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Abstract

This paper considers the problem of self-calibration of a
camera from an image sequence in the case where the cam-
era’s internal parameters (most notably focal length) may
change. The problem of camera self-calibration from a se-
quence of images has proven to be a difficult one in practice,
due to the need ultimately to resort to non-linear methods,
which have often proven to be unreliable. In a stratified ap-
proach to self-calibration, a projective reconstruction is ob-
tained first and this is successively refined first to an affine
and then to a Euclidean (or metric) reconstruction. It has
been observed that the difficult step is to obtain the affine
reconstruction, or equivalently to locate the plane at infin-
ity in the projective coordinate frame. The problem is in-
herently non-linear and requires iterative methods that risk
not finding the optimal solution. The present paper over-
comes this difficulty by imposing cheirality constraints to
limit the search for the plane at infinity to a 3-dimensional
cubic region of parameter space. It is then possible to carry
out a dense search over this cube in reasonable time. For
each hypothesised placement of the plane at infinity, the cal-
ibration problem is reduced to one of calibration of a non-
translating camera, for which fast non-iterative algorithms
exist. A cost function based on the result of the trial cali-
bration is used to determine the best placement of the plane
at infinity. Because of the simplicity of each trial, speeds
of over 10,000 trials per second are achieved on a 256Mhz
processor. It is shown that this dense search allows one to
avoid areas of local minima effectively and find global min-
ima of the cost function.

1 Introduction

Self calibration of a camera from image sequences has
been the subject of much recent research since the semi-
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nal paper of Maybank and Faugeras [8]. Practical methods
for computing the calibration have been given by [3, 11],
but there have been remaining problems of convergenceand
stability. The basic assumption behind these papersis that
the camera is the same for all views, which means that no
zooming is allowed. More recently, the observation was
madein [6, 7, 9] that self calibration is possible under much
looser assumptions. Calibration is possible under aminimal
assumption that the cameras have no skew, or the dlightly
tighter additional assumption that the pixels have afixed or
known aspect ratio. This extension of the theory of self-
calibration allows calibration to be carried out on video se-
guences with a zooming camera.

In aparallel development, self-calibration methods have
been given for non-translating cameras (that is ones that
do not change their focal centre). The advantage of these
methods is that more robust, simpler and often linear meth-
ods are available for self-calibration in this case, both for
unchanging ([4]) and changing ([1, 2]) internal parameters.
The theme of this paper is that these simple methods are
applicable to the case of cameras undergoing general mo-
tion, oncethe plane at infinity has been determined. Indeed
they may be used to guide the search for the plane at infin-
ity in a projective reconstruction. The result is a stratified
algorithm for self calibration, applicable to cameras under-
going general motion, with changinginternal parameters, in
which one proceeds from projective to quasi-affine to affine
to Euclidean reconstruction.

The only other approaches to this calibration problem
have been givenin [6, 7, 9]. The method of Pollefeyset al.
([9]) applies a straight projective-to-Euclidean iterative ap-
proach in which it is necessary to make assumptions about
internal parameters in order to initialize the iteration, and
Heyden's approach ([6]) is similarly iterative. As this pa-
per shows, iteration is quite chancy in the context of self-
calibration under minimum assumptions on internal param-
eters. We replace the need for descent-based iteration by a
quick, but exhaustive search for the best affine reconstruc-
tion. The method described is very effective at finding the
global minimum of a calibration cost function, and lendsiit-



self to generalization by the use of different costs and affine-
to-euclidean reconstruction schemes.

2 Calibration of anon-translating camera

A method for computing the calibration of arotating and
zooming camerawas given in [2] and is summarized here.
The method given there relies on the fact that images ob-
tained by such a camera are related by image-to-image ho-
mographies, otherwise known as 2D projective transforma-
tions. One selects a reference image Jy, and assigns ho-
mographies H; to each of the other images. The homogra-
phiesH; are defined by the following condition. If x isany
point in the image Jo and z; is the corresponding point in
the image J;, then x; = H;x0. The homographies may be
computed by direct measurement of matching pointsin the
set of images, as described in [4]. Since matching points
are mapped to each other in this manner, the same is true
for the points on the image of the absolute conic (the IAC).
Denoting by w; the IAC in the i-th image, the rulefor trans-
forming conics under a homography leads to an equation

wj = H;~ TwoH; ! 1)

ThelAC isrelated to the calibration matrix of each cam-
era by the formula ([4])

w=K k! 2)

whereX is the calibration matrix of the camera. The entries
of the matrix w are readily related to the entries of the cali-
bration matrix K in the case where the skew parameter (that
iss = Ky) is zero'.

In particular, if
a, 0 x9
K= ay Yo 3
1
one may easily compute that
w = K k!
1/a2 0 —z0/a2
= 0 1/a? —yo/
—x0/a? —yo/ai 1+x%/ai+y§/a§

Assumptions about the calibration matrix are now easily
related to conditions on the entries of w. Specifically,

Proposition 2.1.

1. Zero-skew: If s =Ky9 =0, then wya = 0.

IThisis not true of the dual of the IAC, used in [1, 4] and is the reason
for the significant advantage of using the IAC instead of its dual.

2. Square-pixels:
Woo = 0.

If s =0and a, = ay, then wyg —

3. Known principal point: If s = 0and zq = 0, then
w1z = 0. Slmllarly if 1o =0 then wo3 = 0.

Each equation of this type applied to w ;, when combined
with (1) gives a linear equation in the entries of wg. With
at least five equations, one may solve for the five distinct
entries of wq up to scale. For instance, each image (includ-
ing) Jo gives one equation in the zero-skew case, and five
images are required to find the calibration. If one assumes
square pixels or known principal point, then fewer images
are necessary. Finally, one computes each w ; using (1) and
retrievesthe calibration matrix from (2) using Cholesky fac-
torization. Further details, and results of implementing this
algorithm are reported in [2].

3 Thegeneral motion case

The purpose of this paper is to extend the techniques of
[2] described above to the case of a moving camera, that
is one undergoing trandation as well as rotation. In addi-
tion, the camera may be zooming, which means that the
internal parameters are changing. The problem is made
considerably more difficult by the translation of the cam-
era. In this case, there are no homography maps that map
points directly from one image to the next. Instead, match-
ing points are related by the fundamental matrix. However,
the place of the inter-image homographiesin the stationary
camera case are taken by the so-called “infinite homogra-
phies’ (as described later) in the case of moving cameras.
Unfortunately, one can not compute the infinite homogra-
phies without knowing the position of the plane at infinity,
which is not readily found. However, if only these infinite
homographies could be discovered, then the theory and so-
[ution method given for the stationary camera case could be
applied directly to find the calibration of the cameras. Thus,
calibration is reduced to finding the plane at infinity. Ashas
been noted previously ([4, 12]), the real difficulty in cali-
bration is finding the plane at infinity.

Given a set of images of a scene, thefirst step in the cali-
bration processis to compute a projective reconstruction of
the scene, using the method described in [3], or any other
method. The next step is to find the true plane at infinity in
the coordinate frame of the projective reconstruction. Ap-
plying a projective transformation that takes this plane to
infinity upgrades the projective reconstruction to an affine-
reconstruction. After this, one can find the infinite homo-
graphies and use the method of [2] to compute the calibra-
tion of each camera, and ultimately compute a Euclidean
(sometimes called “metric”) reconstruction of the scene.

The method of finding the plane at infinity proposed in
this paper is to carry out a direct search over al possible



planesto find the one that allows the best calibration. Thus,
let P; = [M,|t;] be a set of cameras and X, be points to-
gether making up a projective reconstruction of ascene. Let
V be a 4-vector representing a plane in the reconstructed
scene, and let G be a projective transformation taking V to
the plane at infinity. Any non-singular 4 x 4 matrix with
4-th row equal to V T has this property. To verify this, note
that a point X lies on the plane represented by V if and
only if vTX = 0, and this is equivalent to the condition
that GX = (X,Y, Z,0) T lies on the plane at infinity. Now,
we may apply G to the reconstruction, replacing each P ; by
P;G~! and each point X; by GX;. If by some chance V
represented the true plane at infinity, then we now have an
affine reconstruction, and one may proceed to calibrate the
cameras, as described next.

For each j, let [M}|t}] = P, = P;G be the camera matri-
ces after transformation. Theinfinite homography for apair
of camerasis defined to be the homography between the two
images rel ating the respective projections of pointslying on
the plane at infinity. For instance, apoint X = (x 7,0) " on
the plane at infinity maps to points Mix and M’x in the i-th
and j-th images. These points are related by the homogra-
phy mapping H;; = MgMg_l, which is the infinite homog-
raphy for this pair of images. Since the absolute conic lies
on the plane at infinity, its projectionsin two images are re-
lated via the infinite homography. From this it follows that
(1) holdswhereH; = Hy; is theinfinite homography for the
image pair (0, 7).

For convenience, we introduce a reference camerarepre-
sented by P{, = [I | 0]. Notethat P{, is not necessarily one
of our cameras P;-. Let wy be the IAC in the image taken
with this camera. The infinite homography from image 0 to
image j isthen simply M, from which it follows that

wj; = M;'_Tu.)oM971 (4)

Asinthe stationary camera case, each condition of the form
given in Proposition 2.1 gives a linear equation on the en-
tries of the symmetric matrix wo. Onemay solvethissystem
to find wo, subsequently compute each w ; and obtain K; by
Cholesky factorization. If the computed w ; is not positive-
definite, then this final step of Cholesky factorization is not
possible. This factor will work in our favour, since it indi-
cates that the supposed value of 'V representing the plane at
infinity was in error. Note that each w ; is positive-definite
if and only if wy is.

The cost function.  The complete set of equations de-
rived from (4) may be written as Aw = 0, where w is
a 6-vector made up of the distinct entries of the symmet-
ric matrix wg. If the plane at infinity (represented by V)
was correctly devined, and there is no noise, then this set
of eguations will have an exact non-zero solution, repre-
senting the matrix wo. One may find this solution by car-

rying out the Singular Value Decomposition (SVD) of 4,
namely A = UDV'. Matrix D isa6 x 6 diagonal matrix
diag(ds, ..., ds), and we may arrange that d is the small-
est entry, equal to zero in the ideal case, and the solution is
thelast column of V. In the absence of an exact solution, the
last column of V represents a least-squares solution for w,
and the residual Aw is dgUg, Where Ug is the last column
of U. The magnitude of this residual vector is equal to dg,
the smallest singular value of A.

Although measurement noise will lead to an inexact so-
[ution, and a non-zero residual, the most significant source
of residual is the wrong placement of the plane at infinity.
This suggests astrategy for finding the correct placement of
the plane at infinity, as follows.

Algorithm 1.

1. For each 4-vector V representing a plane at infinity,
compute aresidual error (V) as follows

(@ Form a 4 x 4 transformation matrix having
last row V and compute transformation matrices
Pi =P,;G~! = [M)|t]].

(b) Form alinear equation set Aw = 0 from (4) ac-
cording to chosen constraints of the type givenin
Proposition 2.1

(c) Computethe SVD of A =TUDV .

(d) Thelast column of V isthe least-squares solution
containing the entries of wy.

(e) If the computed wy is not positive-definite, then
reject the solution.

(f) The magnitude of the residual (V) isthe small-
est singular value of A.

2. Search for the value of V that minimizes the residua
r(V), and leads to a positive-definite solution for wy.
Accept thisvalue of V as the placement of the plane at
infinity,

3. From the value of wy computed as step 1, compute
each w; using (4), and computekK ; using Cholesky fac-
torization w}l = KjK,»T. Since wy is positive definite,

S0 isw;, and this factorization will succeed.

The cost function represented by the smallest singular
value of A represents the residual error associated with the
conditions given in Proposition 2.1. It is possible to use
other cost functions in this context. In the zero-skew case,
for instance, the vector of skew-angles for each of the dif-
ferent calibration matricesX ; has also been tried, and seems
preferable. However, thisrepresentsaminimal modification
to the algorithm.



4 Narrowingthe Search for Infinity

The 4-vector V representing the plane at infinity is de-
fined up to scale only, and hence the search for an optimum
V may be carried out over a compact region by searching
over a 3-sphere. However, it is possible to constrain the
search even more effectively.

4.1 Obtaining a quasi-affine reconstruction.

The search for the best plane at infinity can be narrowed
by making a preliminary transformation to a quasi-affine
transformation ([5]). A quasi-affine reconstruction is com-
puted by taking account of cheirality as described in[3]. In
this paper, the technique is refined to give accurate bounds
for asearch for the plane at infinity.

Asdescribed in[3], the essence of cheirality isto usein-
formation about which points are visible in an image, and
hencein front of the camera, to upgrade a projective recon-
struction to a “ quasi-affine” reconstruction. A quasi-affine
reconstruction is a projective reconstruction in which the
reconstructed scene is not split across the plane at infin-
ity. A quasi-affine reconstruction may be computed from a
projective-reconstruction by solving a linear programming
problem. In particular, for a projective reconstruction con-
sisting of points X; and camerasP ;, one finds a quasi-affine
reconstruction in several steps as follows (for justification
see(5, 3):

1. Multiply each P; and X; by £1 as necessary o that
P;X; = (z,y,w)" withw > 0. Thisis always possi-
ble ([5]).

2. For any cameramatrix P, let C* = (cy, c2, c3,¢4) " be
defined by ¢ = (—1)* det(®"), where B, is obtained
from P by removing the k-th column. The vector C?
is a homogeneous representation of the camera centre,
but the sign of C? isimportant in this context.

3. For each e = £1, form the set of inequalities

X; 'V >0 forall points X;
eC’ TV >0 forall camerasP;

4. For each choice of ¢ solvethe set of inequalitiesto find
V. There must be a solution for at least one of the
choices of ¢, perhaps both.

5. Choose atransformation matrix G with 4-th row equal
to V and such that sign(det G) = e.

6. Replace each X; by GX; and each P; by P;G!, and
the resulting reconstruction will be a quasi-affine re-
construction.

The inequalities above are called the “cheiral inequalities’.
If solutions exist bothfor e = 1 and e = —1, then they have
opposite orientation ([5]). As explainedin [3] one adds ex-
tra inequalities |v;| <= 1 for each component v; of V to
constrain a solution. In order to find a unique solution to
the set of inequalities, the cheiral inequalities are modified
by introducing a further variable 6. Then one formsthein-
equalitiesX; 'V > § and eC® TV > ¢ and linear program-
ming is used to find the solution that maximizes § > 0.

This method is used to obtain one or possibly two differ-
ently oriented quasi -affinereconstructionsof the scene. One
of these reconstructions differs from the true reconstruction
by an orientation preserving (that is positive determinant)
projective transformation in which the plane mapped to in-
finity does not cross the convex hull of the points and cam-
era centres. Any further transformations applied to the re-
construction to achieve an affine or Euclidean reconstruc-
tion will have this form. Subsequent steps of the algorithm
are carried out with the two differently oriented quasi-affine
reconstructions (if both exist) until sometime later achoice
is made between them.

4.2 Trandationtotheorigin

The next step is to translate the quasi-affine reconstruc-
tion (that is the 3D points and the camera centres) to the
coordinate origin. At the sametime, to make possible affine
distortion more benign, anisotropic scaling is applied to
make the reconstruction approximately round. More pre-
cisely ascaling is applied so that the principa moments of
the point set are equal. This completetransformationis eas-
ily donein one step asfollows. Let S = 1/N YV v, TY;
be the scatter matrix of all the points Y ;, which are the 3D
points and the camera centres. Let S = HH ", with H upper-
triangular, be the Cholesky factorization of S. Transforming
the reconstruction by H~!, that is replacing P; by P;H and
points X; by H~'X;, will carry out the desired translation
and scaling of the data. Note that H represents an affine
transformation.

4.3 Setting boundson the planeat infinity

At the end of the previous step, one has a quasi-affine
reconstruction centred on the origin. Next we want to up-
grade to an affine reconstruction which requires the plane
at infinity to be determined. In any further transformation
to be applied to the reconstruction to achieve an affine re-
construction, the plane V mapped to infinity can not pass
through the origin (since then it splits the point set). Hence
one may assume that the vector V- mapped to infinity is of
theform vV = (vy,v2,v3,1)" = (v',1)". Furthermore,
the transformation G, mapping V to infinity may be taken



to have theform

I 0
o[ V]

which has unit determinant, and is hence orientation pre-
serving.

A search for the plane at infinity has thus been reduced
to a search over the 3-dimensional space represented by the
coordinatesof thevector v. Next it is shown how thissearch
may be narrowed to a search over a rectangular region of
parameter space, somewhat incorrectly here called a cube.
First note that the cheiral inequalities may be written in
terms of amatrix C, andavector V. = (v ',1) isaviable
planeat infinity if and only if each component of the vector
CV ispositive. We set ¢ = 1 in forming these inequalities,
since we are now interested only in orientation-preserving
transforms. This condition gives a very rapid test for a pro-
posed plane at infinity being acceptable.

The plane at infinity must lie outside of the convex hull
of the scene, which is centred around the origin. This con-
straint places finite bounds on the coordinates of v, since
planes with unbounded coordinates lie arbitrarily close to
the origin. One may determine the bounds for the coordi-
nates of v by linear programming with the constraint ma-
trix C. One obtains upper and lower boundsfor each v; (Six
problems in total) by maximizing +v; subject to the con-
straintsCV > 0. Thislimits the search for the plane at in-
finity to a search over a cube containg the origin. Typically,
onefinds bounds on v; of the order of —1.0 < v; < 1.0.

4.4 Searchingfor the plane at infinity

Searching over the complete cube for the best value of v
isquitetractable, and is the preferred method. In our imple-
mentation, we take 50 samplesin each coordinate direction,
atotal of 502 = 125,000 trials in all. Each tria is rep-
resented by avector V. = (vy,vs,vs3,1)7. The following
steps are carried for each such trial vector.

1. Cheirality test : If CV is not a positive vector, then
reject thistrial.

2. Otherwise, for each cameramatrix P; = [M,|t;], com-
puteM; = M; —t;v . Notethat thisM; istheleft-hand
block of P, = P;G, "

3. Form alinear equation set Aw = 0 from (4) according
to constraints as in Proposition 2.1 and solve to find
wo.

4. |IAC test : If wq is not positive definite (determined
using the Cholesky factorization), then rgject thistrial.

5. Otherwise, return a cost value (or vector) associated
with the computed calibration.

The complete self-calibration algorithm is given by Al-
gorithm 1 in which this search techniqueis used as step 2.

Although a blanket search may seem costly, in fact it is
very fast, since the computational cost at each step is small.
Infact, for a sequence of 19 images with over 1000 points,
the search over 250,000 trials (both orientations) took only
23 seconds on a 256M Hz Pentium machine. Thistimeisin-
significant, compared with the time taken for point tracking
outlier detection and accurate bundl e-adjusted projectivere-
construction. Furthermore, one could probably reduce the
density of search by half with little loss, thereby reducing
the search time by a factor of 8.

Iterative search To obtain a more accurate estimate of
the plane at infinity, one can carry out an iterative cost
minimization to find the exact cost minimum. We used
Levenberg-Marquardt starting at the minimum of the ex-
haustive search to minimize the cost vector with respect to
v. Since the minimum is very close, this search terminates
very quickly (in afew milliseconds).

5 Convergence

The small dimension of the search space allows usto get
some idea of how well-behaved the cost function is. Once
the minimum of the cost function was found on the cube
containing v, values of the cost function on the axial planes
passing through the minimum were plotted. Theresults are
shown and discussed in Fig 1.

5.1 Experimental resultswith real images

The calibration algorithm was tested with generally sat-
isfactory results on various different image sequences, in-
cluding the LIFIA model house sequence used in [3]. In
addition, a new image sequence was taken using a camera
with azoom lens mounted on a Yorick stereo head/eye plat-
form [10]. To achieve general motion we used three of the
four available degrees of freedom of the head using one of
the two independent vergence axes, the common elevation
axis and the pan axisto tranglate and rotate the camera. The
servo lens provided ground truth data of the position of the
zoom lens for each frame in the image sequence. The cam-
erawas then calibrated, using an accurately machined cali-
bration grid and a classical calibration algorithm, to obtain
ground truth values for the internal parameters at each of
the different positions of the zoom lens. The focal length
of the camerawas set to increase linearly by afactor of ap-
proximately 1.4, using the controlled zoom lens. Figure 2
shows 6 of the 15 images of the sequence.

First, point correspondenceswere computed and the pro-
jective reconstruction was obtained using the method re-
ported in [3]. The experiment was run using both the zero
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Figure 1. These figures show the zy-plane cross section through the search cube. The first two plots show the shape of
the cost surface (on a logarithmic scale) viewed from above and from the side, whereas the third plot shows a contour
plot of the same slice. As may be seen, the surface is highly indented, and any attempt to converge to a global minimum
through gradient-guided search from a random point in the cube would be doomed to failure. The last plot shows the
shape of the regions defined by the various constraints on the vector v representing the plane at infinity. the dark-
grey region shows the area in which only the cheirality constraint is satisfied. The light-grey region represents points
satisfying the positive-definite IAC test constraint. The white region shows where both constraints are satisfied. The
cost function needs to be computed only inside this region. Note also that the cost function is relatively well behaved
inside the white region. Note that the region defined by the cheirality constraint is a convex polyhedral region inside
the search cube, but the region defined by the positive definite IAC constraint is more complex.
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Figure 3. Top view and side view of the reconstructed scene points as computed using the square-pixel constraint.
These results show that the Euclidean structure of the scene is well captured, as evidenced by the square shape of
the calibration cube shown in the scene. The reconstruction results using only the zero-skew constraint were less
satisfactory as can be expected.



skew and square-pixel constraints. Two differently oriented
quasi-affine reconstructions were found in each case, but in
each case only one of them lead to a Euclidean reconstruc-
tion.

Figure 4 shows the results obtained for some of the cali-
bration parameters. The aspect ratio appearsto be very well
estimated and remains almost constant throughout the se-
guence. The estimate of the focal length was close to the
ground truth value, the maximum error being around 5%.
In thisimage sequence, the principal point (not shown) was
badly conditioned and the results were inherently unstable,
being correl ated with camerarotation. However it was com-
puted to lie always within the image.

Once the Euclidean calibration was computed the pro-
jective reconstruction of the scene points was upgraded to a
Euclidean reconstruction. A top view and aside view of the
reconstructed pointsis presented in figure 5.1. Note that the
metric structure of the sceneiswell preserved.

6 Discussion and Conclusions

The shape of the cost surfaces arising from the self-
calibration problem demonstrates the difficulties that are
involved in cost-minimization to identify the plane at in-
finity, and hence make the step to an affine reconstruction.
This suggests that it is imperative to take note of the con-
straints arising from considerations of cheirality, and also
the positive-definiteness of the image of the absolute conic
if oneisto hopeto find arobust affine, and subsequently Eu-
clidean reconstruction of a scene. The technique of densely
sampled search over the permissible range of the plane at
infinity discussed in this paper has proven to be an effective
way of robustly and rapidly finding a global minimum for
the calibration cost.

In some cases, it has been observed, however that despite
finding a cost function minimum, stable values of the cam-
era calibration parameters are often not obtainable. Thisis
especially true in the case where minimal constraints are
applied, such as the zero-skew constraint alone. In this par-
ticular case, the calibration of the camerais obtained essen-
tially independently of the other cameras, and oneis subject
to the usual ambiguities such as principal-point / rotation
and focal-length / distance.

The method outlined in this paper is applicable with
a large number of different cost functions and calibration
methods, and a continuing research goal is to find which
cost functions give the best results. As an example the
goa function given here, which minimizes sum of squares
of skew parameters seems natural for the case of assumed
zero skew. However, other function, such as skew angle
may give better results. The search method is not limited to
non-iteratively computable cost functions such as those dis-
cussed here. Use of an iterative calibration algorithmfor the

search trias, such as that of [1] can alow other calibration
constraints, such as fixed but unknown principal point.
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Figure 4. Ground truth and computed values for the focal length and the aspect ratio of the camera. These results
shown here were for the zero-skew case and show surprising accuracy, given the very minimal calibration assumptions
being used. Note that the aspect ratio is very accurately estimated, although no assumption is made as to its value, or
even to the fact that it is constant across all images. Other parameters, notably principal point position were not very
accurately computed, confirming the known fact that the position of the principal point is not well conditioned.



