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Camera Calibration by Vanishing 
Lines for 3-D Computer Vision 

Ling-Ling Wang and Wen-Hsiang Tsai 

Abstract- A new approach to camera calibration by vanishing lines is 
proposed. Calibrated parameters include the orientation, the position, and 
the focal length of a camera. A hexagon is employed as the calibration 
target to generate a vanishing line of the ground plane from its projected 
image. It is shown that the vanishing line includes useful geometric hints 
about the camera orientation parameters and the focal length, from 
which the orientation parameters can be solved easily and analytically. 
And the camera position parameters can be calibrated by the use of 
related geometric projective relationships. The simplicity of the target 
eliminates the complexity of the environment setup and simplifies the 
feature extraction in relevant image processing. The calibration formulas 
are also simple to compute. Experimental results show the feasibility of 
the proposed approach. 

Index Terms- Camera calibration, computer vision, vanishing line, 
vanishing point. 

I. INTRODUCTION 
ith the advent of 3-D computer vision, it is important to W calibrate cameras for various computer vision applications. 

Camera calibration is the problem of determining the elements 
that govern the relationship between the 2-D image that a camera 
perceives and the 3-D information of the imaged object. It is identical 
to the problem of robot location in 3-D space. There are many existing 
techniques for solving this problem. Fukui [2] used a diamond shape 
target placed on the wall to determine the 2-D location of the camera 
with respect to the diamond. The camera lens center and the target 
center have to be set at the same height. In addition, the optical axis 
of the camera must pass through the center of the target. Courtney 
and Agganval [4] used the same target as Fukui’s but relaxed the 
restriction that the camera lens center must be as high as the diamond 
center. Instead, they made the assumption that the height of the 
camera is known. In [5], Magee and Agganval used a sphere with two 
perpendicular great circles as the target to determine the 3-D location 
of the camera relative to the sphere. Before the image of the sphere 
is taken, the camera optical axis must be pointed through the sphere 
center. Chou and Tsai [6] used house corners as calibration targets. 
Camera position and orientation parameters are computed provided 
that the height of the camera lens center is known. 

Fischler and Bolles [7] found camera position and orientation 
parameters by first computing the heights of rays from the camera 
lens center to the control points in the image plane. His algorithm 
is nonlinear and usually six point correspondences are required to 
get a unique solution. In [8], Tsai used 60 control points to derive 
camera position and orientation parameters as well as the focal length, 
radial lens distortion, and image scanning parameters. In certain 
other nonlinear optimization approaches [9], [ 101, the computation 
is complicated and a good initial guess to start the nonlinear search 
is required. 
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A common characteristic of the previous approaches is that no 
intuitively apparent relation between imaged scenes and calibrated 
camera parameters is shown. In this correspondence, a new and 
simple camera calibration method is proposed, which is based on 
an intuitive relation between camera parameters and vanishing lines. 
Calibrated parameters include the position, the orientation, and the 
focal length of a camera. 

In the proposed method, a planar hexagon shape with a known 
dimension and three pairs of parallel sides is placed on the ground 
plane as the calibration target, and only a monocular view of the 
target is required. In fact, many other common shapes could also 
be used as the calibration target. The simplicity of the planar 
target eliminates expensive system setup costs and simplifies image 
feature extraction works. The calibration method presented here may 
be applied to various applications like robot location, autonomous 
vehicle navigation, photogrammetry, etc. 

In this approach, the boundary points of the projected calibration 
target in the image are first extracted and fitted in the least square 
error sense to form the six edges of the target. Then three vanishing 
points are obtained to compute the vanishing line of the ground 
plane. The geometric information on the vanishing line is shown to 
be analytically related to the camera orientation parameters and the 
focal length. The camera position parameters are then calibrated by a 
simple geometric projective relation. The calibration computation is 
simple and deterministic. In comparison with the calibration method 
developed by Dhome et al. [15], in which only a triplet of lines are 
used, the proposed approach using three pairs of parallel lines shows 
an intuitively apparent relation between the input scenes and the 
calibrated camera parameters. In addition, an eight degree equation 
must be solved by iterative techniques in the Dhome’s method. Only 
quadratic equations are derived and no iterative step is required in 
our approach. 

In the remainder of this correspondence, we describe the new 
method in Section 11, and the related image processing techniques 
in Section 111. In Section IV, some experimental results and error 
analysis are given. Conclusions appear in the last section. 

11. USING VANISHING LINES FOR CMERA CALIBRATION 
The problem of camera calibration is to compute the camera 

extrinsic and intrinsic parameters. The extrinsic parameters of a 
camera indicate the position and the orientation of the camera with 
respect to a world coordinate system, and the intrinsic parameters 
characterize the inherent properties of the camera optics, including 
the focal length, the image center, the image scaling factor, and the 
lens distortion coefficients. 

For general computer vision applications, the intrinsic parameters 
of the camera remain the same except that the focal length may vary 
for different requirements of imaging distances. So, we may calibrate 
the intrinsic parameters in advance and calibrate only the extrinsic 
parameters and the focal length during application tasks. This may 
reduce the calibration complexity and enhance the efficiency. New 
methods for calibrating the extrinsic parameters and the focal length 
of a camera using vanishing lines are described in this section. 

A.  The Calibration Model 
The target proposed for use to calibrate the camera orientation and 

position parameters, and the focal length is a flat hexagon shape put 
on the ground with three pairs of parallel opposite sides as illustrated 
in Fig. 1. Let Po through PS be the six vertices of the hexagon. Two 
right-handed coordinate systems are defined in this study. One is 
the world coordinate system and the other is the camera coordinate 
system. The origin of the world coordinate system is located at vertex 
P3 of the hexagon with the positive Y axis being parallel to edges 

and m, and the positive Z axis being vertical to the ground 
and pointing upwards. For clarity, the Z axis is not shown in Fig. 1. 
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Fig. 1. The calibration target used in the proposed method. 

U V 

Fig. 2. The camera coordinate system. 

The world coordinates of the six vertices are known in advance by 
manual measurement. 

Shown in Fig. 2 is the camera coordinate system with the lens 
center as the origin. The V axis is the optical axis of the camera and 
the U- W plane is parallel to the image plane located at V = f with f 
being the negation of the camera focal length. The image coordinates 
of any point in the image plane are specified as ( U ,  w )  with respect 
to the camera coordinate system. 

We now define the camera parameters with respect to the world 
coordinate system. Suppose that the camera lens center L is located 
at (nc, y ,  zc), and the pan, tilt, and swing angles of the camera are 
8, @, $J, respectively. Based on these parameters, two matrices used 
in the world-to-camera coordinate transformation [ 11 are defined in 
the following: 

f W  

& - - - -  

U/ vanishing line I 

Fig. 3. Relation between the vanishing line and the camera swing angle. 

B. Calibrating the Camera Orientation Parameters 
and the Focal Length 

It is well known that parallel lines in the 3-D world which 
are not parallel to the image plane converge to one point in the 
image. This point is called a vanishing point [12]. The vanishing 
points of all the parallel lines on the ground will align to form a 
line, called the vanishing line of the ground plane [13], [14]. This 
vanishing line in the image is just the projection of the horizon 
or the skyline. The vanishing line in the image provides a clue for 
camera calibration. In the following, the orientation, the position, and 
the scaling information of the vanishing line will be used to derive 
analytic solutions for the camera orientation parameters and the focal 
length. 

1)  Relation Between the Vanishing Line and the Camera Swing 
Angle: When we see a sea or an outdoor world, the slope of the 
sea horizon or the skyline varies with different swing angles of our 
heads. This fact indicates a hint that the swing angle of the camera 
can be obtained from the orientation of the vanishing line of the 
ground plane in the image. And this is indeed a truth found in this 
study. More specifically, we will prove next that the vanishing line 
of the ground plane can be described by the following equation: 

(3) ii . sin LJ + U' . cos = - f . tan 0, 

and so the slope of the vanishing line is just -tan VJ which is the 
tangent of the swing angle. The above relation is illustrated in Fig. 3. 

The perspective projection of any set of parallel lines which are 
not parallel to the image plane converges to a vanishing point. In 3-D 
space the parallel lines can be imagined to meet at a point at infinity, 
and the projection of this point at infinity is just the vanishing point 
of the parallel lines. So to any line L ,  there corresponds a vanishing 
point which is also the vanishing point of any set of parallel lines 

T =  

+ sin 6' sin #J sin $J -sin 6' cos #J sin 6' sin $cos $ - cos 6'sin $J 
6' cos 1/, - cos 6' sin #J sin $J cos 6' cos #J - cos 6' sin #J cos $J - sin 6' sin $J 

sin #J cos #J cos $J 
0 0 

(1) 

For brevity of representation, matrix M is denoted as 

A D G O  
B E H O  

M = [ C  F I 0 1  

which are parallel to L .  Let L1 and L Z  be two nonparallel lines on 
the ground plane: 

L O  0 0 1J L1 : a1.r + b1y = C l ,  z = 0; 

The coordinate transformation between the two coordinate systems Lz : azx + bzy = c2, z = 0. 
can be written as 

Also let 1'1 = ( u l ,  w1) and S; = ( ~ 2 ,  w2) be the image coordinates of 
the two vanishing points of L I  and L z ,  respectively. We can compute ( u , v , w ,  1) = (z,y, 2 , l ) .  T-l . M .  ( 2 )  
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VI by considering a point P = ( z p ,  yp, 0) on L1 with y,  approaching 
to infinity. From the coordinate transformation described in (2) and 
imaging geometry, the projection of P in the image, i.e., the vanishing 
point V I ,  is located at the following image coordinates: 

Because a l z p  + bly, = c1, we can substitute zp  = (c1 - bly,)/al  
into the above equation, simplify the resulting equation, and compute 
the limit to obtain 

). (4) 
f . (+A + a lB)  f . (-blG + a l H )  

-blD + alE ' -blD + alE ( U l ,  w1) = 

Similarly, & = ( ~ 2 , w ~ )  can be derived to be 

). (5)  
f . ( 4 2 A  + azB) f . ( -bG + a z H )  ( -bzD+azE ' -bzD+azE (u2,wz)  = 

In addition, the line passing through VI  and V2 is just the vanishing 
line of the ground plane. Using (4) and (5)  and resuming the terms 
of A through H described in (l), we can derive the vanishing line 
equation as (3). Note that it is independent of VI  and V2, and also 
of L1 and Lz. It depends only on the tilt angle 4, the swing angle tp, 
and the focal length f of the camera. 

2) Relation Between the Vanishing Line and the Camera Pan 
Angle: Let (u1, wl)  be the image coordinates of the vanishing point 
VI  of two parallel lines with slope ml on the ground. From (4), we 
have 

Similarly, if (U?, W Z )  are the image coordinates of the vanishing point 
VZ of two other parallel lines with slope m2 on the ground, then 

Let ( U D , W D )  be the image coordinates of the depth vanishing point 
VD [l] (i.e., the vanishing point of two parallel lines parallel to the Y 
axis of the world coordinate system), then by considering the slope 
value in (6) or (7) to be infinity, it is easy to figure out that 

From (6),  (7), and (8) and the definition of the terms of A through H 
of matrix M in (1) we can derive the following equation: 

ImI' ( U 1  - U D y  + (w1 - . ID)'  

l v z v D I 2  - ( U 2  - ?my + (w2 - wD)2 
-- 

- (tan O - m2)2 

(tan 0 - ml)2 
- 

where Iml, means the length of line segment 
2.  As illustrated in Fig. 4, the known ratio value r of ImI to 

with i = 1 and 

vanishing line 

"D / 

I I 

Fig. 4. Relation between the vanishing line and the camera pan angle. 

t w  

I 

Fig. 5. Relation between the vanishing line and the camera tilt angle. 

Iml (available from the image) depends only on the camera pan 
angle 8. So we can derive a quadratic equation of t a n 0  from the 
preceding equation as follows: 

( r 2  - 1) tan20 - 2(r2ml - mz) tan B + ( T ' m ;  - mi) = 0, 

and obtain two solutions for t a n 0  : 

r - I  ' 
T m l  - m2 

tan81 = ~ 

rml + m2 

r + l  
tan02 = -. 

Which of 01 and 8 2  is correct is determined after the tilt angle 4 is 
computed, as can be seen later. 

It is intuitively apparent that if the camera is right, unbiased (i.e., 
0 = 0, 4 = 0, and $ = 0), and ml = -m2, Iml will be equal 
to Iml. But when the camera has a nonzero pan angle, Iml 
and lml will not be identical. So we can say that the pan angle 0 
determines the scaling characteristic on the vanishing line. 

3) Relation Between the Vanishing Line and the Camera Tilt Angle: 
From (3), the vanishing line equation, we can compute the W axis 
intercept W O  of the vanishing line to be W O  = -f . tan 41 cos I ) ,  as 
shown in Fig. 5. It means that the tilt angle 4, the swing angle $, 
and the focal length f determine the position of the vanishing line. 
Therefore, if the focal lengthfis known, then we can get the tilt angle 
4 from the position of the vanishing line in the image, or equivalently, 
from tan 4 = - W O  . cos $1 f .  But i f f  is unknown, we can use the 
additional information of two parallel line pairs to compute both the 
tilt angle and the focal length simultaneously, as described below. 

U1 A+m1B 
w1 G + m l H '  

From matrix M defined in (l), the preceding equation can be reduced 
to 

From (6) we can get 

- - 

sin = (cos 0 sin 4 + ml sin 0 sin $ ) U I  + (cos 0 cos4 + ml sin 0 cos $)w1 
(sin 0 cos $ - ml cos 0 cos $)u1 + (- sin OCOS $ + ml cos 0 sin $)wl  . (9) 

Similarly, from (7) we have 

. (10) 
(cos 6' sin I )  + m2 sin 0 sin $)u2 + (cos 0 cos I )  + m2 sin 8 cos @)wz 

s in4  = . 
sin 8 cos - m2 cos 8 cos $)u2 + (- sin 0 cos $ + m2 cos 0 sin $)w2 
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Let P2 be another known ground point with world coordinates 
( 2 2 ,  y2, 2 2 )  and its projected point be Pi with image coordinates 

(u2,w2). Suppose that the angle between LP; and LP,' is a. By 
vector inner product, we have 

- +  

- -  - -  
L P ; .  LP,' = ILPil ' 1LP;I. cosa. 

The camera coordinates for L are (O,O, 0), for P; are (u1 ,f, WI), and 
for Pi are (u2,h wz), so we can compute cosa by 

I \ \  

(14) - U l U 2  + f Z  + WlwZ - d(U? + f 2  + w:)(U; + f 2  +U;)' 
Fig. 6. The spatial relation between the ground points P1 and P 2  and their 

projections in the image plane. 
- +  

In addition, a is also the angle between LPI  and LPz,  so we have 
From (9) or (lo), the tilt angle @ can be obtained, but averaging 
can be used to improve the accuracy when real images are used 
in the calibration process. Furthermore, using the W axis intercept 

f = - W O .  cos$ / t and .  

--t--t + - - - +  
LP1. LP2 = ILPlI. lLP2l .coscl. 

value of the vanishing line, we can get the focal length ,r as The world coordinates for are (Xc,Yc,Zc), for p1 are (X1jY19Z1h and 
for P 2  are (xz, y2, z2). The value of cos a can be computed similarly by 

Now we have obtained the camera swing angle q, tilt angle 4, 
and two pan angles 81 and B 2 .  To determine which of 81 and 82 is 
correct, we substitute, respectively (81,~$,@) and (O!, 4, y )  into (6)  
and choose the one which satisfies (6) to be the desired pan angle 0.  

C. Calibrating the Camera Position Parameters 
Suppose that a known ground point PI  is located at (xl,yl,zl) in 

the world coordinate system and that its projected point in the image 
is Pi = (ui,w1). By (2), the world coordinates (xi, y;, 2 ; )  of image 
point P: can be computed as 

( ~ ~ , y ~ , z ~ , l )  = ( u i , f , ~ i , l ) . M - '  . T  
= (uiA + f D + WIG + zC, U I B  + f E 

+ W l H  + yc, U l C  + f F + W l l  + Z c r  1). (11) 
c1 

The line pip; passing through the lens center L ,  in the world 
coordinate system can be represented as 

z -z1  y-yyl - 2 - 2 1  --- - - - 
x; - 5,  y; - y, z ;  - 2, 

or 
Y - Y 1  - 2 - 21 - z - 5 1  

~ i A + f D + w i G  - U I B +  f E + w i H  - U l C +  f F + w l l '  
(12) 

ct 
From Fig. 6, the intersection of line pip; and the plane z = 21 + h, 
where h is the camera height, is just the lens center L .  So the 
world coordinates (zc, yc, z.) of L can be derived by solving the 
simultaneous equations of (12) and 2 = 21 + h. And the solutions 
are 

zC = 5 1  + h ( ~ i A  + f D + wiG)/(UiC + f F + w i l ) ,  
Y, = yi  + h(v iB  + f E  + wiH) / (u iC  + f F + w i l ) ,  
ZC = 21 + h. (13) 

Once h is determined, so is the position ( x c ,  yc, z,)  of the lens center. 
The following is one way to determine the value of h. 

Equating (14) and (15), and using the equations in (13) for x,, y,, 
and zcr we can get a quadratic equation of h as follows: 

p h 2 + * h + r = 0  

where 

p = ( 1  - cos20)(a2 + bZ + l)', 
q = -2(1 - c o ~ ~ a ) ( a ~  + b2 + 1) 

x [ ~ ( z c ,  - 21) + b ( y z  - ~ i )  + ( 2 2  - 21)], 

r = [(a(z2 - 11) + b(yz - YI) + ( 2 2  - z1)I2 

- COS' a(a2  + b2 + 1 ) [ ( ~ 2  - 21)' + (92 - ?/I)' + ( 2 2  - ~ i ) ~ ] ,  
A u ~  + Df + Gwi 
C U 1 +  Ff + I W l  ' 
B U l  + Ef + Hw1 
C U l  + Ff + I W l  

a =  

b =  

The positive root for h can then be used to compute x,, y,, and z, 
using (13). 

On the calibration target, there are six vertices which can be used as 
the calibration points. From every two of them, we can compute a set 
of (xc,yc,zc) values as the camera position parameters. So more than 
one set of (x,,y,,z,) can be computed from the six vertices and they 
can be averaged to get a more accurate solution when real images 
are used in the calibration process. 

In the above derivation, we know that the calibration target may 
be of any shape on the ground, provided that it has three groups of 
parallel lines with distinct directions. To get the depth vanishing point 
in the image, one group of parallel lines should be set to be parallel 
to the Y axis of the world coordinate system, and the directions of the 
other two may be arbitrary. For example, shown in Fig. 7 is a ground 
texture with square tiles connected together, which can also be used 
as a calibration target. This type of texture can be seen frequently 
on the grounds of ordinary factories and buildings. The parallel lines 
in direction a' as shown in the figure may be used as the Y axis of 
the world coordinate system, from which we can compute the depth 
vanishing point in the image. The points, for example, denoted as P11 
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Fig. 7. A ground texture with tiles connected together which could be used 
as a calibration target. 

Fig. 8. An image of the calibration target of Fig. 1 after thresholding. 
through P33, can be linked pairwise to get many sets of parallel lines, 
from which many vanishing points in the image can be obtained. 

To improve the accuracy of the vanishing line in the image, it is 
desirable to identify as many different line directions as possible in 
the target shape so that more than one vanishing point in the image 
can be found. Because all these vanishing points lie on the vanishing 
line, we can use these points as the input to a least-square-error fitting 
method [6] to construct the vanishing line more accurately. 

111. RELATED IMAGE PROCESSING TECHNIQUES 

The images of the calibration target can be acquired with a TV 
camera. The edges of the target can then be extracted and the six 
vertices computed. From the six edges in the image, we can get 
three vanishing points, and by fitting these vanishing points, we can 
construct the vanishing line. From the information on the vanishing 
line, the orientation parameters of the camera and the focal length can 
be computed. The computed parameters, together with the known 3-D 
world coordinates and the 2-D image coordinates of the six hexagon 
vertices, can then be used to compute the camera position parameters. 
In the following, we describe the related image processing techniques 
used in the proposed camera calibration method. 

A .  Finding the Hexagon Edges and Vertices 

the six edges of the projected hexagon are computed as follows. 
The line equations with respect to the image coordinate system for 

Acquire a gray image of the hexagon. 
Threshold the image to produce a binary image, as shown 
in Fig. 8; the threshold value is computed automatically by 
moment-preserving thresholding [ 111. 
Extract a set of approximate boundary points of the hexagon 
in the binary image. 
Use the Hough transform to locate the six edges of the hexagon. 
Use least-square-error fitting to compute more accurate line 
equations for the six edges from their edge points. Fig. 9 
shows the result of superimposing the six computed lines in 
the hexagon image. 

After the six edges are found, we can compute their intersections 
to get the six vertices of the projected hexagon. 

B. Finding the Vanishing Points 
First compute the line equations of the six hexagon edges in the 

image. Then compute the depth vanishing point VD by intersecting 
line PIP2 and line P4P5 in the image, as shown in F i e ,  and 
the other two vanishing points V I  and V2 by intersecting popl and 
PAP4, and POPj and PzP3, respectively. 

ct c--t 

c) - c )  

C. Finding the Vunishing Line 
VD, V I ,  and V2 are the three vanishing points produced by the 

projected parallel lines on the ground. Theoretically, they must be on 
the vanishing line. In practice, we fit these vanishing points in the 
least-square-error sense to get the line equation of the vanishing line. 

Fig. 9. An interminate image processing result of Fig. 8. 

"2 

Fig. 10. Imaging processing errors result in the deviation of the points 
from the vanishing line. 

D. Modifying the Vanishing Points 
Accuracy of the vanishing points plays an important role on 

the performance of the proposed calibration method. It should be 
attempted to correct the coordinates of these points such that they 
can be located more accurately. Two methods are proposed here. 

I) By the Vanishing Line: 
In the ideal case, the vanishing points must be on the vanishing 

line. Due to camera distortion or image processing errors, these points 
may not stay on the line, as shown in Fig. 10. Therefore, we can use 
this line to adjust the vanishing points in order that they can all align 
on the line. 

Let V I  be a vanishing point obtained from intersecting lines L1 and 
Lz.  Let 11, I2 be the two intersections of the vanishing line and L1 and 
L z ,  respectively. Theoretically, V1 must be on the vanishing line. As 
a compromise, we substitute the middle point between 11 and 1 2  for 
V I .  This modification is also applied to the other vanishing points. 

2) By the Target Shape: 
The correctness of the positions of the vanishing points dominates 

the accuracy of the calibration result. It is not difficult to figure out 
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Fig. 11. Different shapes of calibration targets. (a) is better for use in the proposed approach than (b). 

TABLE I 
EXPERIMENTAL RESULTS OF CALIBRATING THE FOCAL LENGTH PARAMETERS 

Computed Focal Length Offset 

1 
2 
3 
4 
5 
6 
7 
8 
9 

Average 

-544.78 
-538.90 
-552.71 
-556.17 
-551.71 
-542.79 

-550.59 
-543.15 

-550.75 

-548.28 

3.50 
9.38 
4.43 
7.89 
3.43 
5.49 
2.47 
2.31 
5.13 
4.89 

that if the distance of a vanishing point is large, a little error in 
the line equations of the target edges will result in a large variation 
of the position of the vanishing point. In certain computer vision 
applications, the pan, the tilt, and the swing angles of the camera 
may all be small. For example, in the application to autonomous land 
vehicle guidance, the camera usually is mounted on the vehicle with 
little panning, tilting, and swinging. We can make use of this situation 
to select a proper target shape such that projected vanishing points 
will not be far away (i.e., the image coordinates of the vanishing 
points will not be large in magnitude). 

In (l), when 0.6 ,  and 111 are small, the values of B and D approach 
to zero. So from (6) we can approximate the U coordinate of a 
vanishing point as follows: 

It is apparent that if the absolute slope value lmll is large, lull will 
be small. Hence, as shown in Fig. 11, the target in Fig. l l (a)  is better 
for use in the proposed method than the one in Fig. ll(b). 

When the projections of the parallel lines are almost parallel, the 
technique developed by Quan and Mohr [3] can be used to correct 
the location of the vanishing points. 

Iv. EXPERIMENTAL RESULTS AND ERROR ANALYSIS 
Experiments were implemented on a personal computer with a PC- 

EYE imaging board connected to a CCD camera. All the programs 
were implemented in C language. A planar hexagon shape put on the 
ground with the x and y coordinates of the six vertices being (0,35), 
( -5 ,25) ,  (-5, lo), (O,O), (5, lo), and (5,25), respectively, is used 
as the calibration target. In the following discussion experimental 
results are listed to show the feasibility of the proposed approach and 
computer simulation results are also included. 

Table I shows the experimental results of calibrating the focal 
length. In this experiment, we fixed the camera focal length and 
altered the orientation and position of the camera. The values in 
Table I are in the unit of image pixel, and the column “offset” 

mean of all the total computed parameters listed in the table. The 
low offset values show that the approach is stable. 

In Table 11, experimental results of camera position parameters are 
listed. In the experiments, the position and the orientation of the 
camera with respect to the world coordinate system were altered 
several times to simulate different camera adjustments. For the first 
three experiments, the average tilt angle is -15”, for the second three 
-25’, and for the last three -35’. The average error rate is defined 
as the average of the ratios of the differences between the manually 
measured camera position parameters and the computed parameters 
to the measured ones. The average error rate is within 5%. This error 
rate is tolerable, for example, for the application of autonomous land 
vehicle guidance. 

Computer simulations have also been performed to analyze the 
relative errors in the presence of noise. A simulated camera with a 
focal length of 800 pixels was assumed to be at a reasonable distance 
from the target. The lens center of the camera is assumed to be at 
(0, -70,80 cm) and the pan, tilt, and swing angles of the camera 
are assumed to be 3’, -3O0, and -6’, respectively. The perspective 
projection of the calibration target in the image was computed and 
perturbed by adding normally distributed noise to each pixel on 
the target boundary edges. Lease-square-error fitting was used to 
find the boundary-line equation. The simulation results are listed 
in Table 111, where the simulated noise has zero mean and varying 
standard deviations in the unit of pixel. For each noise deviation, 
100 simulation results are generated and averaged. In the table, the 
distance error is defined as the difference between the computed 
distance from the camera lens center to the origin of the world 
coordinate system and the real one, and the distance error rate is the 
ratio of this difference to the real distance. And each of the other types 
of errors is defined as the difference between the computed parameter 
and the real one. It can be found that the results are tolerable when 
noise deviations are small. 

V. CONCLUSIONS 
A new approach to camera calibration based on the use of the van- 

ishing line is proposed in this correspondence. A monocular image of 
a hexagon shape is adequate for the calibration purpose. In addition to 
being able to compute the camera position, the viewing angles as well 
as the focal length can also be obtained. The computation is analytic; 
no iteration is necessary. This speeds up the calibration work. 

The calibrated position error is found to be within 5% on the 
average. Only feasibility is emphasized in this study, though the error 
can be reduced further if improvements can be directed to the use 
of better imaging devices and more sophisticated image processing 
techniques. The proposed method is appropriate both for outdoor 
and for indoor computer vision applications like robot location and 
autonomous land vehicle guidance, because of its simplicity of 
environment setup. 
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Shinji Umeyama 

Abstruct- In many applications of computer vision, the following 
problem is encountered. Two point patterns (sets of points) {xi} 
and {yi}; i = 1.2,. . ’ ,  n are given io m-dimensional space, and we 
want to find the similarity transformation parameters (rotation, 
translation, and scaling) that give the least mean squared error between 
these point patterns. Recently Arun et al. and Horn et al. have presented a 
solution of this problem. Their solution, however, sometimes fails to give 
a correct rotation matrix and gives a reflection instead when the data is 
severely corrupted. The theorem given in this correspondence is a strict 
solution of the problem, and it always gives the correct transformation 
parameters even when the data is corrupted. 

Index Terms- Absolute orientation problem, computer vision, least- 
squares, motion estimation, singular value decomposition. 

I. INTRODUCTION 
In computer vision applications, we sometimes encounter the 

following mathematical problem. We are given two point patterns 
(sets of points) {x2} and {y,}; i = 1 . 2 .  . . . , n in m-dimensional 
space, and we want to find the similarity transformation parameters 
(R: rotation, t :  translation, and c: scaling) giving the minimum value 
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