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Abstract—This paper introduces a novel approach for solving the problem of

camera calibration from spheres. By exploiting the relationship between the dual

images of spheres and the dual image of the absolute conic (IAC), it is shown that

the common pole and polar with regard to the conic images of two spheres are also

the pole and polar with regard to the IAC. This provides two constraints for

estimating the IAC and, hence, allows a camera to be calibrated from an image of at

least three spheres. Experimental results show the feasibility of the proposed

approach.

Index Terms—Calibration, sphere, silhouette, surface of revolution (SOR).
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1 INTRODUCTION

WITH the development of modern vision applications, multiview
vision systems have become more and more cost effective. The
traditional way of calibrating such a large number of cameras
requires the use of some precisely made calibration patterns.
However, such an approach is often tedious and cumbersome
since points on the calibration pattern may not be simultaneously
visible in all views. Besides, existing methods generally require
knowledge of the metric structure [1], [2] of the calibration pattern.
This will involve the design and use of some highly accurate tailor-
made calibration patterns, which are often difficult and expensive
to manufacture. To overcome these difficulties, it is desirable to
have some common simple object, such as surfaces of revolution
(SOR) [3] or spheres [4], [5], [6], to replace the calibration patterns.

This paper uses spheres as a calibration object. The silhouettes of
a sphere can be extracted reliably from images and this facilitates
precise camera calibration. Besides, as long as the sphere is placed in
the common field of view of the cameras, its occluding contours are
always visible from any position and their images can be recovered
even under partial occlusion. Spheres hence can be used to
accurately calibrate multiple cameras mounted at arbitrary locations
simultaneously. Spheres were first used in [7] to compute the aspect
ratio of the two image axes. Daucher et. al. [8] later introduced a
multistep nonlinear approach to estimate four camera parameters
using spheres. However, error seriously accumulated in the
separated steps. More recently, Teramoto and Xu [4] related the
absolute conic with the images of spheres and calibrated the camera
by minimizing the reprojection errors nonlinearly. Nevertheless, the
final results of their method depend greatly on the initialization.
Agrawal and Davis [9] derived similar constraints as in [4] in the
dual space. Their method first estimates the imaged sphere centers
and the remaining parameters are then solved by minimizing some
algebraic errors with nonlinear semidefinite programming. How-
ever, there could be no solution when the noise is large. Further,
apart from the five camera intrinsic parameters, 12 other parameters
have to be estimated, which might ruin the precision of the results.

This paper proposes an approach to solve the above problems
by exploiting the relationship between the dual images of spheres
and the dual image of the absolute conic. It is shown that a conic
homography can be derived from the conic matrices of the imaged

spheres and the axis and vertex of such a homography are the pole
and polar with regard to the image of the absolute conic. Some
preliminary results have been published in [10]. Inspired by [3],
the polar thus obtained can also be regarded as the imaged
revolution axis of a surface of revolution (SOR) formed by the two
spheres. The pole then corresponds to the vanishing point of the
normal direction of the plane formed by the camera center and the
two sphere centers. This again gives the pole-polar relationship
with regard to the IAC. The orthogonal constraints [11] can then be
used to estimate the IAC from the pole and polar obtained and
calibrate the camera. Experiments show that this approach has
good precision and can be used directly in practical reconstruction.

This paper is organized as follows: Section 2 presents the theory
for camera calibration from the imaged absolute conic. Section 3
relates the dual image of a sphere to that of the absolute conic
(IAC). Section 4 introduces our novel linear approach for camera
calibration from spheres. Section 5 shows the results of synthetic
and real experiments. Section 6 discusses the degenerate cases and
Section 7 gives the conclusions.

2 CALIBRATION WITH THE ABSOLUTE CONIC

The absolute conic was first introduced by Faugeras et al. [12] for
camera self-calibration. It is a point conic on the plane at infinity
that is invariant to similarity transformation. Let the camera
calibration matrix be

K ¼
�f s u0

0 f v0

0 0 1

2
4

3
5; ð1Þ

where f is the focal length, � is the aspect ratio, ðu0; v0Þ is the
principal point, and s is the skew. The image of the absolute conic
(IAC) is then given by [12]

! ¼ K�TK�1 ¼
!11 !12 !13

!12 !22 !23

!13 !23 !33

2
4

3
5: ð2Þ

Note that ! is a symmetric matrix defined up to an unknown scale,
hence it has five degrees of freedom.

The images of the absolute conic and its dual (DIAC) !� ¼ KKT

[11] are the 2D projections of the 3D invariant absolute conic (AC)
and the dual of the absolute conic (DAC), respectively. The IAC and
DIAC are imaginary point and line conics from which the camera
calibration matrix K can be easily obtained by Cholesky decom-
position [13]. A camera with s ¼ 0 is called a zero skew camera and
this results in !12 ¼ 0. When both s ¼ 0 and � ¼ 1, the camera is
called a natural camera and this results in !12 ¼ 0 and !11 ¼ !22. The
IAC ! can be estimated using the orthogonal constraints [11], which
states that the vanishing point v of the normal direction of a plane
and the vanishing line l of the plane must satisfy the pole-polar
relationship with regard to !, i.e.,

l ¼ !v: ð3Þ

This provides two independent constraints on the elements of !.
Hence, to fully calibrate a camera, at least three such conjugate
pairs are needed; for a zero skew or a natural camera, at least two
pairs are needed.

3 THE APPARENT CONTOUR OF A SPHERE AND ITS

DUAL

This section relates the IAC with the image of spheres. Consider
first a particular case where a camera P ¼ K½I3j0� is viewing a
sphere centered at the Z-axis (see Fig. 1a). The limb points X ¼
½rcos � rsin � Z0 1�T of the sphere always form a circle C3 with
radius r on the plane Z ¼ Z0. The image points x̂ (see Fig. 1b) of X
under P can be defined as
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x̂ ¼ K I3j0½ �

rcos�
rsin�
Z0

1

2
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775 ¼ rK
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0 1 0
0 0 Z0=r
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4

3
5 cos�
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1

2
4

3
5; ð4Þ

where ½r 0Z0 1� is the generating point of the circle C3. Since the

point Xu ¼ ½cos � sin � 1�T lies on the unit circle Cu ¼ diagf1; 1;�1g,
the homography Ĥ ¼ Kdiagf1; 1; �g transforms Cu to the image of

C3 as Ĉ ¼ Ĥ�TCuĤ
�1, where � ¼ Z0=r.

Now, consider the general case in which the sphere rotates

about the camera center by a 3� 3 rotation matrix R. Let H ¼
KRdiagf1; 1; �g, the image of the sphere is then given by C ¼
H�TCuH

�1. In the dual space, the dual of C is given by

C� ¼ KRdiagf1; 1;��2gRTKT

¼ KR Iþ diagf0; 0;�ð�2 þ 1Þg
� �

RTKT

¼ KKT � ð�2 þ 1ÞKr3r
T
3 KT

¼ KKT � ooT;

ð5Þ

where r3 is the third column of the rotation matrix R and o ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 1

p
Kr3 is the image of the sphere center under P. This result

coincides with those derived in [9].
Note, due to homogenous representation, a scalar �i exists in

the expression for each sphere image Ci, i.e.,

�iC
�
i ¼ !� � oio

T
i : ð6Þ

4 CAMERA CALIBRATION

Based on the above derivation, this section introduces a linear

approach to solve the problem of calibration.

4.1 Calibration with Orthogonal Constraints

By eliminating the imaged sphere centers and the scalars, the

orthogonal relationship in (3) can be directly obtained for

calibrating the camera.

Proposition. Given C1 and C2, which are 3� 3 matrices representing two

conic images, a homography Hc ¼ C2C
�
1, termed the conic homo-

graphy, can be obtained. The eigenvectors of Hc give a fixed line (axis)

and a fixed point (vertex) under the transformation introduced by Hc,

which are also the common pole and polar with regard to C1 and C2.

Specifically, if C1 and C2 are the silhouettes of two spheres, the axis and

vertex become the pole and polar with regard to the image of the absolute

conic.

Proof. It is straightforward to derive that the axis and vertex of Hc,

given by its eigenvectors, are the common pole and polar with

regard to C1 and C2. Specifically, if C1 and C2 are the silhouettes

of two spheres, multiplying the line l ¼ o1 � o2 joining the
images of the two sphere centers to both sides of (6) gives

�1C
�
1l ¼ !�l

�2C
�
2l ¼ !�l:

ð7Þ

Here, l is also the vanishing line of the plane � passing through
the camera center and the two sphere centers. It follows that

�1C
�
1l� �2C

�
2l ¼ !�l� !�l ¼ 0;

C2C
�
1 �

�2

�1
I

� �
l ¼ 0:

ð8Þ

Hence, l is an eigenvector of Hc corresponding to the eigenvalue
�2=�1. l can be uniquely obtained from the eigenvectors of Hc

since it is the only line having two intersection points with both
conics C1 and C2.

Let v be the vanishing point of the normal direction of � so
that l and v satisfy the orthogonal constraint (3). From (7),

�1C
�
1l ¼ v;

�2C
�
2l ¼ v;

ð9Þ

hence

1

�1
C1v�

1

�2
C2v ¼ l� l ¼ 0;

C�2C1 �
�1

�2
I

� �
v ¼ 0:

ð10Þ

This shows that v is an eigenvector of Hd ¼ C�2C1 with

corresponding eigenvalue �1=�2.
Let the eigenvectors of Hc be lk with corresponding

eigenvalues �k, i.e., lk ¼ 1
�k

C2C
�
1lk ðk ¼ 1; 2; 3Þ. The cross pro-

duct of the two eigenvectors li and lj ði 6¼ jÞ is given by

li � lj ¼
1

�i
C2C

�
1li �

1

�j
C2C

�
1lj

¼ detðC2C
�
1Þ

�i�j
ðC2C

�
1Þ
�Tðli � ljÞ

¼ �1�2�3

�i�j
C�2C1ðli � ljÞ:

ð11Þ

Without loss of generality, let l1 ¼ l, with corresponding

eigenvalue �1 ¼ �2=�1. The cross product of the other two

eigenvectors l2 and l3 is therefore given by

l2 � l3 ¼ �1C
�
2C1ðl2 � l3Þ; ð12Þ

C�2C1 �
�1

�2
I

� �
ðl2 � l3Þ ¼ 0: ð13Þ

It follows that v is given by the cross product of the two
remaining eigenvectors of Hc. Hence, the axis v and vertex l of
Hc are the pole and polar with regard to !. Similarly, it can also
be proven that l is the intersection of the two remaining
eigenvectors of Hd and the vertex and axis of Hd are the pole
and polar with regard to !. tu
Note that any two spheres can be regarded as a surface of

revolution (SOR), with the revolution axis given by the line passing
through the two sphere centers. It is easy to see that the vertex l

and axis v of the conic homography Hc correspond to the image of
the revolution axis and the vanishing point of the normal direction
of the plane � passing through the camera centers and the two
sphere centers, respectively. This is exploited in [3] to derive the
pole-polar constraints with regard to ! from the image of a SOR.

Given two sphere images, two linear constraints on the elements
of the IAC can be obtained from the axis and vertex of the conic
homography Hc. Hence, from three sphere images, six constraints
can be obtained to fully calibrate a camera (see Fig. 2). When the
number of spheres reduces to two, the camera with more than two
unknown parameters cannot be calibrated. Additionally, increasing
the number of spheres can increase the number of constraints and,
hence, the precision of the calibration. Note that the number of
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Fig. 1. (a) A sphere being viewed by a camera. (b) The limb points of the sphere

are projected to a circle in the image.



constraints increases nonlinearly with the number of spheresN and
is given by two times its combination of two, i.e., 2�N C2.

4.2 Multicamera Calibration

By making use of the proposed algorithm, multiple cameras can be
calibrated simultaneously by imaging three or more spheres at
different locations. The internal parameters Ki of each camera are
first obtained and the imaged sphere centers ôij (j being the index of
the spheres) can be recovered as the intersections of the polars. The
scalars �ij (oij ¼ �ijôij) can therefore be easily obtained from (6).
Hence, the 3D location of the sphere centers Oj with regard to the
camera reference frame can be obtained as in [9], i.e.,

Oj ¼ K�1oj:

By registering the two sets of the 3D sphere centers, the camera
relative rotation and translation parameters can be recovered
analytically [14].

5 EXPERIMENTS AND RESULTS

5.1 Synthetic Data

The synthetic camera has focal length f ¼ 880, aspect ratio � ¼ 1:1,
skew s ¼ 0:1, and principal point ðu0; v0Þ ¼ ð320; 240Þ. The points on
the silhouette of each sphere were corrupted with a Gaussian noise
of 16 different levels from zero to three pixels, and the image of each
sphere was obtained as a conic fitted to the noisy points [15].

Given three sphere images, the first experiment was to calibrate

the camera under different noise levels. For each level, 100 inde-

pendent trials were performed using our proposed approach, as

well as Agrawal’s semidefinite method. Fig. 3a shows the average

percentage errors of the focal length. The errors of the other

parameters, which are not shown here, exhibit similar trends. It can

be seen that the errors increase linearly with the noise level. From

Fig. 3a, the approach with the orthogonal constraints has slightly

better precision than the semidefinite approach, which may be due

to fewer unknowns and calculation steps involved in the proposed

approach. Table 1 shows the estimated parameters under the noise

level of one pixel. The percentage errors [16] in the parameters with

regard to the focal length �f are given in brackets.

In the second experiment, the camera was calibrated with

different numbers of spheres, from three to eight, under a Gaussian

noise of one pixel. For each number of spheres used, 100 independent

trials were performed using the approach with orthogonal con-

straints, as well as Agrawal’s semidefinite method. Fig. 3b shows the

average percentage errors of the focal length. Due to the fast increase

in the number of constraints, it can be seen that the errors decrease

exponentially as the number of spheres increases. Note that the

approach with orthogonal constraints again performed slightly

better than the semidefinite approach.

5.2 Real Scene

In the real scene experiment, an image of three ping-pong balls (see

Fig. 4a) was taken with a Nikon100D CCD camera. The image

resolution was 1; 505� 1; 000. The cubic B-spline snake [17] was

applied to extract the apparent contours of the spheres to which

conics were fitted with a least square approach [15]. The camera

was calibrated with the orthogonal approach and the results were

compared with those from Agrawal’s semidefinite approach. The

estimated parameters are listed in Table 2, where the result from

the classical method of Zhang [2] is taken as the ground truth.

Fig. 4b shows the calibration pattern used with Zhang’s calibration
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Fig. 2. Given three spheres, three conic homographies can be formed to give three
pairs of axes and vertices. The camera can therefore be fully calibrated.

Fig. 3. (a) Relative errors of the focal length estimated under 16 different noise levels. (b) Relative errors of the focal length estimated from different numbers of imaged
spheres under a noise level of one pixel.

TABLE 1
Estimated Camera Parameters from Images of Three Spheres under a Noise Level of One Pixel



method. From Table 2, it can be seen that the orthogonal approach

has a better performance than the semidefinite approach.

5.3 Multicamera Calibration

In this experiment, four spheres were imaged by a network of

15 cameras. A 9� 10 grid pattern with 18mm� 18mm squares was

placed within the scene to provide background feature points for

error analysis. The intrinsic parameters of each camera were first

calibrated and the rotation and translation parameters of the other

cameras with respect to the first one were recovered by registering

the 3D sphere centers using the approach described in [14]. The

fundamental matrix Fij between an image pair was then recovered

from the obtained camera intrinsic and extrinsic parameters. Note

the intersection points of the pair of the inner bitangent lines to the

sphere pairs provide six additional correspondences (see Fig. 5a).

These points, together with the sphere centers, are mapped by Fij to

the other images. The second row of Table 3 lists the transfer errors

for three arbitrary views selected from the camera network. The

72 inner corner points of the pattern in each image were extracted

and mapped to the other image by the obtained Fij and the transfer

errors are listed in the third row of Table 3. Note that all the errors

are about or less than one pixel. For comparison, the intrinsics of the

stereo are also calibrated with Zhang’s approach [2] and the transfer

errors are listed in the last row of Table 3. It can be seen that the

errors are smaller than those from the orthogonal constraints. This is

expected as these are exactly the errors being minimized in Zhang’s

approach.

Note the pattern, however, will be invisible to some cameras due

to back-facing, e.g., in Fig. 5b, pattern 1 is only visible to cameras 1 to

9. A second pattern was therefore put into the scene for testing the

calibration results of the remaining cameras. In Fig. 5b, pattern 2 is

only visible to cameras 1 and 8 to 15. Given the recovered intrinsic

and extrinsic parameters of the 15 cameras, the corner points of the

two grid patterns were reconstructed and the maximum distance

from any reconstructed point to its corresponding grid point is only

3:0mm and 3:4mm for pattern 1 and pattern 2, respectively. Fig. 5b

shows the two reconstructed patterns, the four spheres, and the

camera positions and orientations.

6 CRITICAL CONFIGURATION

When only three spheres are being used, there are a number of

critical configurations in which the calibration process fails. First,

when the polar of any two sphere images passes through or is close

to the principal point, the calibration will not be accurate since the

corresponding pole will be at infinity. Second, when the centers of

the three spheres are collinear or the plane formed by the sphere

centers passes through the camera center, only two constraints can

be obtained and the camera cannot be calibrated. Third, when the

line joining two sphere centers passes through the camera center,

the sphere limb points become concentric so that fewer constraints

will be obtained. However, all of these degenerate cases can be

easily avoided in practice to ensure a successful calibration,

especially when more than three spheres are being used.

7 CONCLUSIONS

This paper has proposed a simple algorithm to calibrate a camera

network by making use of the apparent contours of at least three

spheres in a single image. The solution can be used as a starting

point for a maximum likelihood estimation which minimizes the

reprojection error of the measured edgels. The performance of

calibration could be poor if the spheres are imaged near the image

centers or the borders. However, the key limitation of previous

approaches, namely, low precision due to error accumulation in

separate steps and the introduction of extra parameters, could be

alleviated using the proposed approach.
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Fig. 4. (a) Image of three spheres. (b) Image of planar calibration pattern.

TABLE 2
Camera Parameters Estimated from the Ping-Pong Ball Image with Different Approaches

Fig. 5. (a) Image of the four spheres with a planar grid. The intersection points of the pair of the two inner bitangent lines the sphere pairs provide six correspondences.

(b) The recovered grid patterns, spheres, and the camera positions and orientations.
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TABLE 3
RMS Transfer Errors (in Pixel) between

Different Image Pairs in a Camera Triplet


