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Abstract

We present a simple, accurate, and flexible method to

calibrate intrinsic parameters of a camera together with

(possibly significant) lens distortion. This new method can

work under a wide range of practical scenarios: using mul-

tiple images of a known pattern, multiple images of an un-

known pattern, single or multiple image(s) of multiple pat-

terns, etc. Moreover, this new method does not rely on ex-

tracting any low-level features such as corners or edges. It

can tolerate considerably large lens distortion, noise, error,

illumination and viewpoint change, and still obtain accu-

rate estimation of the camera parameters. The new method

leverages on the recent breakthroughs in powerful high-

dimensional convex optimization tools, especially those for

matrix rank minimization and sparse signal recovery. We

will show how the camera calibration problem can be for-

mulated as an important extension to principal component

pursuit, and solved by similar techniques. We characterize

to exactly what extent the parameters can be recovered in

case of ambiguity. We verify the efficacy and accuracy of

the proposed algorithm with extensive experiments on real

images.

1. Introduction

Camera calibration is arguably one of the most clas-

sic and fundamental problems in computer vision (and

photogrammetry), which has been studied extensively for

decades. It is fundamental because not only every newly

produced camera must run calibration to correct its radial

distortion and intrinsic parameters, but also it is the first step

towards many important applications in vision, such as re-

constructing 3D structures from multiple images (structure

from motion, photometric stereo, structured lights, etc.).

Existing methods have provided us with many choices

to solve this problem in different settings. To the best of

our knowledge, almost all of calibration methods rely on

extraction of certain local features first, such as corners,
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(a) Image from a fisheye camera (b) Distortion automatically corrected

Figure 1. Distortion in an image of a building taken by a fisheye

camera automatically corrected by our method.

edges, and SIFT features, and then assemble them to es-

tablish correspondences, calculate vanishing points, infer

lines or conic curves for calibration. It is well-known that

in practice it is difficult to accurately and reliably extract all

wanted features in all images in the presence of noise, oc-

clusion, image blur, and change of illumination and view-

point. Large noise, outliers, missing features, and mis-

matches all could render the calibration result inaccurate

and even invalid. Today arguably the only reliable way to

obtain accurate calibration and distortion still relies on man-

ually labeling the precise location of points in multiple im-

ages of a pre-designed pattern, as required by most standard

calibration toolboxes (e.g., [1]). Not only does the use of a

pre-designed pattern limit the use of such methods to re-

stricted (laboratory) conditions, but also the careful manual

input makes camera calibration a time-consuming task.

Recently, breakthroughs in high-dimensional convex op-

timization have enabled people to correct global geometric

distortion of images directly using image intensity values.

In particular, the recent work [17] has shown that for an im-

age of a plane whose texture, as a matrix, is very low-rank,

one can efficiently and accurately recover the low-rank tex-

ture from its perspectively distorted version via convex rank

minimization techniques. Inspired by that work, in this pa-

per, we show how such optimization techniques can help

solve the camera calibration problem in a more convenient

and flexible way. A representative result of our method is

given in Fig. 1, in which the lens distortion of a fisheye cam-

era is corrected based on an image itself.



Contributions. In this paper, we will show that this new

approach leads to a simple and accurate solution to camera

calibration or self-calibration without requiring extracting,

labeling, or matching any low-level features such as points

and edges. The new algorithm directly works with raw im-

age intensity values and can accurately estimate the camera

intrinsic parameters and lens distortion under a broad prac-

tical conditions: from a single or multiple images, from a

known or unknown pattern, even with possible noise, sat-

urations, occlusion, and under different illuminating con-

ditions. It can be used either for pre-calibrating the cam-

era from a known pattern or for performing automatic self-

calibration from images of structured scenes. It requires

few, inaccurate initialization, and thus is very convenient

to use. Also, as it relies on scalable optimization tech-

niques, with proper implementation, the speed can be very

fast. As we will verify with extensive experiments, the al-

gorithm achieves comparable performance to the standard

toolbox, but with more flexible initialization and working

under broader realistic conditions.

1.1. Prior work

During the past several decades, researchers have studied

many different approaches for developing more convenient,

practical, and accurate algorithms for camera calibration.

One important class of these solutions require a specially

designed calibration object, with 3-D geometric informa-

tion known explicitly [2, 6, 7, 14, 15]. The calibration ob-

jects include 3-D [14], 2-D plane [15], and 1-D [16] line tar-

gets. By observing these targets from different viewpoints,

these techniques recover the camera intrinsic parameters.

The 3-D calibration object usually consists of two or three

planes orthogonal to each other, and it gives the most accu-

rate calibration with a simple algorithm; however, the setup

is more complicated and expensive. The 2-D plane-based

calibration requires observing a planar pattern from differ-

ent viewpoints. The technique is implemented in Camera

Calibration Toolbox [1], and it gives accurate results with

less complicated settings. The 1-D line-based calibration

uses a set of collinear points with known distances. Because

it can better avoid occlusion problems, it is often used for

multi-camera calibration.

Unlike above methods, camera self-calibration [11, 8]

avoids the use of known calibration pattern and aims at cal-

ibrating a camera by finding intrinsic parameters that are

consistent with the geometry of a given set of images. It

is understood that sufficient point correspondences among

three images are sufficient to recover both intrinsic and ex-

trinsic parameters. Because self-calibration relies on point

correspondences across images, it is important for these ap-

proaches to extract accurate feature point locations and it

normally does not handle lens distortion.

Calibration based on vanishing points are also investi-

gated by researchers [3, 10, 13, 4, 9]. These approaches

utilize parallelism and orthogonality among lines in the 3-

D space. For example, certain camera intrinsics with the

rotation matrix can be estimated from three mutually or-

thogonal vanishing points. While useful, these approaches

strongly rely on a process of edge detection and line fitting

for accurately determining vanishing points. Methods that

use line features like done by Devernay and Faugeras [5]

share similar processes, and the accuracy and robustness are

too susceptible to noisy and faulty low-level feature extrac-

tion.

All in all, almost all calibration methods share one thing

in common, i.e., almost exclusively relying on whether

points or lines can be reliably obtained from local corner

or edge features. Feature extraction or labeling often be-

comes a bottleneck of the process, affecting robustness, ac-

curacy, and convenience. The proposed new method natu-

rally avoids this problem by a new formulation that does not

require any low-level feature extraction.

2. Camera Model with Lens Distortion

We first briefly describe the common mathematical

model used for camera calibration and introduce notation

used in this paper. We use a vector M = (X0, Y0, Z0)
T ∈

R
3 to denote the 3D coordinates of a point in the world

coordinate frame, use mn = (xn, yn)
T ∈ R

2 to denote

its projection on the canonical image plane in the camera

coordinate frame. For convenience, we always denote the

homogeneous coordinate of a point m as m̃ = [m1 ].

Lens distortion model. If the lens of the camera is dis-

torted, on the image plane, the coordinates of a point mn

may be transformed to a different one, denoted as md =
(xd, yd)

T ∈ R
2. A very commonly used general mathemat-

ical model for this distortion D : mn 7→ md is given by a

polynomial distortion model [2] by neglecting any higher-

order terms as below:

r
.
=

√

x2
n + y2n,

f(r)
.
= 1 + kc(1)r

2 + kc(2)r
4 + kc(5)r

6, (1)

md =

[

f(r)xn + 2kc(3)xnyn + kc(4)(r
2 + 2x2

n)
f(r)xn + 2kc(4)xnyn + kc(3)(r

2 + 2y2n)

]

.

Notice that this model has a total of five unknowns

kc(1), . . . , kc(5) ∈ R. If there is no distortion, simply set

all kc(i) to be zero, and then it becomes md = mn.

Intrinsic parameters. To transform a point into the pixel

coordinates, we use the usual pin-hole model parametrized

by an intrinsic matrix K ∈ R
3×3, which also have five un-

knowns; the focal length along x and y-axes fx and fy ,

skew parameter θ, and coordinates of the principle point



(ox, oy). In the matrix form, it is described as

K
.
=





fx θ ox
0 fy oy
0 0 1



 ∈ R
3×3. (2)

Extrinsic parameters. Finally, we use R = [r1, r2, r3] ∈
SO(3) and T ∈ R

3 to denote the Euclidean transfor-

mation from the world coordinate frame to the camera

frame – so-called extrinsic parameters. The rotation R

can be parameterized by a vector ω = (ω1, ω2, ω3)
T ∈

R
3 using the Rodrigues formula [7]: R(ω) = I +

sin ‖ω‖ ω̂
‖ω‖ + (1 − cos ‖ω‖) ω̂2

‖ω‖2 , where ω̂ denotes the

3 × 3 matrix form of the rotation vector ω, defined as

ω̂ = [0,−ω3, ω2;ω3, 0,−ω1;−ω2, ω1, 0] ∈ R
3×3.

With all the notation, the overall imaging process of a

point M in the world to the camera pixel coordinates m by

a pinhole camera can be describe as:

m̃ = Km̃d = KD(m̃n); λm̃n = [R T ]M̃, (3)

where λ is the depth of the point. If there is no lens dis-

tortion (md = mn), the above model reduces the typical

pin-hole projection with an uncalibrated camera: λm̃ =
K[R T ]M̃ .

For compact presentation, later in this paper, we will let

τ0 denote the intrinsic parameters and lens distortion param-

eters all together. We use τi (i = 1, 2, . . .) to denote the ex-

trinsic parameters Ri and Ti for the i-th image. By a slight

abuse of notation, we will occasionally use τ0 to represent

the combined transformation of K and D acting on the im-

age domain, i.e., τ0(·) = KD(·), and use τi (i = 1, 2, . . .)
to represent the transforms from the world to individual im-

age planes.

3. Calibration from Low-rank Textures

Our method estimates camera parameters from low-rank

textures. The pattern can be unknown, but is sufficiently

structured, i.e., as a matrix it is sufficiently low-rank (e.g.,

the normally used checkerboard is one such pattern). We

describe our method in two cases; multiple-image and

single-image cases. From multiple observations of the low-

rank textures, our method can fully recover lens distortion,

intrinsics, and extrinsics. In the case of a single image as

input, our method can estimate lens distortion as well as

intrinsics with additional yet reasonable assumptions.

By default we choose the origin of the world coordinate

to be the top-left corner of the image and let the image lie in

the plane Z = 0 and X and Y be the horizontal and vertical

direction, respectively.

3.1. Multiple Images of the Same Low­Rank Pattern

Suppose we have images of a certain pattern I0 ∈
Rm0×n0 taken from N different viewpoints R(ωi) and Ti

(in brief τi), with the same intrinsic matrix K and lens dis-

tortion kc (in brief τ0). In practice, the observed images are

not direct transformed versions of I0, each may have con-

tained some background or partially occluded regions (say

due to limited field of view of the camera). We use Ei to

model such error between the original pattern I0 and the ith

observed image Ii with the transformations undone. Then

mathematically we have:

Ii ◦ (τ0, τi)
−1 = I0 + Ei, (4)

where the operator ◦ denotes the geometric transformations.

The task of camera calibration is then to recover τ0 and

probably τi (1 ≤ i ≤ N), too, from these images.

In general, we assume that we do not know I0 in ad-

vance.1 So, we do not have any ground-truth pattern to

compare or correspond with for the images taken. Our goal

is to fully recover the distortion and calibration by utilizing

only the low-rankness of the texture I0 and by establishing

precise correspondence among the N images Ii themselves.

Rectifying deformation via rank minimization. We

draw inspiration from two previous work. Since we know

the pattern is low-rank, from the work on transform invari-

ant low-rank textures (TILT) [17], we can estimate the de-

formation of each image Ii from I0 by solving the following

robust rank-minimization problem:

min ‖Ai‖∗+λ‖Ei‖1, s.t. Ii ◦(τ0, τi)
−1 = Ai+Ei, (5)

with Ai, Ei, τi and τ0 as unknowns. The work [17] has

shown that if there is no radial distortion in τ0, the above

optimization recovers the low-rank pattern I0 up to a trans-

lation and scaling in each axis, i.e.,

Ai = I0 ◦ τ, where τ =
[

sx 0 mx

0 sy my

0 0 1

]

. (6)

However, in our problem, both intrinsic parameters and dis-

tortion are present in the deformation. Therefore, a single

image can no longer recover all the unknowns (and we will

discuss in the next section exactly what can be recovered

from a single image of low-rank patterns.)

Our hope is that multiple images give us additional infor-

mation for all the unknown parameters. For that, we need

to establish precise point-to-point correspondence among

all the N images. Again, robust rank-minimization tech-

niques offer a good guideline for solving this problem. In

the previous work of RASL [12], the authors have pro-

posed that multiple images can be precisely and efficiently

aligned by solving a robust rank-minimization problem sim-

ilar to Eq. (5). However, the resulting aligned images could

1This is where our method deviates from the classical camera calibra-

tion setting and it makes our method works under broader conditions. We

will discuss by the end of the section what if we do know the pattern in

advance.



still differ from the canonical view I0 by an arbitrary linear

transformation, and each individual image as a matrix does

not need to be low-rank.

Simultaneous alignment and rectification. For calibra-

tion, we need to align all the N images point-wise, and at

the same time each resulting image should be rectified as

a low-rank texture. Or more precisely, we want to find the

transformation τ ′0, τ
′
i such that Ii, 1 ≤ i ≤ N can be ex-

pressed as

Ii ◦ (τ
′
0 ◦ τ

′
i)

−1 = Ai + Ei,

where all Ai are low-rank and equal to each other Ai = Aj .

Therefore, the natural optimization problem associated with

this problem becomes

min

N
∑

i=1

‖Ai‖∗ + ‖Ei‖1,

s.t. Ii ◦ (τ
′
0 ◦ τ

′
i)

−1 = Ai + Ei, Ai = Aj . (7)

One can use optimization techniques similar to that of

TILT and RASL to solve the above optimization prob-

lem, such as the Alternating Direction Method (ADM) used

in [17]. However, having too many constraining terms af-

fects the convergence of these algorithms. In addition, in

practice, due to different illumination and exposure time,

the N images could differ from each other in intensity and

contrast. Hence, in this paper, we propose an alternative,

more effective and efficient way to align the images in the

desired way. The idea is to concatenate all the images as

submatrices of a joint low-rank matrix:

D1
.
= [A1, A2, . . . , AN ], D2

.
= [AT

1 , A
T
2 , . . . , A

T
N ],

E
.
= [E1, E2, . . . , EN ]. (8)

We try to simultaneously align the columns and rows of

Ai and minimize its rank by solving the following problem:

min ‖D1‖∗ + ‖D2‖∗ + λ‖E‖1,

s.t. Ii ◦ (τ0 ◦ τi)
−1 = Ai + Ei, (9)

with Ai, Ei, τ0, τi as unknowns. Notice that, by comparing

to Eq. (7), which introduces in N+ N(N−1)
2 constraints, the

new optimization has just N constraints and hence is easier

to solve. In addition, it is insensitive to illumination and

contrast change across different images. One may view the

above optimization as a generalization for both TILT and

RASL: When N = 1, it reduces to TILT; and when there is

no D2, this reduces to something similar to RASL.

To deal with the nonlinear constraints in Eq. (9), we

linearize the constraints Ii ◦ (τ0, τi)
−1 = Ai + Ei w.r.t

all the unknown parameters τ0, τi. To reduce the effect

of change in illumination and contrast, we normalize Ii ◦

Algorithm 1 (Align Low-rank Textures for Calibration).

Input: A rectangular window Ii ∈ R
mi×ni in each im-

age, initial extrinsic parameter τi, common intrinsic and

lens distortion parameters τ0, and weight λ > 0.

While not converged Do
step 1: for each image, normalize it and compute

the Jacobian w.r.t. unknown parameters:

Ii ◦ (τ0, τi)
−1 ←

Ii ◦ (τ0, τi)
−1

‖Ii ◦ (τ0, τi)
−1‖F

;

J
0

i ←
∂

∂ζ0

(

Ii ◦ (ζ0, ζi)
−1

‖Ii ◦ (ζ0, ζi)
−1‖F

)

∣

∣

∣

ζ0=τ0,ζi=τi

;

J
1

i ←
∂

∂ζi

(

Ii ◦ (ζ0, ζi)
−1

‖Ii ◦ (ζ0, ζi)
−1‖F

)

∣

∣

∣

ζi=τi,ζ0=τ0

;

step 2: solve the linearized convex optimization:

min ‖D1‖∗ + ‖D2‖∗ + λ‖E‖1,

s.t. Ii ◦ (τ0, τi)
−1 + J

0

i ∆τ0 + J
1

i ∆τi = Ai + Ei;

step 3: update: τ0 ← τ0 +∆τ0, τi ← τi +∆τi;

End While

Output: Converged solution τi, τ0.

(τ0, τi)
−1 by its Frobenius norm to

Ii◦(τ0◦τi)
−1

‖Ii◦(τ0◦τi)−1‖F
. Let

J0
i = ∂

∂τ0

(

Ii◦(τ0◦τi)
−1

‖Ii◦(τ0◦τi)−1‖F

)

be the Jacobian of the normal-

ized image w.r.t. shared intrinsic and distortion parameters

τ0 and J1
i = ∂

∂τi

(

Ii◦(τ0◦τi)
−1

‖Ii◦(τ0◦τi)−1‖F

)

be the Jacobian w.r.t

extrinsic parameters τi for each image. The local linearized

version of Eq. (9) becomes

min ‖D1‖∗ + ‖D2‖∗ + λ‖E‖1,

s.t. Ii ◦ (τ0, τi)
−1 + J0

i ∆τ0 + J1
i ∆τi = Ai + Ei, (10)

with ∆τ0,∆τi, Ai, Ei as unknowns. Notice that this lin-

earized problem is a convex optimization problem and

can be efficiently solved by some of the modern high-

dimensional optimization methods such as the ADM

method mentioned earlier. To find the global solution to the

original nonlinear problem Eq. (9), we only have to incre-

mentally update τ0 and τi by ∆τ0,∆τi and iteratively rerun

the above program until convergence. The overall algorithm

is summarized in Algorithm 1.

In general, as long as there is sufficient textural variation

in the pattern, the lens distortion parameters kc can always

be accurately estimated by the algorithm once the low-rank

texture of the pattern is fully rectified. This is the case even

from a single image2.

Now the remaining question is, under what conditions

the correct intrinsic parameters K and the extrinsic parame-

2although a rigorous mathematical proof for this fact is beyond the

scope of this paper.



ters (Ri, Ti) are the global minimum to the problem Eq. (9),

and whether there is still some ambiguity.

Proposition 1. Given N ≥ 5 images of the low-rank pat-

tern I0 taken by a camera with the same intrinsic param-

eters K under generic viewpoints τi = (Ri, Ti): Ii =
I0 ◦ (τ0 ◦ τi), i = 1, . . . , N . Then the optimal solution

(K ′, τ ′i) to problem Eq. (9) must satisfy K ′ = K and

R′
i = Ri.

That is, all the distortion and intrinsic parameters τ0 can

be recovered and so is the rotation Ri of each image. There

is only ambiguity left in the recovered translation Ti of each

image.

With a known pattern. If the ground-truth I0 is given

and its metric is known, then we may want to align Ii
to I0 directly or indirectly. One possible solution is to

slightly modify Algorithm 1 by appending D1, D2, E with

A0, A
T
0 , E0, respectively, and adding the constraint I0 =

A0 + E0. Another possible solution would be to align the

already rectified textures Ai to I0 by maximizing the corre-

lation.

In both situations, with knowledge about the metric of

I0, we can uniquely determine Ti and get exactly the full

set of intrinsic and extrinsic parameters.

3.2. Self­Calibration from a Single Image

With a single plane. For most everyday usage of a cam-

era, people normally do not need to know the full intrinsic

parameters of the camera. For instance, for webcam users,

it normally suffices if we can simply remove the annoying

lens distortion. For such users, asking them to take multi-

ple images and conduct a full calibration might be too much

trouble. Sometimes, we need to remove the radial distortion

of an image but without any access to the camera itself.

Therefore, it would be desirable if we can calibrate the

lens distortion of a camera from a single image. Normally

this would be impossible for a generic image. Nevertheless,

if the image contains a plane with low-rank pattern rich with

horizontal and vertical lines, then the lens distortion kc can

be correctly recovered using our method.

Given a single image with a single low-rank pattern,

since we cannot expect to obtain all the intrinsic parame-

ters correctly, we can make the following simplifying as-

sumptions about K: No skew θ = 0, principal point known

(say set at the center of the image), and pixel being square

(fx = fy = f ). Although these seem to be somewhat re-

strictive, they approximately hold for many cameras made

today. In this circumstance, if the viewpoint is not degener-

ate, applying the algorithm to the image of this single pat-

tern correctly recovers the lens distortion parameters kc and

the focal length f .

With two orthogonal planes. Very often, an image con-

tains more than one planar low-rank textures, and they sat-

isfy additional geometric constraints. For instance, in a typ-

ical urban scene, an image often contains two (orthogonal)

facades of a building. Each facade is full of horizontal and

vertical lines and can be considered as a low-rank texture.

In this case, the image encodes much richer information

about the camera calibration: Both the focal length and the

principal point can be recovered from such an image, given

that the pixel of the camera is assumed to be square, i.e.,

fx = fy = f , and there’s no skew, i.e., θ = 0.

For simplicity, we let the intersection of these two or-

thogonal planes be the z-axis of the world frame, and the

two planes are x = 0 and y = 0, each with a low-rank tex-

ture I
(i)
0 , i = 1, 2. We take a photo of the two planes by a

camera with intrinsic parameters K and lens distortion kc,

from the viewpoint (R, T ). Denote the photo as I , which

contains two mutually orthogonal low-rank patterns.

Let ML = [0 Y1 Z1]
T ∈ R

3 be a point on the left

facade, and MR = [X2 0 Z2]
T ∈ R

3 be a point on the

right facade, and let mL,mR ∈ R
2 be the corresponding

images on I . Then we have:

λ1m̃L =

[

f 0 ox
0 f oy
0 0 1

]

[r2 r3 T1]
[

Y1

Z1

1

]

, (11)

and

λ2m̃R =

[

f 0 ox
0 f oy
0 0 1

]

[r1 r3 T2]
[

X2

Z2

1

]

. (12)

Here we have used a different translation T1 or T2 for each

plane, mainly because otherwise we must exactly find the

position of the intersection of the two planes, which is be-

yond the scope of this paper. So in this circumstance let

τ0 = [f, ox, oy, kc(1 : 5), ω] and τi = [Ti] and the opti-

mization problem we need to solve to recover them is:

minAi,Ei,τ0,τi ‖A1‖∗ + ‖A2‖∗ + λ(‖E1‖1 + ‖E2‖1),

subject to I ◦ (τ0, τi)
−1 = Ai + Ei. (13)

With similar normalization and linearization techniques, we

can solve this problem with slight modification to Algo-

rithm 1.

Proposition 2. Given one image of two orthogonal planes

with low-rank textures, taken by a camera from a generic

viewpoint (R, T ) with intrinsic parameters K with zeros

skew θ = 0 and square pixels(fx = fy). If K ′, R′, T ′
1, T

′
2

are solutions to problem Eq. (13), then K ′ = K, R′ = R.

By an argument similar to the multiple-image case, to

recover τ0, we only need to rectify the left and right textures

with a joint parameterization of the rotation.



3.3. Implementation

The initialization of our algorithm is extremely simple

and flexible. The location of the initial window can be ob-

tained from any segmentation methods that approximately

detect the region of the pattern. Or it can be easily specified

by a human. There is no need for the location of the initial

window to be exact or even cover the pattern region. The

proposed method is very robust and can converge precisely

to the pattern.

For initialization, we first run the TILT on each initial

window to approximately extract the homography Hi for

the i-th image. Then we can obtain a rough estimate of

K,R, T as from the vanishing points given by the first two

columns of τi.
3 For lens parameters, even if large lens dis-

tortion is present, we set their initial values to be zero.

To make the convergence region of our algorithm large

and to accelerate the algorithm, we employ the conventional

multi-resolution implementation with a proper blurring and

pyramid scheme, similar to that described in the work on

TILT [17].

4. Simulations and Experiments

4.1. Calibration from Multiple Images

A. Calibration using a known pattern. In this experi-

ment, we compare our proposed method with the standard

camera calibration toolbox [1]. Normally, the error of cali-

bration can be evaluated by re-projection error of extracted

feature points. But since our method does not involve any

feature extraction and uses only the raw image pixels, this

measurement of error is no longer suitable here. Instead, we

try to compare the accuracy of estimated camera parameters

against the average estimates. More precisely, we run mul-

tiple experiments with different images by the same camera

and compute the standard deviation for every parameter we

estimate. The smaller the deviation, the more stable the es-

timates are.

In this experiment, we take 50 photos of a known

checker-board pattern using the same camera (a Panasonic

HDC-HS9) and setting, from different viewpoints. In each

experiment, we randomly select 20 out of the 50 images.

With these selected images, we calibrate the camera with

both the proposed method and the standard toolbox. Note

that we need to manually click the precise location of the

four corners of the checker-board for the toolbox. But for

our method, the initialization needs not to be exact at all

(several pixels away). See Fig. 2 (b) for examples. We

repeat the experiment 20 times, and calculate the standard

derivation of each parameter4 for each method. The result

3It is easy to see that the first two columns of τi correspond to the

vertical and horizontal directions of the low-rank textures.
4 By default the calibration toolbox disables the estimation of skew.

When turned on, it gives an error. So in this comparison, we do not esti-

(a) Initialization for [1] (b) Initialization of our

method

(c) Aligned images by our

method.

(d) Comparison of intrinsic params (e) Comparison of distortion params

Figure 2. Top: Representative examples of initialization for the

two methods. Notice that ours can be very flexible. Middle: Pre-

cisely aligned images by our algorithm. Bottom: Comparison

with the standard calibration toolbox. Standard deviation in the

estimated parameters, in pixels.

is shown in Fig. 2 (d)(e).

From the figure, we can see that our method is more sen-

sitive in the estimation of focal length and principle points

than toolbox, but the performance is comparable.5 The es-

timation of lens-distortion parameters of our method is al-

most the same as the toolbox.

So to conclude from this experiment, under noise-free,

well-controlled conditions, the performance of our method

is quite comparable to the toolbox. But our method does

not require exact initialization of the point location. In later

experiments, we will see that our method can work under

much broader conditions: with an unknown pattern, from

a single image, and even when significant lens distortion

exists, such as fish-eye images.

In order to verify the accuracy of the remaining experi-

ments, unless otherwise stated, we use the same Panasonic

camera with the same image resolution [960, 540] (directly

down-sampled from its full [1920, 1080] resolution). The

camera parameters estimated from this experiment is:

K =
[

1142.0 0 477.7
0 1138.0 270.3
0 0 1

]

. (14)

The camera should have the same set of parameters, except

mate skew either although our method does not have this limitation.
5 We have made no serious attempts to improve the numerical accuracy

of our method other than a straightforward implementation of Algorithm 1.

We believe ours can be easily improved by a more careful numerical im-

plementation and post processing in the future.



(a) Input images and windows (b) Rectified and aligned textures

Figure 3. Camera calibration from images of an unknown pat-

tern. The algorithm aligns the low-rank textures precisely despite

specularities in the images. Although aligned and rectified, corre-

sponding pixels do not have to correspond to the same 3D point.

(a) Input image and window (b) Radial distortion removed

Figure 4. Calibration from a single image in the Toolbox.

for focal length which may change from experiment to ex-

periment.

B. Calibration from an unknown pattern. In this exper-

iment, we take multiple photos of an unknown mosaic wall

from different viewpoints. By rectifying and aligning the

mosaic images pixel-wise into a common canonical view

using Algorithm 1, as shown in Fig. 3, we obtain the cam-

era calibration. The recovered intrinsic matrix is:

K̂ =
[

1138.6 0 482.3
0 1127.8 267.7
0 0 1

]

. (15)

4.2. Calibration from a Single Image

C. Calibration from a single pattern. Given just a sin-

gle image or a regular pattern, to calibrate the camera, we

have to work with fairly strong assumptions, say that the

principal point is known (and simply set as the center of the

image) and the pixel is square. Then from the image, one

can calibrate the focal length as well as eliminating the lens

distortion. Fig. 4 shows an example with an image given in

the standard toolbox. The estimated intrinsic parameters K̂

and the ground-truth K (provided by the calibration tool-

box) are respectively:

[

677.1812 0 319.5000
0 677.1812 239.5000
0 0 1

]

,
[

661.6700 0 306.0959
0 662.8285 240.78987
0 0 1

]

.

(a) Input image with initial (green) and fi-

nal converted (red) window

(b) Rectified texture (from red)

Figure 5. Camera calibration using an image of this paper.

(a) Input image and initial windows (b) Rectified image and final windows

(c) Rectified texture of left facade (d) Rectified texture of right facade

Figure 6. Calibration from two orthogonal facades of a building.

Notice that the method works despite of specularities and occlu-

sions due to tree branches.

The small error in focal length is mainly due to that the

principle point is approximated with the center of the image.

Nevertheless, we see in Fig. 4(b), the radial distortion is

completely removed by our algorithm.

To show the flexibility of our method, we further show

another example in Fig. 5 where we took with the Panasonic

camera an image of the frontal page of this paper. With this

image as input, the recovered calibration matrix is:

K̂ =
[

1229.1 0 479.5
0 1229.1 269.5
0 0 1

]

. (16)

D. Calibration from two orthogonal planes. In this sec-

tion, we present the results of calibrating a camera from ob-

serving two orthogonal facades of a building. The result is

shown in Fig. 6 with the estimated calibration parameters:

K̂ =
[

1189.7 0 474.3
0 1189.7 273.4
0 0 1

]

. (17)

E. Rectifying fisheye images. Note that the image used

in Fig. 4 is taken from a standard example in the MAT-



Figure 7. Rectify fisheye images with significant lens distortion.

Top: input images with a selected initialization windows (green);

Middle: rectified images with final converged windows (red);

Bottom: rectified low-rank textures.

LAB Calibration Toolbox [1], presumably the one with

the largest radial distortion among all the examples. Our

method can actually handle distortion far beyond that, as we

show in this section with images taken by a typical fisheye

camera (not the Panasonic anymore).

There have been many parametric models proposed for

this kind of images, our method should apply as long as the

model is known. Here to illustrate the basic idea, we make

the simplifying assumptions that there is only 1-D distortion

along the radial direction and hence try to estimate the map-

ping along the radius before and after distortion r = f(rd).
We approximate f(·) by polynomials up to degree of four.

In addition, we assume the center of the distortion is the

center of the image. Moreover, since no prior knowledge

about K,R, T is available, we model the transformation

from the pattern to the image plane as a general homogra-

phy transformation H ∈ R
3×3. Some representative results

are shown in Fig. 7.

5. Conclusions

In this paper, we have provided a simple, accurate and

robust method for camera calibration based on an advanced

rank minimization technique. Our method naturally avoids

the need of accurate corner or line detections; instead, we

use all pixels in the specified region. This property removes

the necessity of careful human operation, therefore it is im-

mediately useful for many practitioners.
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A. Proof of Proposition 1: Ambiguities in Cal-

ibration with an Unknown Pattern

Proof. Suppose by solving Eq. (9), we have aligned all the

images up to translation and scaling of I0. To be more spe-

cific we have managed to find τ ′i = (R′
i, T

′
i ), τ

′
0 = (K ′, k′c)

such that

Ii ◦ (τ
′
0 ◦ τ

′
i)

−1 = I0 ◦ τ, with τ =





sx 0 mx

0 sy my

0 0 1



 .

As all the lines have become straight in the recovered im-

ages Ai, the radial distortion parameters k′c should be exact

k′c = kc.

Here sx, sy are scaling in the x and y directions of the

aligned images Ai w.r.t. the original low-rank pattern I0.

mx and my are the translations between Ai and I0. Now let

us consider the mapping between a point M0 on I0 (notice

that the Z-coordinate is zero by default) and its image m̃ ∈
R

3 (in homogeneous coordinates): λm̃ = K[r1, r2, T ]M0.

As the recovered parameters are consistent with all con-

straints, the same point and its image satisfy:

λ′m̃ = K ′[r′1, r
′
2, T

′]





sx 0 mx

0 sy my

0 0 1



M0.

So the matrix K[r1, r2, T ] must be equivalent to

K ′[sxr
′
1, syr

′
2,mxr

′
1+myr

′
2+T ′] (i.e., up to a scale factor),

so we have
{

Kr1 = ξsxK
′r′1,

Kr2 = ξsyK
′r′2.

⇒

{

K ′−1Kr1 = ξsxr
′
1,

K ′−1Kr2 = ξsyr
′
2.

(18)

Since r′T1 r′2 = 0, we have

(Kr1)
TK ′−TK ′−1(Kr2) = 0. (19)

This gives one linear constraint for B = K ′−TK ′−1. Such

a symmetric B has six degrees of freedom. Since each im-

age gives one constraint on B, we need only five general

images (not in degenerate configurations) to recover B up

to a scale. Since K−TK−1 is a solution too, thus we must

have K ′ = K as the unique solution of the form Eq. (2).

Further from Eq. (18), we have r′1 = r1, r′2 = r2, and

sx = sy . That is, once all the images are aligned and recti-

fied, they only differ from the original pattern I0 by a global

scale s = sx = sy and a translation (mx,my). In addition,

we recovered rotation R′
i is the correct R′

i = Ri. But since

we still do not know the exact values of sx, mx, and my ,

the recovered T ′
i is not necessarily the correct Ti.

With a similar analysis, we can show that in fact if we in-

dividually rectify the images, we still can obtain the correct

K and Ri. The only difference is that sx, sy , mx and my

are all different for different images, thus the translations Ti

are even less constrained.

B. Determine Translation from Ground-Truth

If the low-rank pattern I0 is given, we can directly or

indirectly align Ii to I0. From a derivation similar to the

above, one can show that we can recover sx, mx and my

with respect to the ground truth metric of I0. Then for each

image the ground-truth translation can be recovered by

T =
mxr1 +myr2 + T ′

sx
. (20)

C. Proof of Proposition 2: Ambiguities in Cal-

ibration with Two Orthogonal Planes

Proof. Suppose a low-rank texture lies on the left plane

X = 0 and another lies on the right plane Y = 0.

ML = (0, Y1, Z1) is the point on the left plane, and

MR = (X2, 0, Z2) is a point on the right plane. Similarly

we have the image point mL = (xL, yL) of the left point

and mR = (xR, yR) of the right point. Then

λ1mL =





f 0 ox
0 f oy
0 0 1



 [r2 r3 T ]





Y1

Z1

1



 , (21)

and

λ2mR =





f 0 ox
0 f oy
0 0 1



 [r1 r3 T ]





X2

Z2

1



 . (22)

For convenience, we use (x, y) to represent points both

on Y = 0 and on X = 0. Suppose the rectified im-

age Ai differs from the ground truth I
(i)
0 by scaling and

translation: s
(i)
x , s

(i)
y ,m

(i)
x ,m

(i)
y . Then the ground truth K,

R = [r1 r2 r3] and T , and the recovered parameters K ′,

R′ = [r′1 r
′
2 r

′
3] and T ′

1, T
′
2 are related through the following

formulae:
[

s
(1)
x Kr2 s

(1)
y Kr3 K(m

(1)
x r2 +m

(1)
y r3 + T )

]

= ξ1 [K
′r′2 K ′r′3 K ′T ′

1] ,
[

s
(2)
x Kr1 s

(2)
y Kr3 K(m

(2)
x r1 +m

(2)
y r3 + T )

]

= ξ2 [K
′r′1 K ′r′3 K ′T ′

2] .

(23)

This gives

K ′−1K
[s

(2)
x

ξ2
r1,

s
(1)
x

ξ1
r2,

s
(1)
y

ξ1
r3

]

= [r′1, r
′
2, r

′
3]. (24)

Knowing that r′1, r
′
2, r

′
3 are orthogonal to each other, we de-

rive three linear constraints for B = K ′−TK ′−1, which has

three unknowns. So in general, we can extract unique so-

lution K ′ from B. Note that K ′ = K is one solution too,

hence the recovered is the correct solution.

Also, from Eq. (24) we can see that R′ = R, leaving

only Ti being ambiguous.


