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Abstract. In this paper, we describe a novel camera calibration method to estimate
the extrinsic parameters and the focal length of a camera by using only one single
image of two coplanar circles with arbitrary radius.
We consider that a method of simple operation to estimate the extrinsic parameters
and the focal length of a camera is very important because in many vision based
applications, the position, the pose and the zooming factor of a camera is adjusted
frequently.
An easy to use and convenient camera calibration method should have two char-
acteristics: 1) the calibration object can be produced or prepared easily, and 2)
the operation of a calibration job is simple and easy. Our new method satisfies
this requirement, while most existing camera calibration methods do not because
they need a specially designed calibration object, and require multi-view images.
Because drawing beautiful circles with arbitrary radius is so easy that one can even
draw it on the ground with only a rope and a stick, the calibration object used by
our method can be prepared very easily. On the other hand, our method need only
one image, and it allows that the centers of the circle and/or part of the circles to
be occluded.
Another useful feature of our method is that it can estimate the focal length as
well as the extrinsic parameters of a camera simultaneously. This is because zoom
lenses are used so widely, and the zooming factor is adjusted as frequently as the
camera setting, the estimation of the focal length is almost a must whenever the
camera setting is changed. The extensive experiments over simulated images and
real images demonstrate the robustness and the effectiveness of our method.

1 Introduction

Calibration of the extrinsic camera parameters is an indispensable preparation for com-
puter vision tasks such as environment recognition, 3D shape acquirement and so on. In
many real vision based applications, camera setting is adjusted frequently, and when-
ever the camera setting has been altered, the extrinsic camera parameters have to be
estimated again. In recent years, zoom lenses have being widely used, and zooming
factor is adjusted as frequently as other camera parameters. Thus when the position or
pose of a camera has been adjusted, the focal length might also have been altered in most
cases. Therefore, we consider that a method of simple operation to estimate the extrinsic
parameters and the focal length of a camera simultaneously is highly desired. Such a
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method should have two characteristics: 1) the calibration object can be produced or
prepared easily, and 2) the operation of a calibration job is simple and easy.

One of the conventional methods to calibrate the extrinsic parameters and the focal
length of a camera is to use point correspondence data. In order to get precise results, point
correspondence data spreading over an image plane is necessary. However, it is difficult to
prepare a lot of points with known 3D coordinates and to find the correspondence between
the 3D points and their projection in the image. Although specially designed calibration
objects can ease this job, producing such an object itself and setting it properly for the
calibration is still complicated and time consuming, and sometime becomes impossible
or impractical, e.g. in the case of wide observing area, such as a baseball stadium or a
football playground.

The usage of point corresponding data can be avoided by using geometrical patterns
such as straight lines and circles instead. Several researches using circular patterns, or
conic patterns [2]-[6] have been reported so far. These camera calibration methods are
for estimating intrinsic camera parameters, and they all use some special patterns and
multi-view images.

Meng et al.[2] proposed a method using a pattern that consists of a circle and straight
lines passing through its center. It needs at least three different views. Kim et al.[4]
proposed a method that makes use of planar con-centric circles. It requires two views.
Yang et al.[5] proposed a similar method except that con-centric ellipses are used instead
of con-centric circles.

Other methods are about motion analysis or 3D interpretation of conic[7]-[16]. Al-
though some of them can be used as a calibration method, they have some or all of the
following disadvantages, 1) multi-view images are required, 2) only part of the extrin-
sic camera parameters can be estimated, 3) the focal length can not be estimated, 4) a
specially designed calibration object is required.

Long[7] proposed a method to find the correspondence between conics in two views,
and to estimate the relative orientation of the optical axis of two views. Dhome et al.[8]
proposed a method to estimate the attitude and the position of a circle from an image
assuming known focal length and radius. Kanatani and Wu[15],[16] reported methods
to extract 3D information from conics in images. The intrinsic and extrinsic camera
parameters are supposed to be known.

In this paper, we describe a novel camera calibration method to estimate the extrinsic
parameters and the focal length of a camera by using only one single image of two co-
planar circles with arbitrary radius. Because drawing beautiful circles with arbitrary
radius is so easy that one can even draw it on the ground with only a rope and a stick, the
calibration object used by our method can be prepared very easily. On the other hand,
our method need only one image, and it allows that the centers of the circle and/or part
of the circles to be occluded. These features make the operation of camera calibration
using our method becoming very simple and easy. Another useful feature of our method
is that it can estimate the focal length as well as the extrinsic parameters of a camera
simultaneously.

The extensive experiments over simulated images and real images demonstrate the
robustness and the effectiveness of our method.
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2 Elliptical Cone and Circular Cross Section

In this section we describe the problem of estimating the direction and the center of
a circle from one perspective view. M.Dhome[8] addressed this problem in a research
about the pose estimation of an object of revolution. We give a rigorous description here,
which is then used in the estimation of the focal length and the extrinsic parameters of
the camera in the succeeding section.

2.1 Ellipses and Conic Surfaces

If a circle is projected on to the image plane with perspective projection, it shows an
ellipse in general case. Considering a camera coordinate system that the origin is the
optical center and the Z-axis is the optical axis, then the ellipse in the image can be
described by the following equation,

Ax2
e + 2Bxeye + Cy2

e + 2Dxe + 2Eye + F = 0, (1)

or in quadratic form as following,

(
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A bundle of straight lines passing through the optical center and the ellipse defines
an oblique elliptical cone. Assuming that the focal length of the camera is f , the image
plane can be expressed by z = −f . Then the oblique elliptical cone can be described
by,

P = k
(
xe ye −f

)T
, (3)

where k is a scale factor describing the distance from the origin to P. From Eq.(2) and
Eq.(3) the equation to describe the oblique elliptical cone is derived,

PT QP = 0, (4)

where
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Considering a supporting plane coordinate system that the origin is also the optical
center, but the Z-axis is defined by the unit normal vector of the supporting plane of the
circle to be viewed. Let z0 be the Z coordinate of points on the plane, the points on the
circle can be described by the following expression,

{
(x − x0)2 + (y − y0)2 = r2

z = z0
(6)
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where (x0, y0, z0) is the center and r is the radius of the circle. A bundle of straight
lines passing through the optical center and the circle defines an oblique circular cone
described by the following equation,

Pc
T QcPc = 0, (7)

where

Qc =






1 0 −x0
z0
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−x0
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−y0
z0

x2
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 . (8)

Since the camera coordinate system and the supporting plane coordinate system
have a common origin at the optical center, the transform between the two coordinate
systems is a rotation. Because the oblique circular cone and the oblique elliptical cone
are the same cone surface, there exists a rotation matrix Rc that transforms Pc to P as
following,

P = RcPc. (9)

Since kQc for any k �= 0 describes the same cone as of Qc, from Eq.(9), Eq.(7) and
Eq.(4) we have,

kRc
T QRc = Qc. (10)

In order to determine Rc and Qc so that the unit normal vector of the supporting plane
and the center of the circle can be obtained, we want to convert Q to a diagonal matrix
first.

Let λ1, λ2, λ3 be the eigen-values, and v1 = (v1x v1y v1z)T , v2 = (v2x v2y v2z)T ,
v3 = (v3x v3y v3z)T be the normalized eigen-vecters of Q respectively, Q can be
expressed by the following equation,

Q = VΛVT , (11)

where {
Λ = diag{λ1, λ2, λ3}
V =

(
v1 v2 v3

) . (12)

Substituting Eq.(11) for Q in Eq.(10), the following equation is obtained,

kRT ΛR = Qc, (13)

where

R =




r1x r2x r3x

r1y r2y r3y

r1z r2z r3z



 = VT Rc. (14)

From Eq.(13) we obtain following equations,

{
λ1(r2

1x − r2
2x) + λ2(r2

1y − r2
2y) + λ3(r2

1z − r2
2z) = 0

λ1r1xr2x + λ2r1yr2y + λ3r1zr2z = 0 . (15)
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Without losing generality, we assume that





λ1λ2 > 0
λ1λ3 < 0
|λ1| ≥ |λ2|

. (16)

By simplifying Eq.(15) and RT R = I, we obtain,

R =




g cos α S1g sin α S2h
sin α −S1 cos α 0

S1S2h cos α S2h sin α −S1g



 , (17)

where α is a free variable, S1 and S2 are undetermined signs, and





g =
√

λ2−λ3
λ1−λ3

h =
√

λ1−λ2
λ1−λ3

, (18)

By substituting Eq.(17) for R in Eq.(13), k, x0/z0, y0/z0 and r/z0 are determined,
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√
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√
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0
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λ2

2

(19)

Because the Z-axis of the supporting plane coordinate system is the unit normal
vector of the plane (denoted by N), from Eqs.(9), (14) and (19), N and the center of the
circle (denoted by C) described in the camera coordinate system can be computed by
the following expression,
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, (20)

where S3 is also an undetermined sign.
Since a plane has two side, we let N be the normal vector indicating the side faced

to the camera. Also, since the center of the circle is in front of the camera, the following
stands, {

N · (
0 0 1

)T
> 0

C · (
0 0 1

)T
< 0

, (21)

from which two of the three undetermined signs in Eq.(20) can be determined, and we
have two sets of possible answers about N and C. In the case of unknown radius, the r
is left a scale factor in Eq.(20).
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2.2 Estimating the Extrinsic Parameters and the Focal Length Simultaneously

In this section, we describe a method to estimate the extrinsic parameters and the focal
length of a given camera by using two coplanar circles with arbitrary radius.As described
in the section 2.1, the unit normal vector of the supporting plane and the center of the
circle can be determined from one perspective image, if the focal length is known.

In the case of unknown focal length, the symbol f in Eq.(5) leaves a variable, and it
will remain in all the answers.

In order to determine the focal length so that the unit normal vector of the supporting
plane and the center of the circle can be determined, we let the camera to view a scene
consists of two coplanar circles. In this case, two ellipses will be detected, and according
to section 2.1, two oblique elliptical cones can be formed from the detected ellipses if
we give a focal length. From each of them, the normal vector of the supporting plane
can be estimated independently.

If we have given a wrong focal length, each of the formed cones will be deformed in
different ways and will not be similar to the real cone surfaces. In this case, the estimated
unit normal vectors of the supporting plane from each of the two cones will not only be
different from the real one, but will not be parallel to each other too. Only if we give the
correct focal length, the unit normal vectors estimated from each of the detected ellipses
will be the same.

Let N1(f) denote the normal vector estimated from one of the two ellipses and
N2(f) denote the normal vector from the other one. Because the two circles are coplanar,
N1(f) and N2(f) should be same. This constraint can be expressed by the following
equation,

N1(f) · N2(f) = 1. (22)

Then by minimizing the following expression, the focal length f and the unit normal
vectorN(= N1 = N2) can be determined, and the ambiguity cased by the undetermined
signs remained in Eq.(20) can be eliminated,

(
N1(f) · N2(f) − 1

)2 → min . (23)

The centers of the two circles can also determined with Eq.(20). If the radius of the
circles are unknown, then z0 in Eq.(20) leaves a variable. Let C1 and C2 denote the
centers of the two circles respectively, from Eq.(20) they can be expressed by,

{
C1 = z0C10

C2 = z0C20
, (24)

where C10 and C20 can be computed from the detected ellipses. The distance between
the two circle centers (d12) can be calculated by the following expression,

d12 = |C1 − C2| = |z0||C10 − C20|. (25)

A world coordinate system O-XY Z can be defined by using the two circle centers
as reference points and the unit normal vector of the supporting plane as a reference
direction as following. Let C1 be the origin, N define the Z axis and the vector C2−C1
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define the direction of the X axis of O-XY Z respectively, the origin O, the unit vectors
of X , Y , Z axes i, j and k can be obtained by the following equation,






O = C1

i = C20−C10
|C20−C10|

k = N
j = k × i

. (26)

If one of the radius of the two circles, the distance between the two circle center or
the distance between the optical center and the supporting plane is known, or if we use
one of them as the unit length of O-XY Z, then z0 can be determined from Eq.(20) or
Eq.(25), thus O and all other parameters related to length will be determined.

Then the optical center O′, the unit vectors i′, j′, and k′ that define the X , Y and Z
axis of the camera coordinate system described in the world coordinate system O-XY Z
can be computed by the following equation,
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. (27)

Therefore, by taking an image of a scene of two coplanar circles, the unit normal
vector of the supporting plane containing the circles and the focal length can be estimated.
And if the centers of the circle can be used as two reference point, then the full translation
and rotation of the camera relative to the world coordinate system defined by the two
circle centers and the normal vector of the supporting plane can be also determined. If
neither of the radiuses of the circles or the distance between the two circle centers is
available, the rotation and the translation of the camera can also determined except that
a scale factor remains undetermined. In both cases, the centers of the circles need not to
be viewable in the image.

3 Experimental Results

In order to exam the usefulness and the effectiveness of the proposed algorithm; we first
tested our method using some simulated images, then using some real images.



528 Q. Chen, H. Wu, and T. Wada

Fig. 1. Two sets of synthesized scenes of circles by CG: case-1 and case-2.

Table 1. Estimated camera parameters

case-1 RMS error Standard deviation case-2 RMS error Stand deviation

f (pixel) 5.52 9.21 f (pixel) 7.19 11.89
β(degree) 0.36 0.47 β(degree) 0.11 0.15
θ(degree) 0.57 0.97 θ(degree) 0.51 0.85

3.1 Simulation Results

We used computer graphics to synthesize images of many different coplanar circle
scenes. We first set the image resolution to 640 × 480 [pixel], the focal length to 200
[pixel], the tilt angle θ indicating the angle between the optical axis and the supporting
plane to be 40 [degree], the roll angle β indicating the rotation about the optical axis to
10 [degree], and the distance between the optical center and the supporting plane to 3.0
[meter]. We called this camera setting as “case-1” hereafter. We use this camera setting
to synthesize images of circles with a radius of 1.0 [meter].

Figure 1 shows an image containing all the circles used in the experiment of the
“case-1” camera setting. We used 32 images containing two circles randomly selected
from the ones shown in Figure 1.

We also have done a similar experiment using the camera setting called “case-2”
of which the image resolution is same as the “case-1”, the focal length is 300 [pixel],
θ = 50 [degree], β = 30 [degree], the distance between the optical center and the
supporting plane and the radius of the circles are same as “case-1”.

Figure 1 shows an image containing all the circles used in the experiment of the
“case-2” camera setting. We used 17 images containing two circles randomly selected
from the ones shown in Figure 1.

From each of the images, two ellipses were detected, which were used to estimate
the unit normal vector of the supporting plane and the focal length. Then the estimated
focal length and the tilt angle and the roll angle calculated from the estimated unit normal
vector of the supporting plane were compared to the ground truth, which is the camera
setting used to synthesize images with CG. The experimental results are summarized in
Table 1 with suffixes 1 and 2.



Camera Calibration with Two Arbitrary Coplanar Circles 529

Table scen1 Manhole on road

Table scene 2

Table scene 3 Wave rings

Fig. 2. Some images of real scene used the experiment.

Table 2. Experimental results estimated from images shown in Figure 2

Image name Resolution[pixel] Focal length[pixel] Unit Normal vector

Table scene 1 640 × 480 901.0 (0.03, 0.83, 0.56)
Table scene 2 640 × 480 1140 (0.13, 0.84, 0.51)
Table scene 3 1600 × 1200 2209 (-0.04, 0.83, 0.56)

Manhole on road 1600 × 1200 4164 (0.05, 0.97, 0.26)
Wave rings 275 × 412 2615 (0.03, 0.92, 0.39)
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Table scene 1

Table scene 2

Table scene 3

Manhole on road

Wave rings

Fig. 3. Vertical views synthesized using estimated camera parameters.

3.2 Experiments with Real Images

We tested our method by applying it to many real images containing coplanar circle
shape objects e.g., manholes on roads, CD discs on a table, widening rings on the water
surface, and so on. Some of the images used in the experiment is shown in Figure 2).

The images were taken with two digital still cameras of different kind, and with a
digital video camera. All of them are equipped with a zoom lens.

For each image, we detected the ellipses and used them to estimate the focal length
and the unit normal vector of the supporting plane. The results are summarized in Table 1.

Since the ground truth of the camera setting including focal length, position and
pose is not available, we used the estimated camera parameters to convert the image
to a vertical view to the supporting plane by assuming a planar scene, and to see if it
resembles the real scene. Figure 3.
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In some of the converted images, the circular object doest not show a perfect circle.
The considerable reasons are, 1) in our method, the intrinsic parameters except the
focal length are assumed to be calibrated, but uncalibrated cameras were used in the
experiment, 2) the radial distortion of the cameras are not compensated.

4 Conclusion

This paper has presented a new camera calibration method for estimating the focal length
and the extrinsic camera parameters using circular patterns. This method allows us to
estimate the extrinsic parameters and focal length simultaneously using one single view
of two coplanar circles with arbitrary radius. Moreover, it does not require the whole
circles or the centers to be viewable. These features make a very convenient calibration
method because both the preparation of the calibration pattern and the operation of taking
picture are quite easy.

Compared with existing method, our method can determine the focal length of camera
as well as extrinsic camera parameters. Even in the case that the position and the size of
the circles are not available, our method can still give the focal length and the normal
vector of the supporting plane.

We will extend our method estimating image center and the radial distortion param-
eters in the future work.
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