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Camera calibration and three-dimensional world reconstruction of
stereo-vision using neural networks

Qurban Memony and Sohaib Khanz

Stereo-pair images obtained from two cameras can be used to compute three-dimen-

sional (3D) world coordinates of a point using triangulation. However, to apply this

method, camera calibration parameters for each camera need to be experimentally

obtained. Camera calibration is a rigorous experimental procedure in which typically

12 parameters are to be evaluated for each camera. The general camera model is often
such that the system becomes nonlinear and requires good initial estimates to converge

to a solution. We propose that, for stereo vision applications in which real-world

coordinates are to be evaluated, arti® cial neural networks be used to train the system

such that the need for camera calibration is eliminated. The training set for our neural

network consists of a variety of stereo-pair images and corresponding 3D world coor-
dinates. We present the results obtained on our prototype mobile robot that employs

two cameras as its sole sensors and navigates through simple regular obstacles in a

high-contrast environment. We observe that the percentage errors obtained from our

set-up are comparable with those obtained through standard camera calibration tech-

niques and that the system is accurate enough for most machine-vision applications.

1. Introduction

Camera calibration is considered as an important issue

in computer vision. Accurate calibration of cameras is

especially crucial for applications that involve quantita-

tive measurements, depth from stereoscopy or motion

from images. The problem of camera calibration is to

compute the camera extrinsic and intrinsic parameters.

The extrinsic parameters of a camera indicate the posi-

tion and the orientation of the camera with respect to

the coordinate system, and the intrinsic parameters

characterize the inherent properties of the camera

optics, including the focal length, the image centre, the

image scaling factor and the lens distortion coe� cients.

The number of parameters to be evaluated depends

on the camera model being utilized. Typically, 12

parameters are found for each camera, expressed as
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The Ch1; Ch2; Ch3; Ch4 are known as camera coordinates,

Wh ˆ ‰X Y Z 1ŠT are known as world homogeneous
coordinates and A denotes the unknown (12 parameters)

camera matrix. The problem of ® nding these parameters

is, in general, a nonlinear problem (owing to lens distor-

tion) and requires good initial estimates and an iterative

solution.
The techniques found in the literature for camera cali-

bration can be broadly divided into three types: linear

methods, nonlinear methods and two-step techniques.

Linear methods assume a simple pinhole camera

model and incorporate no distortion eŒects. The algor-

ithm is non-iterative and therefore very fast (Abdel-Aziz
and Karara 1971, Wong 1975, Ganapathy 1984,

Frugeras and Toscani 1986). The limitation in this

case, however, is that camera distortion cannot be incor-

porated and therefore lens distortion eŒects cannot be
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corrected. The problem of lens distortion is signi® cant in

most oŒ-the-shelf charge-coupled device cameras. In

non-linear techniques, ® rst the relationship between par-

ameters is established and then an iterative solution is

found by minimizing some error term. Many classical

calibration techniques fall in this category (Brown 1966,

Haralick and Shapiro 1993, Nomura et al. 1992). Direct

linear transformation introduced by Abdel-Aziz and

Karara (1971) has also been extended to incorporate

distortion parameters. The advantage of such techniques

is that the camera model can be very general to accom-

modate diŒerent types of camera. However, for this type

of an iterative solution, a good initial guess is essential,

otherwise the iterations may not converge to a solution.

Two-step techniques involve a direct solution of some

camera parameters and an iterative solution for the

other parameters. Iterative solution is also used to

reduce the errors in the direct solution. This is the

most common and current approach to the problem

(Tsai 1987, Lenz and Tsai 1988, Weng 1992).

Computing world coordinates from stereo images

requires ® rst matching the images obtained from two

diŒerent cameras to determine disparities (diŒerence in

positions of corresponding features) and then trans-

forming these into world distances. The problem has

been called the object pose estimation problem in com-

puter vision literature (Haralick and Shapiro 1993) or

simply the stereo reconstruction problem. The process

of matching is essential for ® nding world coordinates

from a stereo image. The matched points are used to

® nd world coordinates using triangulation (Gonzalez

and Woods 1992). In this process, all the camera cali-

bration parameters appear as constants in the equation.

Hence, camera calibration is essential to compute world

coordinates from stereo-images.

In the next section, } 2, we present a simple and uni-

® ed approach to camera calibration and stereo recon-

struction using neural networks. In our approach,

instead of calibrating both cameras and then using the

triangulation procedure, we directly train a neural net-
work to compute world coordinates from matched pairs

of image points. The advantage that we obtain is that

the approach is not dependent on the camera model and

will work for any type of camera. Figure 1 shows the

mobile robot used in our experiment with one camera

mounted on it. In } 3, we discuss the results obtained by
our approach, when tested on our prototype mobile

robot system. In } 4 we present conclusions.

2. Arti® cial neural network model for three-
dimensional world reconstruction

Arti® cial neural networks (ANNs) are being applied in

many scienti® c disciplines to solve a variety of problems
in pattern recognition, prediction, optimization associ-

ative memory and control. None of the conventional

approaches to these problems is ¯ exible enough to per-

form well outside their domain. ANNs provide exciting

alternatives and many applications could bene® t from
them (Jain, A., et al. 1996).

In our problem, we propose a multilayer ANN model

because camera calibration problem is a nonlinear prob-

lem and cannot be solved with a single layer network

(Fausett 1994). The best architecture and algorithm for
the problem can only be evaluated by experimentation

and there are no ® xed rules to determine the ideal net-

work model for a problem. However, variations in

architecture and algorithm eŒect only the convergence

time of the solution.

We have used the network model in ® gure 2 for our
simulations. It falls into the category of the feedforward

class. Each output in a layer is connected to each input

in the next layer. In this case, the output layer has simple

linear neurons, while all the neurons in the two hidden

layers have the same transfer function, with a sigmoidal
nonlinearity. Generally, the nonlinear, continuously dif-

ferentiable, real-valued and bounded function for three

inputs and their corresponding weights is shown in

® gure 3, where the parameter a diŒerentiates from

hard limiting function. Also, because there is no feed-
back between layers, the eŒect of the feedforward neural

net topology is to produce a nonlinear mapping between

the input nodes and the output nodes. The model that

we used consists of four input neurons, eight hidden

neurons and three output neurons. The input neurons

correspond to the image coordinates of matched points
found on the stereo images …x1; y1) and (x2; y2). These

points are generated by the same world point on both

images and form the input of the neural network. The

output neurons correspond to the actual world coordi-
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Figure 1. Mobile robot. The objects in front of the camera are

obstacles placed for the purpose of experiment.



nates of the point (X ; Y ; Z) which are mapped as (x1; y1)

and (x2; y2) on the two images. We train the network on

a range of inputs and outputs, such that the network

could, after training, give the world coordinates for

any matched pair of points. The implementation details

and the results are given in the next section.

The approach requires training of the network for a

set of matched image points whose corresponding world

point is known. For this purpose, we use an object

similar to that used by (Nomura et al. 1992) consisting

of a grid of points placed at ® xed intervals. This chart

(shown in ® gure 4) is placed in front of the two cameras

at known distances from an arbitrary world origin. It

should be noted that the choice of the world origin in

this approach is arbitrary and the cameras need not be

® xed at some precise location relative to the world

origin. We capture stereo images of the chart at various

distances from the world origin, noting the value of the

world coordinates of the chart at each instance. The set

of matched points and the world coordinates thus

obtained form the training set of our ANN. Once the

network is trained, we present it with arbitrary matched

points and it directly gives us the world coordinates

corresponding to the matched pair.

It should be noted that this approach is diŒerent from

conventional camera calibration techniques in the sense

that no extrinsic or intrinsic camera parameters are

found for any of the cameras. Instead, the system is

trained such that it learns to directly ® nd the world

coordinates of objects. The experimental procedure

required is almost the same as that of conventional

approaches to the problem. However, the approach is

essentially very simple and yields comparable results.

The advantage of this approach lies mainly in its sim-

plicity and generality. The technique will work for any

type of camera and accurate camera modelling is not an

issue. The cameras need not be ® xed at any precise loca-

tion with respect to the world origin, nor do their axes

have to be aligned. The precise positioning of the chart

with respect to the camera is also not required, as is the

case in some approaches to the problem (see, for ex-

ample, Nomura et al. (1992)). The calibration chart

only needs to be at known positions with respect to a

world origin.

It should be noted that this approach of camera cali-

bration is only valid for stereo vision systems and is not

applicable to monocular cameras. The approach is par-

ticularly suited to autonomous mobile robots that

employ stereo vision. It is novel in the sense that it is

based on training rather than computing explicit values

of camera parameters. However, the training set pre-

sented to the ANN must be a good enough representa-

tive of the range of possible scenarios that the system

might encounter during operation.
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Figure 2. ANN model used for the problem.
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Figure 3. Neuron model with sigmoid function.

 

 

     

 

 

 

  

Figure 4. Calibration chart at 50 cm.



3. Experimental details and results

We took two cameras mounted on our prototype mobile

robot. We kept the distance between the two cameras at

approximately 7 cm and did not align their optical axes

precisely. Next we made a calibration chart consisting of

a grid of lines 5 cm apart (as shown in ® gure 4). This

chart was placed in front of the cameras at various

distances from the world origin and its image captured

from both cameras, without moving the cameras. The

chart was placed at distances that were in the range of

interest of our robot. We de® ned the range of interest of

the robot to be within 50± 140 cm in front of the robot

and captured images in this range at increments of

15 cm. We felt that our robot should be able to gauge

correctly the distance of obstacles that are present in this

range.

After capturing the images of the calibration chart, we

matched these images to obtain stereo pair points. For

each stereo pair, we also knew the actual world distance,

since we had placed the chart at measured distances with

respect to a world origin. At no time in our experiment

did we have to measure the exact distance of the cameras

with respect to the world origin, as would have been

necessary in some calibration approaches found in

literature.

A set of 400 stereo pairs and their actual three-dimen-

sional (3D) world distances formed our training set. We

trained our neural network on this set of 400 stereo

pairs. The training was done by presenting the stereo-

pair points to the input of the network and presenting

the 3D world coordinates at the output.

The training was done using the back-propagation

algorithm (brie¯ y described in table 1), with Nguyen±

Widrow initialization of weights and adaptive learning

model. We used a log-sigmoid activation function for

both inputs and weights. All inputs were normalized

between 0 and 1 before presenting them to the network.

The target outputs were also normalized between 0 and

1. Such normalization is necessary to obtain quicker

learning. We experimented with various diŒerent net-

work architectures but observed very little change in

error by using alternative architectures.

To check the accuracy of the trained network, we

presented the network with stereo-pair points that

were not included in the training set but were from

within our range of interest of distance. We had a set

of such points whose corresponding 3D world coordi-

nates were already known to us. We computed the

average error that we obtained from these points. This
error presented the true learning of the network, since

we had not included these points in the training set.

Mathematically, this mean square error can be written

as

ems ˆ mean ‰…x x̂x†2Š; …3†

where ems; x and x̂x denote the mean square error of the

network, the world point vector that is actually meas-

ured and the corresponding world point vector given by

the network respectively.
The results of the mean percentage error observed

during training and computed as a percentage are

shown in ® gure 5. From ® gure 5 it can be seen that, as

the training epochs are increased, the error in the com-

putations made by the network is decreased. The error

became less than 5% after 40 000 epochs of training.
After 100 000 epochs of training, the mean error in com-

puting 3D coordinates of a point became 4.33% .

It must be appreciated that this error contains not

only the error that is contributed by the network but

also the quantization errors of the camera. Since we

did not use any subpixel measuring technique to ® nd
the image coordinates of a point, we should have a

signi® cant contribution of quantization error.

Since the sigmoid activation function has also been

applied on outputs and the training data have been
normalized, we wanted to verify the ability to extend

linearly the output range. Once our network was trained

in our range of interest, we also presented it with points

that were outside our range of interest. We had origin-

ally trained the network for points within 140 cm of the
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Table 1. Back-propagation algorithm steps

(1) Initialize weights

(2) Present input and desired output

(3) Calculate actual outputs

(4) Adapt weights using recursive algorithm starting at the

output nodes and working back to the ® rst hidden layer

to adjust weights
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Figure 5. Mean percentage error in computing 3D coordinates

as a function of the number of epochs.



world origin. Now we presented the network with points

whose distance from the world origin ranged from 150

to 200 cm and again computed the percentage error

using equation (3), but this time these results were accu-

mulated as a function of distance beyond training set.

These results are shown in ® gure 6. We observed a linear

increase in percentage error as the object moved further

away from our training limit. Now, the inverse perspec-

tive transform equation that is used to compute the

world distance in normal circumstances (i.e. not using

our approach, but instead using conventional methods)

implies that the error should increase as a square of the

distance. That is because there is 1/Z term in that equa-

tion, and the magnitude of error comes out to be a 1=Z2

term. It is also what one would expect, since two cam-

eras are used. There is no doubt that the error would

also increase in a quadratic fashion if we had been using

a simple interpolation scheme, but that is not the case in

our approach. Neural networks are supposed to behave

well in their training region and close to the edges of

their training region. So by virtue of using a neural net-

work, our error is increasing in a linear fashion, which is

an actual improvement over the interpolation approach.

One important point here is that the interpolation

approach will obviously give exact results at points

that are part of the training set. A trained neural

network might not give an exact reconstruction for

these points, that is it has an error even for the points

that are actually part of the training set and, as we have

seen, better comparative performance outside the

training set. It should be noted that we placed minimal

constraints on the type of camera required, the

resolution and quality of images and the accuracy of

measurements.

4. Conclusion

In this paper, we have presented a uni® ed approach to

camera calibration and 3D world reconstruction for

stereo-vision. We used an ANN to train the system

such that, when the system is presented with a matched

pair of points, it automatically computes the world

coordinates of the corresponding object point. The

approach diŒers from conventional approaches to the

problem, which appear in computer vision literature in

the sense that the cameras are never actually calibrated,

and the network is so trained as to compute the correct

world coordinates of two matched points. The approach

is simple in concept, independent of the camera model

used and the quality of image obtained and yields very

good results when applied to a prototype autonomous

mobile robot using stereo-vision.
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ordinate beyond the training range (results taken after training

the network for 50 000 epochs).
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