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Abstract. A challenge in image based metrology and forensics is intrin-
sic camera calibration when the used camera is unavailable. The unavail-
ability raises two questions. The first question is how to find the projec-
tion model that describes the camera, and the second is to detect incor-
rect models. In this work, we use off-the-shelf extended PnP-methods to
find the model from 2D-3D correspondences, and propose a method for
model validation. The most common strategy for evaluating a projection
model is comparing different models’ residual variances—however, this
naive strategy cannot distinguish whether the projection model is poten-
tially underfitted or overfitted. To this end, we model the residual errors
for each correspondence, individually scale all residuals using a predicted
variance and test if the new residuals are drawn from a standard normal
distribution. We demonstrate the effectiveness of our proposed valida-
tion in experiments on synthetic data, simulating 2D detection and Lidar
measurements. Additionally, we provide experiments using data from an
actual scene and compare non-camera access and camera access calibra-
tions. Last, we use our method to validate annotations in MegaDepth.

1 Introduction

Intrinsic camera calibration is a fundamental computer vision problem. It in-
volves finding the parameters that allow the conversion of pixel coordinates to
bearing angles [12]. It is possible to use the camera for metrology using a cal-
ibration. In the single-view case, metrology means measuring the lengths and
angles of objects depicted in an image. As an extension, it is the underpinning
of single view 3D reconstruction [4]. Metrology has many applications, including
non-contact measurements, sensor fusion, and forensic analysis.

Traditionally, intrinsic calibration is a semi-automatic process, which involves
imaging of calibration objects [30,28]. Such calibration allows controlled accu-
racy; however, access to the camera is required. In forensic analysis, the camera
is only sometimes available, depending on the received material. Therefore, we
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aim to facilitate measurements in an image when the camera is unavailable.
Using a calibration profile from a camera of the same model often works well,
but the accuracy is unknown in this approach and should thus be avoided in
forensics.

In the Perspective-n-Point (PnP) problem, the goal is to estimate the camera
pose given a set of 2D-3D point correspondences. Early methods assume a cali-
brated camera, and only estimate translation and rotation parameters [7]. More
recent variants of PnP also estimate the intrinsic camera parameters [14,21].
These extended PnP methods (xPnP) do not require the camera to be available,
in contrast to calibration pattern methods [30,28]. However, they introduce new
challenges such as 2D-3D matching and validation.

In this work, we attend to the validation of camera calibration for forensic
metrology applications [2]. Usually, a model is assumed to be validated if it, on
average, has low residuals. However, this approach will not provide any measure
of uncertainty in the image plane. Moreover, deriving the uncertainty is chal-
lenging because the amount of distortion scales non-linearly with the distance to
the camera centre. Thus, we treat noise modelling as a robust regression problem
and predict a residual scaling for each 2D-3D correspondence. When the model is
correct, we assume the scaled residuals to follow a standard normal distribution
(Figure 1). Next, to verify this assumption, we use a hypothesis test. Simulated
data, an indoor scene and MegaDepth [18], with annotated cameras depicting
different scenes, demonstrate our proposed validation.

Contributions Our contributions are as follows: (i) We propose a method
for testing residuals based on variance predictions and standardisation. (ii) We
suggest using xPnP methods for unavailable cameras as input to our method,
given 2D-3D correspondences. (iii) An empirical estimate of the variance scales
residuals poorly. Instead, we propose a predictive noise model to scale individ-
ual residuals over the 2D detector and projected 3D noise. (iv) We analyse
the effectiveness of our method in quantitative and qualitative experiments and

Fig. 1. Left: Standardised residuals for a correct model with one distortion parameter
using our robust scale estimate. I.e. the residuals are not affected by the model error.
Middle: Standardised residuals from images under more distortion, for an incorrect
model using a non-robust scale estimate. Right: Standardised residuals for an incorrect
model, using a robust scale estimate.
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demonstrate its ability to significantly predict incorrect models, also when the
mean of the residuals is low.

1.1 Background Motivation

At the Swedish National Forensic Center (NFC), the task is to collect information
linked to crimes without the possibility of misinterpretations when used in the
Swedish court system. At the time of writing, NFC uses the Zhang method [30]
for metrology. However, this commonly accepted practice only applies to im-
ages where the camera is available. Lidar scanning is a standard technique in
forensic investigations, and in many legal cases, the depicted location is revisited
for scanning. Using this working methodology, Olsson [22] first investigated the
validation of xPnP methods that forms the basis of this work. In [22], model cor-
rectness is assessed by checking if the empirical mean of the re-projected sample
distances is within the two centre quartiles. However, this decision will prefer
incorrect models since outliers will expand the decision range.

1.2 Ethical Consideration

This work does not concern any police investigations or legal cases. Instead, the
method we propose analyses residuals using synthetic data, available benchmark
data, and a snapshot of a fictional crime scene provided by a police agency. These
are all free from apparent ethical dilemmas.

2 Related Work

Semi-automatic Calibration Camera calibration is a broad subject found in
many areas of industry and research. However, the most common camera cali-
bration practice is to use a printed pattern on a planar surface. This strategy
was proposed by Zhang [30], who suggested using a checkerboard pattern with
equidistant squares of black and white. The inner corners of the pattern form
unambiguous features that are easy to find. Detecting several of these features,
also called saddle points, between different views allows camera parameters to
be estimated. Each detected saddle point in each picture is assigned to its cor-
responding point on the checkerboard. This set of correspondences represents a
series of homographies, determining the intrinsic and extrinsic parameters for
one or more cameras. In the case of Tsai [28], camera calibration depends only
on one view of a co-planar checkerboard pattern. The Zhang method [30], in-
stead depends on at least three pictures of a planar checkerboard pattern. More
recently, deep methods like Li et al. [17] take a single image as input and jointly
learn to predict distortion coefficients and optical flow from images with lens-type
annotations. However, this problem only concerns visual quality and provides no
model accuracy assessment.

Perspective-n-Point The PnP problem [7] refers to finding a rigid transfor-
mation from 2D-3D point matches. That is, to estimate the rotation matrix R
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and the translation vector t describing the camera pose in the coordinate system
of the 3D points, assuming that the intrinsic parameters never changed during
the sampling of a scene. The minimal but ambiguous case, P3P [9,19,23] is not
considered in this work.

Lepetit et al. [16] (EPnP), reduced the computational complexity to O(n) op-
erations. Although the convergence is fast, the solution depends on initialization
and global convergence is not guaranteed. Later works recognized the need to
include intrinsic parameters to generalize application tasks [21][14]. Nakano [21]
extends the PnP problem by including intrinsic parameters and dividing the pa-
rameter estimation into different stages. Radial distortion and equal focal length
horizontally and vertically are assumed, as well as fixating the principal point to
the image center. Larsson et al. [14] instead require a minimal correspondence
set and add a local optimization step [15]. In our work, we propose a method to
validate xPnP methods, for application in forensic analysis, by Goodness-of-Fit
(GoF) testing between distributions. That is, we do not improve the methods [21]
and [14].

Empirical Performance Evaluation
Works by Wang et al. [29] and Thai et al. [27] are related to our work. Wang

et al. [29] propose a method to test hypotheses about the effect of conceptual
changes in deep classification models. That is, if the difference is the probable
reason behind the increase in accuracy. Thai et al. [27] propose to identify cam-
eras by raw pixel intensities. Similar to our approach, two quantities parametrize
the intensity variance—analog gain, controlled by the camera ISO setting, and
electronic noise caused during sensor readout. For an unknown camera the pa-
rameters are first estimated and secondly tested against known parameter values
(null hypothesis).

Goodness of Fit The goodness of fit testing is one of the fundamental tasks
in statistics. In this work, we focus on normality testing due to normal distribu-
tions being a good model for uncertainty in projective geometry [13,8]. Still, our
approach could easily be generalized to GoF tests for arbitrary distributions.

There are a large variety of proposed statistics for normality testing, of
which the Kolmogorov-Smirnov (KS) [20], D’Agostino-Pearson (DAP) [6], and
Shapiro-Wilk (SW) [26] tests are well known. These tests all seek to maximize
the power, i.e., minimizing the risk of the null hypothesis being accepted, given
that an alternative hypothesis is correct. We discuss those further in Section 3.5
and test all three in Section 4.

Single View Metrology Metrology is the study of measurement. In the con-
text of computer vision, single view metrology [5] involves estimating, e.g., angles
and lengths, from a single image. In all metrology, an accurate measure of uncer-
tainty is crucial, and in particular in the forensic setting. Previous work in single
view metrology has focused on the undistorted (but often uncalibrated) case [5],
with model uncertainty assumed to be normally distributed [5,13,8,3]. At in-
ference time, these uncertainties can be propagated by first order propagation
or by Monte Carlo simulation. However, in those works, both the uncertainty
estimation and propagation requires a priori knowledge of the noise levels and
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estimation method, and implicitly assume the estimated model is approximately
correct. In contrast to those methods, our approach

1. Is estimation agnostic, i.e., we can treat the estimators as black boxes.
2. Generalises to arbitrary projection models.
3. Does not implicitly assume that the estimated model is approximately cor-

rect.

In particular, perturbation theory, as used in previous work, does not provide a
reliable measure of the trustworthiness of the estimated model, it simply provides
an approximate measure of the estimation sensitivity to the input. In contrast,
our method directly measures trustworthiness by testing the hypothesis of the
matches being generated from the estimated model.

3 Method

We propose a method that compares observed and expected noise levels. The
method takes residual values as input, given a calibration computed from an
xPnP method and 2D-3D correspondences. We decompose the residual error
for each correspondence as three additive terms: (i) 2D detector noise, (ii) 3D
detector noise projected into the image, and (iii) model noise. The expected
model noise is zero for the correct model, not affecting the residual distribution
in any direction. We describe this in Section 3.3. To handle unexpected model
noise, Section 3.4 details robust regression over (i) and (ii) to obtain a scale
value for each 2D point. Finally, we assume the scaled residuals are drawn from
a standard normal distribution and test this using a GoF test. We motivate our
preferred choice of test in Section 3.5. We consider all points to influence the
validation decision and believe this to improve applications in forensic analysis.
We begin with an example to get a good intuition of our approach.

3.1 Motivating Example

Consider a correct data model y = x and an (incorrect) hypothesis hbad : y =
x + 0.5x5. Under the assumption that y is observed with some Gaussian noise,
the residuals r of the true model will be distributed as N (0, σ2

y). In contrast,
the residuals of the incorrect hypothesis are typically significantly different from
the expected distribution (as shown in Figure 1). Thus, if σy is known, a simple
hypothesis test is whether r

σy
∼ N (0, 1). However, in real world scenarios σy

is typically not known and needs to be estimated. Since incorrect hypotheses
typically contain outliers, it is important with a robust estimate of the noise
level. We show these steps in Figure 1. It is clear that hbad produces a tailed
residual distribution that does not follow the expected Gaussian curve. Hence
we can use the KS test [20] to validate the produced models.

Underfittning and Overfitting It is common for a complex model to be opti-
mized to fit the data y perfectly. We can describe overfitting and underfitting as a
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constant multiplication of σ2
y, yielding residuals distributed as N (0, aσ2

y). When
a < 1 the model is overfitted, and when a > 1 it is incorrect (underfittning). The
following sections describe how we can apply this intuition to validate a camera
calibration.

3.2 Camera Calibration

Calibration fundamentally depends on correspondences of point coordinates. An
arbitrary camera, c, observes a set of K 3D points {Xk}Kk=1, and a set of corre-
sponding image points {xck}Kk=1. Point sets and correspondences are known ∀k,
and for each camera. In this work, we consider xPnP based camera calibration
using the methods proposed by [21] and [14]. Both extrinsic (rotation and trans-
lation) and intrinsic (focal length and distortion) parameters in (3) are computed
to enable measurement of length and angles in the camera image.

Distortion Depending on the optical system of a camera, small or large dis-
placements of image coordinates can be introduced, called image distortion. Un-
like the focal length, which scales the image uniformly, distortion is characterised
as scaling the image differently depending on the distance to a distortion centre.
The farther the pixels are from the centre of distortion, the more they are dis-
torted. We let the same point represent the distortion and optical centra, which
is assumed to be fixed and in the centre of the image.

y′ = g(y,θ) (1)

We model the distortion as in (1), and let θ = [θ1, θ2, θ3] specify the non-linear
distortion terms. When g uses one distortion term, it will be denoted as D(1,0)
and as D(3,0) when all three terms are used, according to [14].

Correspondences The calibration uses Lidar measurements, which map physi-
cal features with high precision by emitting narrow laser beams that are reflected
back. Even if the image, whose camera we want to calibrate, and the lidar map
are recorded at separate times, there should be enough overlapping features left
for calibration. That is, consistent physical properties. Such properties, which
are more likely to be consistent, are, for example, those found on buildings, veg-
etation, paintings, furniture, etc. In practice, correspondences can be of varying
quality, making robust estimation a critical importance, when computing an
xPnP solution [14]. Therefore, we use only the residuals from correspondences
marked as inliers by the model estimator for model validation.

3.3 Residual error model

Regardless of whether the corresponding coordinates are found by an interest
point detector, or whether they are manually annotated by a human, they will
suffer from detection noise. This means that a location estimate x̃ has a resid-
ual εdetector, compared to the ideal point location x̂. This residual is typically
modelled as a 2D normal distribution:

εdetector = x̃− x̂ ∼ N (0, σ2
dI) . (2)
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For a successful calibration, the residual between a detected point, and the pro-
jection of the corresponding 3D point using the estimated parameters, should
also satisfy (2). In other words:

x̂ = projΘ,P(X̂) = Kg(π(RX̂ + t),θ) . (3)

Here X̂ is the ideal 3D point, and π is the pinhole projection. The intrinsic
calibration, Θ = (K,θ), and the extrinsic calibration, P = (R, t) (the camera
pose) are of course estimates in practice. We summarize the error caused by the
estimation in an additive modelling noise term εmodel. We intend to explain the
residuals by detection noise in the image and in the Lidar, and test whether the
explanation holds using a test on the residual data, e.g. by the DAP test [6], or
by the KS test [20], testing the GoF.

For 2D-3D matches, the 3D points are also affected by noise ε3D. Thus, (3)
should be replaced by:

x̂− εlidar − εmodel = projΘ,P(X̂− ε3D) , (4)

where ε3D is the detection noise in 3D, and εlidar its projection. By combining
(4) with (2) we obtain the following residual model:

ε = εdetector + εlidar + εmodel . (5)

We model the detection error as in (2), and describe the lidar error model in
detail below.

Lidar error model For a Lidar sensor, the 3D noise has both angular and
depth components. However, when the camera and 3D-sensor are close to being
co-axial, and point in roughly the same direction (i.e. t is small, and R ≈ I in
(3)), the depth error becomes irrelevant, and the projection in the image εlidar is
dominated by K, which is affine. This means that the shape of εlidar is a simple,
but location dependent scaling.

We thus model the projection of the Lidar error εlidar as:

εlidar ∼ N (0, σ2
l diag(a2x, a

2
y)) , (6)

where σ2
l is a noise variance, and ax, ay are the noise scalings in horizontal

and vertical directions. These depend on the location in the image. To estimate
ax, ay, we can project the current 3D point and its neighbours in pan and tilt
directions to obtain:

ax,k = ‖proj(Xk)− proj(XP
k )‖ (7)

ay,k = ‖proj(Xk)− proj(XT
k )‖ , (8)

where Xk is the current 3D point, and XP
k , and XT

k are its neighbours in pan
and tilt directions.
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3.4 Noise Estimation

The parameters of the detector errors in the model (5) can be fitted to the ob-
served residuals using robust linear regression. However, estimating the variance
of εmodel is neglected since its observed values are those that will remain in order
to test whether the model is incorrect. I.e. we assume:

E
{
ε2
}

= σ2
d + σ2

l . (9)

By using a common σd for x, and y image residuals, and the aspect ratio model
in (6) we obtain:

E

{(
ε2x
ε2y

)}
=

(
1 a2x
1 a2y

)(
σ2
d

σ2
l

)
. (10)

We fit these to the observed K residuals, for each camera, c, separately, to
obtain the regressor parameters (σd, σl).

(
ε2x,1 ε

2
y,1 . . . ε

2
x,K ε2y,K

)ᵀ
=

(
1 1 . . . 1 1
a2x,1 a

2
y,1 . . . a

2
x,K a2y,K

)ᵀ(
σ2
d

σ2
l

)
(11)

In practice, we do not use linear regression by solving the normal equations
to (11), but use robust regression using IRLS [11] with initial weights 1/p(εk|σ =
5.0). We can now obtain standardised residuals:

ε̃k =

(
εx,k/σk,x
εy,k/σk,y

)
=


εx,k/

√
σ2
d + a2x,kσ

2
l

εy,k/
√
σ2
d + a2y,kσ

2
l


 . (12)

3.5 Hypothesis Testing

When the modelling error is low, the standardised residuals in (12) should pass
a statistical test, such as, e.g., the KS test. We can thus use the test to check
whether the calibration worked for a particular set of 2D-3D correspondences.
More formally, we test the null hypothesisH0 : The standardised residuals (12)
are distributed explicitly according to a standard normal, against H1: at least one
value does not match that distribution. Related to this classical approach is that
the data we are testing is random, so the test decision is random too, which means
there is still a small probability of an incorrect decision. Nevertheless, tests are
useful to detect low model errors and thus further validate the calibration.

Evidence The approach involves comparing the samples (residuals) with a sta-
tistical model under H0, where a test statistic measures the discrepancy between
the data and the model. To this end, we use the KS test [20] and compute a
p-value, measuring the error size of rejecting H0. Commonly, when the p-value
is below 5%, H0 can be rejected in favour of H1. That is, the error probability is
sufficiently low. However, this probability does not directly infer confidence for
the data distributed as a standard normal.

Other tests also calculate a p-value to test the normality of data. For example,
the DAP test [6] sums the discrepancies from a skewness test and a kurtosis test
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into a single p-value. Skewness is the asymmetry about the mean, and kurtosis
is the measure of the ”tailedness”. Although parametric tests are preferable to
non-parametric ones, and the SW test is one of the more powerful [10], we believe
their null hypotheses to be non-directional, where a broader chance of normality
is possible, leading to unstable decisions.

4 Experiments

We first evaluate the proposed method for testing a calibration using 2D-3D
correspondences on synthetic data simulating detection and Lidar errors. Next,
we provide results on a real scenario using Lidar measurements and compare this
with a semi-automatic calibration. Last, we analyse a large-scale dataset using
our method.

4.1 Synthetic data

We implemented the simulator in OpenCV [1] and will provide code upon pub-
lication. We aim to render a fictitious checkerboard pattern with equidistant
squares of black and white into a camera c with a small angular rotation main-
taining the image centre as its viewpoint at a distance t. The pattern contains
equally many saddle points (inner checkerboard corners) vertically as horizon-
tally (15 × 15). The simulator iterates three main tasks to render each image,
which is presented next. (i) The projection model has fixed intrinsic parameters
according to D(3,0) [14]. That is, f = 800 and θ = [−0.0684, 0.0100, 0.0006].
We let the distortion centre coincide with the image centre. Rotation parameters
are randomly sampled in the range ±15◦ relative to the z-axis. The translation
can also be random, but in our generated synthetic dataset, we move the pat-
tern closer and closer to the camera. (ii) Next, we smooth the image (to avoid
aliasing), add image noise and interpolate it to size 1600× 1600. A saddle point
detector [1] locates the 2D position of these features with sub-pixel precision.

Model fx fy cx cy k1 k2 k3 std(axis223m) std(axisp3364)

m1 X X 2.99 2.91
m2 X X X X 2.96 2.73
m3 X X X X 3.03 2.95
m4 X X X X X X 3.19 2.52
m5 X X X X X X X 0.81 0.19

Table 1. Projection models used with the Zhang method [30]. Models m1 and m3 use
the same number of parameters as the PnP methods D(1,0) [14], D(3,0) [14] and
D(3,0) [21]. The standard deviation on a set of test images, determines how accurately
the two cameras have been calibrated, axis223m and axisp3364. m5 is the most accurate
model. Models m1-m4 (approximately) share the same standard deviation, although
models m4 and m5 only differ with one parameter. Our method instead decides m1 as
incorrect but m3 as a plausible model, still usable for metrology.
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Fig. 2. Using residuals computed from 56 sets of simulated 2D-2D correspondences,
we show the results for the incorrect D(1, 0) model (left) and the correct D(3, 0) model
(right). We sort the correspondence sets in ascending order, using the area of the 2D
points’ convex hull (coverage). The second, third and fourth rows show the outcome
of the KS [20], DAP [6] and SW [26] tests at level 5%. When the model is correct,
the standard deviation is low (first row), and our predicted variance follows the corre-
sponding empirical value. The KS test rejects images under an incorrect model, while
accepting images under the correct model. In contrast, [6] is too strict, while [26] is too
permissive.
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We observed the position error to lie within a small range of 0.03 pixels. This
corresponds to σd in (9).(iii) To simulate the Lidar, we add noise on the cor-
responding 3D points in all images. We transform the noise such that it lives
on the sphere with origin tc and radius ||tc||. On the sphere, the noise magni-
tude is dependent on tc, and in the vertical direction, the noise is always 90%
lower compared to the horizontal direction. This reweighing aims to simulate
the resolution in the Lidar array, and it replaces (7) and (8), which are used on
real datasets. This gives us the resolution aspect, which is used as explanatory
variables in the estimate, (11).

Fig. 3. Incorrect models can have small residual errors, but Godness-of-Fit testing
exposes them. Left: A distorted image from which the model is estimated. Middle:
Undistorted image using true model (black) and wrong model (grey) overlaid. Even
though the estimated model is incorrect, when detector errors are small the residual
errors are often small, hence simply checking the standard deviation of the residuals
is insufficient. Right: Outliers indicate model failure. Given known outlier-free corre-
spondences, deviations from the expected noise distribution expose incorrect models.

Results In Figure 2, we show the output of our method on models D(1,0) [14]
and D(3,0) [14] for a set of synthetic 2D-3D correspondences, generated under
the D(3,0) model. These are sorted according to the increasing spatial spread of
correspondences. The closer the points are to the image edge, the more they are
affected by the distortion (Figure 3). The first row in Figure 2 shows the empir-
ical and estimated standard deviations over all points per image, and rows 2-4
whether the scaled residuals are sufficient evidence to reject the null hypothesis
for three different tests. Given in the second row of Figure 2 is the output of the
KS test for both D(1,0) [14] and D(3,0) [14]. To the left, in the same row, our
method rejects the images with correspondences more uniformly spread over the
entire image at level 5% using D(1,0) [14]. Making the same test using a projec-
tion model with more parameters fits the data more accurately, as indicated by
both the low standard deviation and the test. We also test the scaled residuals in
the third and fourth rows using [6], and [26], respectively. While these tests are
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PnP Method DT
√

Var [ε] KS[20] DAP[6] SW[26]

EAPRD [14] D(1,0) 2.23 X X
EAPRD [14] D(3,0) 0.98 X
PNPRF [21] D(3,0) 1.05 X

Table 2. The results for the axis223m camera. For each PnP method, with distortion
type DT, we report the empirical standard deviation and whether H0 can be rejected
at level 5% using the KS, DAP or SW test.

PnP Method DT
√

Var [ε] KS[20] DAP[6] SW[26]

EAPRD [14] D(1,0) 1.71 X X
EAPRD [14] D(3,0) 1.47
PNPRF [21] D(3,0) 1.08

Table 3. The results for the axisp3364 camera. For each PnP method, with distortion
type DT, we report the empirical standard deviation and whether H0 can be rejected
at level 5% using the KS, DAP or SW test.

parametric, they test for any normal distribution. Compared to the proposed KS
test, this leads to false positives and negatives, see rows 3-4 of Figure 2. In the
second column, the stronger D(3,0) projection model is tested. In most images,
H0 can not be rejected as expected due to the simulated data conforming to
D(3,0) [14]. However, the output does not reveal the tests’ differences in this
case. Thus, [20] generally leads to more accurate decisions.

4.2 Lidar Measurements

Next, we compare our method using images from two real cameras, axis223m
and axisp3364, respectively, and a 3D point cloud from a Leica RTC360 scanner,
with semi-automatic calibration. The second camera offers lower-quality images
than the first, which is visible in Figure 4. There is also no verified annotation for
the cameras; in practice, there is none, and the camera can be inaccessible. The
cameras instead depict a scene such that their optical axes have a relatively small
angle to the 3D point cloud coordinate system’s z-axis, similar to the simulations
in Section 4.1.

Semi-automatic For semi-automatic calibration, we collect images for both
cameras using a checkerboard pattern. The pattern has 6× 6 saddle points. We
split the set of images and estimate the model parameters on the first set using
the Zhang method [30] implemented in [1]. Then, we calibrate using different
projection models where m5, in Table 1, achieves the lowest standard deviation
on the second set of images (test). A factor of almost 4 differs between the
accuracy of models m4 and m5. In Table 1, the number of model parameters
differs by one.

Without Camera Access We show in Tables 2 and 3 that D(1,0) [14] is
incorrect compared to D(3,0) [14] and D(3,0) [21] using the KS test on 24
manually annotated correspondences. Each of the annotated 3D points is visible
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Fig. 4. The first column shows two images of two cameras, axis223m and axisp3364,
respectively. In the second and third columns, the undistortion looks to be visually re-
moved for both D(1,0) [14], and D(3,0) [14]. Our method correctly detects D(1,0) [14]
as incorrect for both cameras (Tables 2 and 3). The undistorted images in the fourth
column are visually similar to their original, but this is not detected. For more details,
see Section 4.2.

in both cameras and projected to consistent features, e.g. corners. Similar to
simulation, we observe that the parametric tests contradict each other and are
thus infeasible for our application. While models m1 to m4, in Table 1, obtain
higher standard deviations using [30], models m1 and m3 are equvivalent to the
models used from [14] and [21], and thus there is possibility that m5 is overfitted.

Finally, we found that the computed distortion parameters of D(3,0) [21]
were all zero, shown in the rightmost column of Figure 4. To our knowledge, [21]
divides the xPnP problem into subproblems. In the subproblem that solves dis-
tortion, we can’t find a condition on θ preventing the normal equations from
giving the trivial solution. Thus, our method can not make the correct decision
to either reject H0 or not based on residuals from D(3,0) [21].

4.3 Structure-from-Motion

In this experiment, we use our proposed method on annotations computed from
a Structure-from-Motion (SfM) pipeline to get a broader insight into its effec-
tiveness. To this end, we use 1000 images from each scene of MegaDepth [18].
This dataset contains many scenes with 2D-3D correspondences and camera in-
trinsic and extrinsic parameters given. The SfM pipeline, COLMAP [24][25],
estimates the annotation parameters of the widely used benchmark for state-
of-the-art comparison. In the dataset, the assumed projection model, a simple
radial, models a single focal length, one distortion parameter, the distortion cen-
tre, rotation and translation. The histogram to the left in Figure 5 shows that
residuals are overall low. However, in 70 out of 100 images, our method rejects
the null hypothesis at level 5%. The two images in the middle and to the right, in
Figure 5, show when H0 can not be rejected at level 5% and when H0 is rejected
in favour of H1. We can thus assume mostly overfitted projection models in [18].
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Fig. 5. Left: Density plot of residuals from 1000 images in all scenes, on which the
annotation in MegaDepth depends. It is unlikely residuals will be high for images in [18]
measuring a good performance. However, our proposed method tests each image and
rejects the null hypothesis, H0, on 70 out of 100 images. Middle: Example of when H0

can not be rejected, and the simple radial projection model is suitable. Right: Example
of when our method rejects H0. As can be seen, e.g. on the flagpole to the right, the
images are distorted.

5 Conclusion

We suggested that metrology applications in forensic analysis use xPnP methods
and use our proposed method to validate the calibration without camera access.
The method formulation processes a single image, estimating a robust scaling
of each correspondence and tests if the scaled set of residuals is drawn from a
standard normal distribution. We demonstrate via qualitative and quantitative
experiments that the KS test is most suitable and provide further insight from
an extensive collection of annotated cameras.

Although we are sufficiently confident that the test can determine models as
incorrect with a small margin of error, the challenge remains to infer confidence
in the image measurements. A test is not a classification, and the p-value does not
imply measurement confidence. However, when rejection of the null hypothesis
is not possible at the acceptable error level, our error model explicitly provides
the expected measurement errors over the image. Depending on the number of
correspondences, we can get local estimates of expected measurement error from
our assumptions of normally distributed residuals. Therefore, our method is a
useful tool for xPnP camera calibration.
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