the rest of the paper. Calibra-
tion using parallelepipeds is studied in Section 3. The dual-
ity between intrinsic camera and parallelepiped parameters
is established. An exhaustive study of singular configura-
tions for calibration is given and experimental results are
provided to precisely define the application context. The
single image based 3D reconstruction approach is presented
in Section 4 and illustrated by realistic scene models.

2. Definitions
Camera Model We assume that the imaging system is
based on the pinhole model (i.e., perspective projection).
The projection from 3D space to the 2D image plane can
thus be expressed by:p ∼ M · P , whereM is a 3x4 ma-
trix andP , p are the homogeneous point coordinates in 3D
space and in the image plane respectively. The matrixM
can be decomposed as:M = K · [R t]. [R t] is the 3x4
matrix determining the relative orientationR and position
−RT t of the camera in 3D space andK is the 3x3 calibra-
tion matrix defining the pinhole camera:

K =


 αu s = 0 u0
0 αv v0
0 0 1


 ,

whereαu andαv stand for the focal length, expressed in
horizontal and vertical pixel dimensions,s is a skew param-
eter considered as equal to zero (but this can be relaxed)
andu0, v0 are the pixel coordinates of the intersection of
the optical axis with the image plane.

Parallelepipeds A parallelepiped is defined by twelve pa-
rameters: six extrinsic parameters describing its orienta-
tion and position in 3D space (three position and three ori-
entation parameters) and six intrinsic parameters that de-
scribe its Euclidean shape: three dimension parameters
(edge lengths) and the three angles between parallelepiped
edges (see figure 2). The perspective projection of a par-
allelepiped depends only on eleven parameters due to the
projection’s scale-depth ambiguity.

Thus, five image points and an image direction are suffi-
cient to completely define the projection of a parallelepiped.
Other parallelepiped’s image points can then be computed
via classical three point perspective, using the parallelism
of parallelepiped edges. Hence, parallelism in 3D does not

image viewpoint

vanishing point

vanishing point

vanishing point parallelepiped

Figure 1:A parallelepiped and its projection which is completely
defined by five image points and an image direction. The par-
allelepiped’s projected edges define three vanishing points in the
image plane.

provide any information to compute the 3D to 2D projec-
tion, and thus for calibration (whatis useful for calibra-
tion is knowledge of a parallelepiped’sintrinsic parameters,
i.e. angles between non parallel edges and length ratios).
Equivalently, additional image points, besides the minimum
of five and a half, do not provide calibration constraints.
However, they add useful redundancy for a more accurate
computation of the projection and eventually, for calibra-
tion.

3. Camera calibration
Classical ways to derive calibration constraints from struc-
tures containing parallelism consist in first determining van-
ishing points and then expressing the fact that the corre-
sponding space directions are, e.g. orthogonal [2, 7], which
leads to equations on the intrinsic parameters. Vanishing
points are usually estimated as intersections of lines, and
more precisely in real situations, as points which minimize
distances to projections of parallel lines [2, 9, 10]. Such ap-
proaches often suffer from numerical instability, especially
in cases of near parallelism of image edges. Furthermore,
in the case of parallelepipeds, these approaches do not take
into account the fact the concerned 2D points belong to a
parallelepiped projection (as discussed in the introduction).

In contrast to this, we do not compute explicitly vanish-
ing points but we first estimate the best projection matrix
such that the defined image points correspond to a paral-
lelepiped in space. The error between reprojected and mea-
sured image points is minimized, thus avoiding the intersec-
tion of (multiple) lines, and all information is used simulta-
neously. From this projection matrix anda priori knowl-
edge on the parallelepiped (angles, length ratios), it is easy
to derive constraints on the intrinsic parameters of the used
camera, most of these constraints being linear. These con-
straints are then used to estimate intrinsic parameters. They
can be combined in a linear framework with assumptions or
a priori knowledge on the camera’s intrinsic parameters.
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Figure 2: Parameterization of parallelepipeds:2li are the edge
lengths;θij are the angles between non parallel edges.

3.1. Parallelepiped projection matrix
As stated above, a parallelepiped is defined by three orien-
tation parameters, three position parameters, three dimen-
sion parameters and three angles. LetR, −RT t, (l1, l2, l3)
and(θ12, θ23, θ13) be these parameters respectively. Then,
image projectionspi∈[1..8] = [ui vi] of the parallelepiped
vertices satisfy:


 α1u1 . . . α8u8
α1v1 . . . α8v8
α1 . . . α8


 = X̃ ·



1 . . . −1
1 . . . −1
1 . . . −1
1 . . . 1


 . (1)

X̃ is the 3x4 projection matrix which is defined up to a
scalar factor by:

X̃ ∼M · Λ ∼ K · [R t] · Λ̃, (2)

where the matrix̃Λ depend on the parameterization that is
chosen for parallelepipeds. We chose1 (see Fig. 2):

Λ̃ =




l1 l2c12 l3c13 0
0 l2s12 l3

c23−c13c12
s12

0

0 0 l3

√
s212−c213s212−(c23−c13c12)2

s212
0

0 0 0 1




with: cij = cos θij , sij = sin θij , θij ∈ ]0 π[, li > 0. Note
that in the case of cuboids, the matrixΛ̃ is diagonal.

If at least six verticespi of the parallelepiped’s projection
are known (or five vertices and a direction e.g.), thenX̃ can
be estimated, up to a scalar factor, from equation (1) by a
linear least squares method.X̃ results from the composition
of the projection matrixM and an affinityΛ̃, thus, in the
general case, no constraints such as orthonormality apply to
its lines or columns. Consequently, parameters of the matrix
X̃ can be simply estimated by solving the homogeneous
linear system of equations obtained from equation (1) and
the available image coordinates[ui vi] (we use SVD to this
purpose).

3.2. Intrinsic parameter duality
The projection matrixX̃ defined in the previous section
captures all the geometric information given by a par-
allelepiped’s projection. Now consider the 3x3 matrix

1Different parameterizations can be used. For illustration, we chose
one with a simple physical interpretation.

X ∼ K · R · Λ, whereX andΛ are the matrices of the
first three lines and columns of̃X andΛ̃ respectively. From
equation (1), we get:

XT ·K−T ·K−1 ·X ∼ ΛT · Λ, (3)

whereK−T ·K−1 = ω is the matrix of the absolute conic’s
image (IAC) which depends on the intrinsic camera param-
eters, andΛT · Λ = µ is an analogous entity, depending on
the parallelepiped’s intrinsic parameters:

µ = ΛT · Λ =

 l21 l1l2 cos θ12 l1l3 cos θ13
l1l2 cos θ12 l22 l2l3 cos θ23
l1l3 cos θ13 l2l3 cos θ23 l23


 .

Equation (3) shows the duality that exists between a cam-
era and a parallelepiped. They both have intrinsic parame-
ters:K for a camera andΛ for a parallelepiped which are
dual by equation (3). Thus, knowledge on the intrinsic pa-
rameters of either the parallelepiped or the camera leads to
constraints on the parameters of the respective other entity.
For example, the assumption of the camera’s skew parame-
ter being zero gives a constraint on the parallelepiped’s in-
trinsic parameters. In the following, we detail typical con-
straints on the intrinsic camera parameters.

LetXi be theith column ofX , then the duality equation
(3) leads to (non-exhaustive list):

1. a known angleθij gives the following quadratic con-
straint on the elements ofω:

(XTi · ω ·Xj)2 − c2ij(XTi · ω ·Xi) (XTj · ω ·Xj) = 0;

2. a knownright angleθij gives the following linear con-
straint:XTi · ω ·Xj = 0;

3. a known length ratiorij = li/lj gives the following
linear constraint:XTi · ω ·Xi − r2ij XTj · ω ·Xj = 0.

A few remarks are in order:

• The columnsXi of X are the homogeneous coordi-
nates of the vanishing points associated to the paral-
lelepiped’s projection.

• When several of the above constraints hold, then all de-
duced equations can be stacked together to solve forω.
This is especially attractive for the linear constraints.

• Knowing the lengthli of an edge (instead of only a
length ratio) does not provide any constraint on the in-
trinsic camera parameters, it simply cancels the depth-
scale ambiguity of the projection.

In the rest of the paper, we focus on linear constraints which
lead to a direct linear estimation of the intrinsic camera pa-
rameters. Quadratic constraints can be used subsequently
to the linear ones, to obtain a finite number of solutions in
case the linear system is underconstrained.

3



3.3. Estimating intrinsic camera parameters
Suppose that four or more linear constraints as described in
the previous section are available from one or several paral-
lelepipeds, then the elementsωij of ω can be estimated up
to a scalar factor by a linear least squares approach. This is
achieved by solving a homogeneous linear equation system
of the typeAx = 0, wherex is the vector of the elements
ωij not generally equal to zero. From the elementsωij , the
intrinsic parameters are simply extracted as2:

u0 = −ω13ω11 , v0 = −ω23ω22 ,
α2u =

ω11ω22ω33−ω11ω223−ω22ω213
ω211ω22

, α2v =
ω11
ω22
α2u.

(4)

Using prior knowledge or assumptions If less than four
constraints are available, then the camera can not be fully
calibrated. Still, if some of the intrinsic parameters are
known (or assumed to have some standard value), then the
other parameters can in general be calibrated if their num-
ber is less or equal to that of the available constraints. For
instance, the aspect ratioαu/αv may be given by the cam-
era manufacturer, or, as successfully experimented in this
paper (see Sec. 3.5), the assumption that the optical axis in-
tersects the image plane at the image center can be made
(i.e.,u0 andv0 correspond to half the image sizes). In order
to well use such information, and thus to separate in the
estimation process known parameters from unknown pa-
rameters, we decompose the matrixK into two matrices:
K = Kk · Ku, whereKk is the matrix of known, or as-
sumed known parameters, andKu the matrix of unknown
parameters. The image projectionpi of a parallelepiped ver-
tex can then be transformed accordingly to:p′i = K

−1
k · pi.

The parallelepiped projection matrix̃X ′ associated with the
p′i’s is then:

X̃ ′ ∼ K−1k ·K · [R t] · Λ̃ ∼ Ku · [R t] · Λ̃.
This matrix can be estimated from the image pointsp′i by

the same linear approach as forX̃ . This leads to simplified
forms for the matrixω = K−Tu ·K−1u .

However, care should be taken when using prior knowl-
edge since it can lead to bad conditioning of the linear equa-
tion systems which are solved. Note also that an alterna-
tive approach for using known intrinsic camera parameters
is to include additional equations entering the linear least
squares solution. This might be desirable in cases of only
approximate prior knowledge, where weighted least squares
can be used to adjust that knowledge.

3.4. Singularities
Many calibration or self-calibration algorithms are subject
to more or less severe singularities, i.e. there exist situa-
tions, where the algorithm is bound to fail. Furthermore,
even in situations that are not exactly singular, but close

2With five linear constraints, we could similarly solve for the skew pa-
rameter.

to a singularity, the results become usually very unstable.
In this section, we examine the singularities for the linear
calibration algorithm described above. We have studied all
possible combinations ofa priori knowledge, on both cam-
era and parallelepiped intrinsic parameters. Due to lack of
space, we only sketch the methodology followed.

We first formulate the meaning of a singularity in terms
of the ingredients of the calibration algorithm. The exis-
tence of a singularity in our case means exactly that equa-
tion (3) has more than one solution forω andµ that conform
to all availablea priori information, i.e. that there is at least
one solution that is different from the true one. It is easy to
show that the existence of a singularity does not depend on
the relative position of the camera and the parallelepiped,
only on the relative orientation and thea priori knowledge
on camera and parallelepiped intrinsics. LetK = Kk ·Ku
be the true calibration matrix, andK ′ = Kk · K ′u the es-
timated one (we decompose in known and unknown parts,
as in the previous section, soK ′ andK share of course the
known partKk). The same holds for the parallelepiped:
Λ = Λk ·Λu andΛ′ = Λk ·Λ′u are respectively the true and
estimated intrinsic parameters. A singularity exists if there
are solutions withK ′u 6= Ku andΛ′u 6= Λu. From equa-
tion (3), it is easy to derive the following equality, which is
defined up to scale (usingX ∼ Kk ·Ku ·R · Λu · Λk):
RT ·KTu ·K′u−T ·K′u−1 ·Ku · R = Λ−Tu · Λ′Tu · Λ′u · Λ−1u .

A singularity, as defined above, is then equivalent to the
existence of matricesω′′ = KTu · K ′u−T ·K ′u−1 · Ku and
µ′′ = Λ−Tu ·Λ′Tu ·Λ′u·Λ−1u that are different from the identity.
Depending on thea priori knowledge,ω′′ andµ′′ have spe-
cial forms (as shown in tables 1 forω′′), independently of
the actual values of the known or unknown intrinsic param-
eters. Hence, the configuration is singular for calibration if
the relative orientationR between parallelepiped and cam-
era is such that there are solutionsω′′ andµ′′ different from
the identity, and of the required special form, to:

RT · ω′′ · R ∼ µ′′

Based on this definition, it is a rather mechanical, though
sometimes tricky, task, to derive singular relative orienta-
tions. Table 2 shows all singularities for parallelepipeds
with two or three right angles (other cases are not shown
due to lack of space). We describe the singularities in geo-
metrical terms, by describing the relative orientation of the
parallelepiped with respect to the camera.

Known camera intrinsics
(A) None (B) τ (C) u0, v0 (D) τ, u0, v0


a 0 d
0 b e
d e c






1 0 d
0 1 e
d e c






a 0 0
0 b 0
0 0 c






1 0 0
0 1 0
0 0 c




Table 1:Structure ofω′′ depending on prior knowledge on intrin-
sic camera parameters. Structure ofµ′′ is similar.
Three right angles, two length ratios. In this case,
the Euclidean structure of the parallelepiped is completely
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Case Conditions for singularity

A-3-1 v is orthogonal to the x or y camera axis
B-3-1 v is parallel to the optical axis
C-3-1 v is parallel to any of the three camera axes
D-3-1 v is parallel to the optical axis
A-3-0 always (3 constraints for 4 camera intrinsics)
B-3-0 any edge is parallel to the image plane
C-3-0 any edge is parallel to a camera axis
D-3-0 any edge is parallel to the optical axis
A-2-2 too difficult to describe
B-2-2 v ‖ image plane and w‖ optical axis or image plane
C-2-2 v ‖ x or y axis and w at45◦ angle with image plane

v ‖ z and w‖ image plane and at45◦ to both x and y
D-2-2 never!
A-2-1 always (three constraints for four camera intrinsics)
B-2-1 v is parallel to the image plane
C-2-1 v parallel to either camera axis

v and w are both orthogonal to the x camera axis
v and w are both orthogonal to the y camera axis
v and w are parallel to the image plane

D-2-1 v and w are parallel to the image plane
A-2-0 always (two constraints for four camera intrinsics)
B-2-0 always (two constraints for three camera intrinsics)
C-2-0 v orthogonal to the x or y camera axis or‖ image plane
D-2-0 v parallel to image plane or to optical axis

Table 2:Singular relative orientations for various combinations of
prior knowledge on intrinsic parameters. Cases are denoted X-Y-
Z, where X refers to table 1 and Y and Z are the number of known
right angles respectively length ratios. For further explanations,
see text.

given (up to scale), and it can be used as a classical calibra-
tion object. There are no general singularities proper to the
use of a parallelepiped, but of course the generic singulari-
ties described in [1] apply here too.

Three right angles, one length ratio (cases *-3-1 in table
2). In table 2,v represents any of the four parallelepiped’s
edges with unknown length (ratio).

Two right angles (cases *-2-* in table 2). In this case, the
parallelepiped can be visualized as built around two rectan-
gles sharing an edgev. The role ofw can be played by one
of the two rectangles’ edges not parallel tov.

3.5. Experimental results
Synthetic data were used to evaluate the sensitivity of the
calibration algorithm in the presence of noise. The con-
cerned noisy data are the vertices’ projections of the ref-
erence parallelepiped and thea priori known camera pa-
rameters (e.g. principal point). Calibration tests were
performed for various relative orientations of the paral-
lelepiped and the camera, which allowed us to experimen-
tally confirm singularities. The parallelepiped’s parameters
were:{θ12, θ13, θ23} = {π/2, π/3, π/2} and{l1, l2, l3} =

15
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Figure 3:(a) illustration of experiment; (b)αv (average and stan-
dard deviation, true value is800) as a function of the relative ori-
entation between the parallelepiped and the camera, only two right
angles are known.
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Figure 4:αv (average and standard deviation, true value is800)
as a function of the difference between assumed and true values
of: (a) the principal point; (b) the aspect ratio.

{120, 250, 130}. Images were generated with the following
camera intrinsics:αu = 500, αv = 800, u0 = v0 = 256
and for a512 × 512 image. Generally, only information
about right angles was used in the calibration process. For
tested scenarios, 300 experiments with various noise ampli-
tudes were performed. Tables given below show the aver-
age and standard deviation of the calibration results forαv.
Experiments on the sensitivity of the calibration to noise in
image point positions reveal that the error forαv grows lin-
early with the noise amplitude. Figure 3 shows calibration
errors for a two pixel uniform noise and various orientations
of the parallelepiped. In this experiment, a parallelepiped
with two right angles, rotated15◦ around a horizontal axis
parallel to the image plane, was rotated around a vertical
axis parallel to the image plane (Fig. 3-(a)). Figure 3-(b)
shows that singularities occur when the axis between two
rectangular faces of the parallelepiped is parallel to the im-
age plane or orthogonal to the imagex-axis (rotation angles
of 90◦ and of0◦/180◦). This corresponds to case C-2-0
in table 2. Figure 4 shows the influence on calibration
of wrong assumptions concerning the principal point posi-
tion and the aspect ratio. In figure 4-(a), we can see that
the error onαv grows nearly linearly with the distance be-
tween the assumed principal point and the true one. Even
if the principal point is assumed to lie on the image border,
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the relative error is still less than11%. This confirms that
it is reasonable to assume that the principal point is at the
image’s center. On the other hand, figure 4-(b) shows that
αv ’s estimation degrades quickly (quadratically) when the
difference between the aspect ratio’s assumed and true val-
ues increases. This implies that assumptions on the aspect
ratio are feasible only if the assumed value is rather close to
the true one.

4. Single image based reconstruction
An important application to parallelepiped based calibration
is interactive 3D reconstruction from single images. This
presents a major advantage over other methods: simplicity.
Indeed only one image is required and just a small amount
of effort is needed for both calibration and reconstruction: a
few points must be picked in the image to define the primi-
tives’ image positions. It thus appears to be an efficient and
intuitive way to build models from images of any type, in
particular from images taken from the Internet for which no
information about the camera is known.

The reconstruction approach that is presented in this sec-
tion is independent from the calibration process previously
presented. The idea is to use, for reconstruction, a set
of points such that all points in the set satisfy constraints
common to subsets of them. Such constraints are for ex-
ample coplanarity, collinearity, or the fact that points be-
long to a parallelogram. This allows the reconstruction of
a connected polygonal structure which includes the paral-
lelepipeds3 that are used for calibration, as well as points
subsequently defined in the image. The final model is
thus composed of connected structures, each of them cor-
responding to one or several linear constraints. The recon-
struction is obtained by solving a single linear system which
regroups all the defined constraints.

Typical linear constraints on scene points are:

1. Parallelogram: as noted in [3], four pointsPi∈[1..4]
in space which belong to a parallelogram satisfy the
following linear relation (assuming they are ordered):
P1 − P2 + P3 − P4 = 0. Viewing lines for points
can easily be determined when intrinsic parameters are
known:K−1 · pi is parallel to the viewing directiondi
of the pointPi with imagepi. Thus the above equation
can be transformed into:α1 d1 − α2 d2 + α3 d3 −
α4 d4 = 0, where theαi’s are the unknowndepthsof
pointsPi. This equation can be written for a set of con-
nected parallelograms in the scene. The resulting lin-
ear system can be solved up to a scale factor (by fixing,
for instance, one depthαi). However, for unconnected
sets of parallelograms, further constraints (coplanarity,

3For parallelepipeds, individual reconstructions can also be achieved
using equation (2).

collinearity, etc) must be imposed to obtain a consis-
tent global reconstruction.

2. Coplanarity: four coplanar pointsPi∈[1..4] satisfy:
P4 − P1 + β1(P3 − P1) + β2(P2 − P1) = 0. Hence,
the depthsαi of thePi (i.e. αidi = Pi) satisfy:

(−β1 − β2 − 1)α1d1 + β2α2d2 + β1α3d3 + α4d4 = 0,
which is linear in(−β1 − β2 − 1)α1, β2α2, β3α3 and
α4. This equation can be used to solve for one point’s
depth or for the unknown relative scale between two
reconstructed point sets. A similar argument holds for
collinear points.

The complete calibration and reconstruction algorithm con-
sists of the following stages:

1. The projections of one or more parallelepipeds are de-
fined in the image and used to determine the intrinsic
camera parameters.

2. Other image points and their associated linear depen-
dencies (parallelograms, etc.) are defined, forming a
linear system. It is solved for relative depths of all
points. This includes parallelepiped vertices for which
the above parallelogram dependencies hold.

3. A 3D textured model is computed using reconstructed
points and the input image.

4.1. Experimental results
We have developed an interface based on OpenGL to im-
plement the ideas presented in this paper. The motivation is
to have an easy-to-use tool allowing models to be computed
in a few minutes at most. Models can also be exported in
the standard VRML format. We present screenshots of two
reconstructed models which illustrate the potential of the
method.

Reconstruction of an indoor scene Figure 5 shows the
original image and screenshots of the reconstruction of an
indoor scene. Most of the angles in the original scene are
not perfectly right (average deviation of approximately3◦).
Calibration was based on the cupboard seen in the central
part of the image. For reconstruction different types of con-
straints were used - 3 sets of parallelograms (main part of
the image, window and wooden belt) were connected us-
ing coplanarity constraints. Walls were reconstructed using
coplanarity and collinearity constraints. The final 3D model
was evaluated by measuring angles that were assumed to be
right. The maximum relative error for these angles is1.8%.

Reconstruction of an outdoor scene The original image,
taken with another camera, showed moderate optical distor-
tion, which was corrected using reference distortion param-
eters (Fig. 6 shows the undistorted image and also the refer-
ence primitives used for calibration). The aspect ratio was
calibrated with1.8% of relative error andαv with 1.9%.
The angles of the tower, in the 3D reconstruction, are all
within 5% of being right.
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Figure 5:Original image and screenshots of the reconstruction of the indoor scene.

Figure 6:Original image and screenshots of the reconstruction of the outdoor scene.

5 Conclusion

We have presented a framework for camera calibration and
3D scene reconstruction based on parallelepipeds. We have
shown throughout the paper that: (i) parallelepipeds and
perspective cameras are dual; (ii) knowledge of right an-
gles and length ratios, as well as prior knowledge on in-
trinsic camera parameters can be used simultaneously in a
linear framework; (iii) assumptions on the principal point’s
position are robust and more robust than those on the as-
pect ratio; (iv) accurate calibration can be achieved using
one or more of the widely present parallelepipeds that have
two right angles. Singularities of the calibration approach
have been clearly identified and are given for the most gen-
eral situations (two or three right angles). They delimit the
context within which parallelepipeds should be used. The
proposed framework was illustrated by single image based
reconstruction examples. The reconstructed models demon-
strate the potential of the method for a general public use.
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