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Abstract In this paper we address the problem of establish-
ing a computational model for visual attention using coop-
eration between two cameras. More specifically we wish to
maintain a visual event within the field of view of a rotating
and zooming camera through the understanding and model-
ing of the geometric and kinematic coupling between a static
camera and an active camera. The static camera has a wide
field of view thus allowing panoramic surveillance at low
resolution. High-resolution details may be captured by a sec-
ond camera, provided that it looks in the right direction. We
derive an algebraic formulation for the coupling between the
two cameras and we specify the practical conditions yield-
ing a unique solution. We describe a method for separating
a foreground event (such as a moving object) from its back-
ground while the camera rotates. A set of outdoor experi-
ments shows the two-camera system in operation.

Keywords Video surveillance · Visual attention ·
Stereo vision · Camera calibration · Kinematic
calibration · Pan–tilt camera head

1 Introduction

In this paper we address the problem of establishing a
computational model for visual attention using cooperation
between two cameras. Attention mechanisms may generally
be defined as processes that allocate significant computing
power to one part or several parts of an image, where
information relevant to the task at hand is likely to be
found. Therefore, attention processes should encapsulate
both top–down and bottom–up visual processes such as (i)
the selection of a visual event of interest, (ii) the detection
of image features which characterize the selected event,
(iii) mechanisms for maintaining these features in the visual
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field of view, as well as (iv) further analysis such as recogni-
tion and interpretation. In particular, we address the problem
of maintaining a visual event within the field of view of a
camera and the approach that we take consists of monitoring
an active camera through the understanding and modeling of
the coupling between an active camera and a static camera.

Consider for example the case of a pedestrian or a bi-
cycle rider evolving in an urban environment. They may be
viewed as static objects in a single image. Nevertheless, in
order to take into account the deformable/articulated nature
of their shape and motion as well as their time evolution, it
is crucial to observe them in videos and therefore consider
them as dynamic objects.

Traditional visual attention systems use either an active
camera, a binocular active system, or several static cameras.
An active camera may rotate, translate, and zoom-in and -out
in order to maintain the object of interest within its field of
view and in order to compensate for changes in the object’s
appearance [1–4]. Binocular devices use controlled camera
movements for gaze holding – the two optical axes intersect
and produce a zero-disparity surface [5, 6]. Other systems
use several static cameras [7]. Static camera configurations
have been thoroughly studied from a geometrical point of
view [8].

Both single and multiple camera systems have advan-
tages and disadvantages. A single camera is simpler to op-
erate and its motion can be easily controlled with motors.
However, it cannot acquire depth information that is useful
for scene understanding. Another drawback is that it cannot
provide low- and high resolution simultaneously. Multiple-
camera systems have the advantage of being able to acquire
potentially richer information provided that the image regis-
tration (or correspondence) problem is solved. Active binoc-
ular heads try to combine the advantages of controlled mo-
tions and of multiple-camera geometry.

In this paper we propose an innovative solution that com-
bines the advantages of both static and active cameras and of
both low- and high-resolution images. One camera is fixed
and has a wide field of view, thus allowing surveillance of
a wide area in terms of both width and depth of its field of
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view. Therefore, the image associated with this camera pro-
vides a panoramic view while it cannot capture scene details.
These scene details are captured by another camera mounted
onto a motor-driven pan and tilt device. Therefore, this cam-
era is able to gaze in a specific direction with a specified
focal length. To the best of our knowledge, the only previ-
ous attempt to combine static and active cameras for visual
attention and surveillance is described in [9]. With respect
to [9] which describes a general philosophy and a system
architecture, we analyze and characterize in detail the fine
geometric and mechanical coupling between a static and a
rotating camera.

In practice, the two-camera video system proceeds as
follows. A scene event such as a moving person is first de-
tected and selected using the first (static) camera. Since this
camera is static and its field of view covers the whole scene,
an event will appear in its associated image sequence as
a relatively small object. Well-understood and widely de-
veloped methods (optical flow, image differentiation, back-
ground subtraction, etc.) may be used to detect an event oc-
curring in such a region and track it over time. However,
the resolution associated with this image is not sufficient
to properly recognize and interpret the event. The second
camera must be controlled in order to dynamically adjust its
pan, tilt, and zoom such that the moving object remains in its
field of view and such that the object projects onto the image
plane at constant size and resolution. Ideally, one would like
that the camera’s degrees of freedom (pan, tilt, and zoom)
compensate for changes in appearance due to both view-
point and depth variations. Once the object of interest has
been properly “captured” by the second camera, the latter
should be able to track the object using a visual servoing
loop, which controls the camera’s rotations and zoom set-
tings [10].

Such a camera system raises several interesting issues
and questions from methodological, computational, and
practical points of view. The traditional approach for cou-
pling two or several static cameras based on projective ge-
ometry and its associated algebraic and numerical tools is
not sufficient. Since one of the cameras is active, both the
geometrical and the mechanical couplings must be consid-
ered. Another crucial issue that must be addressed is the
stereo correspondence problem. With two static cameras the
correspondence problem does not have, in general, a good
practical solution because of the inherent ambiguity associ-
ated with image-to-image matching. With an active stereo
system and under the assumption that a specific object must
be selected and tracked, the correspondence problem be-
comes tractable from a computational point of view. More-
over, stereo correspondence is required only for bootstrap-
ping the attention mechanism. Finally, cooperation between
a low-resolution tracker performed with a static camera and
a high-resolution tracker performed with an active camera
must be properly defined and modeled.

This paper has the following original contributions. We
derive a mathematical expression for the two-camera cou-
pling, where one camera is static and the other camera ro-

tates, under the form of a set of polynomial equations. We
show that, in the general case, there may be several solu-
tions for the pan and tilt angles and that these solutions are
parameterized by the a depth parameter (the depth from the
static camera to the scene event). We consider the special
case where the pan and tilt rotational axes are mutually or-
thogonal. We show that with a practical camera setup there
is a unique solution for the pan and tilt values. We describe
a practical solution for achieving gaze control with a rotat-
ing camera and for separating a moving object from its static
background. Once an initial solution is found, gaze control
is reduced to the tracking of an event in the static image and
to the updating of the pan and tilt angle values.

The remainder of this paper is organized as follows.
Section 2 describes and analyses in detail the geometric

and kinematic coupling between a static camera and a rotat-
ing camera. The coupling model allows the rotating camera
to gaze onto an event selected in the static camera. We an-
alyze both the general case and a simplified pan–tilt model.
We derive the number of algebraic solutions.

Section 3 describes a method for dynamically separating
an event (a moving object) from its background by estimat-
ing the projective mapping associated with a camera under-
going rotational motions. We describe a method for robustly
estimating this mapping by aligning the gray-levels/colors
of image pixels which correspond to the background. This
transformation is then used for warping the previous and
next frames onto the current frame and for detecting event
pixels, i.e., with an apparent image motion that is different
than the apparent background motion.

Section 4 provides an overview of the practical system
that is implemented together with some implementation de-
tails: camera, stereo, and kinematic calibration, as well as
depth estimation with a static–active camera pair. A com-
plete set of experiments is described in detail as well.

Appendices A–C provide a detailed description of the
kinematic model being used to describe the pan and tilt de-
vice, as well as a method for calibrating the fixed parameters
of this zero-reference kinematic model.

2 The coupling between a static and a rotating camera

In this section we consider the geometric and kinematic as-
pects of the coupling between fixed and rotating cameras.
From a geometric point of view, the two cameras act as a
stereoscopic device, which can be described using the epipo-
lar constraint within a projective geometry framework. From
a mechanical point of view, the rotating camera is mounted
on a pan and tilt mechanism, which has an associated kine-
matic structure. In order to describe the latter, we will adopt
a zero-reference kinematic model.

In this section we establish the formal link between a
static camera and a rotating camera based on the epipolar
geometry (which holds at each time instant) and the kine-
matic model associated with a pan and tilt mechanism. First,
we introduce the point reconstruction equations. Second, we
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consider a pan and tilt kinematic model in its most general
form. Third, we analyze the case of a simplified pan and tilt
model, i.e., the pan and tilt rotation axes are mutually or-
thogonal.

2.1 Two-camera geometry

Let us denote by P1 and P2 the projection matrices associ-
ated with the two cameras. A 3-D point M , represented in
projective space by a four-vector M = ( X Y Z 1 )�, is re-
lated to its image projections m1 and m2 by:

λ1m1 = P1 M (1)

λ2m2 = P2 M (2)

The non null scalars λ1 and λ2 indicate that the projec-
tive equality is defined up to a scale factor. They may be
interpreted as the projective depths along the lines of sight
from the centers of projection through the image points m1
and m2 with projective coordinates m1 and m2. For pinhole
cameras, the 3 × 4 projection matrices have the following
parameterization:

P1 = K1 � I 0 � (3)

P2 = K2 � R t � (4)

The 3 × 3 matrices K1 and K2 have the intrinsic camera
parameters as entries (see the following expression of K2).
The rotation R and the translation t describe the orientation
and position of the second camera with respect to the first
camera. Without loss of generality we will assume that the
first camera is calibrated, therefore matrix K1 is known. The
second camera is calibrated as well up to its focal length f ,
which may or may not be known and which is allowed to
vary. The expression of K2 is:

K2 =



k f 0 uc
0 f vc
0 0 1


 =




k 0 uc
0 1 vc
0 0 1







f 0 0
0 f 0
0 0 1


 = K′

2D f

In order to eliminate the known camera parameters from
the equations, we use the substitutions m1 = K1n1 and
m2 = K′

2n2. By combining Eq. (1) with Eq. (3) we obtain a
simple expression for the coordinates of M:

M =
(

λ1n1
1

)

By combining Eq. (2) with Eq. (4) and by substituting M we
obtain:

λ2n2 = D f (λ1Rn1 + t) (5)

This is the projective epipolar relationship between the
camera coordinates n1 and n2 (of m1 and m2), the focal
length of the active camera f , and the relative position and
orientation of the active camera with respect to the static
camera, t and R. With the notation n2 = ( x2 y2 1 )� we
further eliminate λ1 by dividing the first and second vector

components, ()1 and ()2, with the third vector component,
()3:

x2 = f (λ1Rn1+t)1
(λ1Rn1+t)3

y2 = f (λ1Rn1+t)2
(λ1Rn1+t)3

(6)

Without the loss of generality we seek a solution that config-
ures the stereo system such that the scene point M is viewed
in the center of the image associated with the active camera:
n2 = ( 0 0 1 )�. The previous equations become:

(λ1Rn1 + t)1 = 0

(λ1Rn1 + t)2 = 0
(7)

Problem formulation. Given a 3-D point M which is ob-
served in the static camera’s image at m1 with camera co-
ordinates n1, we want to find the position and orientation
of the active camera such that M projects onto the active
camera’s image center.

In order to solve this problem we must parameterize the
rotations and translations of the active camera as a function
of (i) the relative position of the active camera with respect
to the static camera and of (ii) the kinematic model associ-
ated with the active camera’s pan and tilt mechanism. There-
fore, we must establish the link between the epipolar geom-
etry constraint and the kinematic model constrains. We will
adopt the zero-reference kinematic model for the pan–tilt de-
vice. This model allows the user to select a zero-reference or
a docking reference for the kinematic chain. We solve for a
general pan–tilt kinematic model and develop a close-form
solution for a simplified pan–tilt model. The existence of a
unique solution allows to safely apply numerical methods to
the general case.

We denote by T the 4 × 4 homogeneous matrix:

T =
[

R t
0� 1

]
(8)

We also denote by T0 the docking or reference position
of the active camera. From a practical point of view and for
stereo calibration purposes, this reference position is cho-
sen such that the two cameras have a common field of view.
Let Q describe the rigid and constrained motion undergone
by the active camera from its docking position to a current
position. From Fig. 1 one can notice that the following rela-
tionship holds:

T = QT0 (9)

2.2 General pan–tilt model

Matrices Q and T0 have the same mathematical structure, al-
though the former describes a kinematically constrained mo-
tion while the latter describes a static relationship between
two Cartesian frames. Matrix Q describes the motion under-
gone by a pan and tilt mechanism. In order to describe such
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Fixed 
camera (1)
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λ
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Depth (    )λ
2

Active camera (2) in
general pan-tilt position

Active camera (2) in
zero-reference pan-tilt position

Fig. 1 The active camera has a docking or a zero-reference position.
Both the stereo (matrix T0) and kinematic (matrix Q) calibrations are
performed with respect to this reference position

a mechanism, we will adopt the well-known zero-reference
kinematic model. The latter is described in many textbooks
such as [11–13]. In its most general form, this motion can be
decomposed as follows (see Appendix A):

Q = Q2(α, α0)Q1(β, β0, α0) (10)

where Q1 and Q2 are one-dimensional Lie groups each de-
scribing a rotation: α and β are the pan and tilt angles pa-
rameterizing these motions, with α0 and β0 being the pan
and tilt values associated with the zero-reference position.
Each one of these transformations can be written as:

Q1 =
[

R1 t1

0� 1

]

= I4×4 + sin(β − β0)Q̂1 + (1 − cos(β − β0))Q̂2
1 (11)

Matrix Q̂1 describes the tangent operator associated with
the rigid motion; It is composed of a skew-symmetric matrix
R̂1 and a translational velocity vector t̂1 and writes as:

Q̂1 =
[

R̂1 t̂1

0� 0

]
(12)

It is worth noticing that Q−1
1 ((β−β0)) = Q1(−(β−β0))

and from Eq. (11) we obtain that the tangent operator may
be estimated from a single motion:

trace (Q1) = 2(1 + cos(β − β0)) (13)

and

Q̂1 = 1

2 sin(β − β0)

(
Q1 − Q−1

1

)
(14)

By substituting Eq. (12) into Eq. (11) we obtain:

R1 = I3×3 + sin(β − β0)R̂1 + (1 − cos(β − β0))R̂2
1 (15)

t1 = sin(β − β0) t̂1 + (1 − cos(β − β0))R̂1 t̂1 (16)

There is a similar expression for Q2. Equation (9) may
be written as:

R = R2R1R0 (17)

t = R2R1 t0 + R2 t1 + t2 (18)

Equation (7) becomes (the subscripts ()1 and ()2 denote
the first and second vector components, respectively):

(λ1R2R1R0n1 + R2R1 t0 + R2 t1 + t2)1 = 0

(λ1R2R1R0n1 + R2R1 t0 + R2 t1 + t2)2 = 0
(19)

This is a set of two equations with three unknowns: α, β,
and λ1. We recall that we want to determine the pan and tilt
angles such that the event detected at position m1 in the first
image (with camera coordinates n1) appears at position m2
(with camera coordinates ( 0 0 )) in the second image. The
unknown λ1 is the depth of the observed scene point with
respect to the fixed camera. In order to be able to find a so-
lution for the pan and tilt angles we must specify this depth.
The practical method for estimating the latter is described in
detail in Sect. 4.2. From now on, we will assume that λ1 is
known.

In practice, it will be more convenient to consider the
initial set of three equations, i.e., Eq. (5). By substituting
Eqs. (17) and (18) into this equation and with p = λ1R0n1+
t0 we obtain:

R1 p + t1 + R�
2 t2 = R�

2




0
0
λ2


 (20)

Vector p denotes the coordinates of the observed 3-D
point M in the zero-reference camera frame – the docking
position of the active camera. From the previous equations
it can be observed that R1, t1, R2, and t2 are parameter-
ized by the known tangent operators (see Appendix C) and
by the three unknowns – the pan and tilt angles and the
depth parameter λ2. Therefore, we obtain three equations in
cos(β − β0), sin(β − β0), cos(α − α0), sin(α − α0), and
λ = λ2. With the following standard substitutions:

sin(α − α0) = 2 tan (α−α0)
2

1 + tan2 (α−α0)
2

= 2tα
1 + t2

α

cos(α − α0) = 1 − tan2 (α−α0)
2

1 + tan2 (α−α0)
2

= 1 − t2
α

1 + t2
α
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we obtain three polynomial equations in three unknowns:
tα , tβ , and λ. It is possible to eliminate λ as an unknown be-
tween the second and third equations, at the price of increas-
ing the degree of the resulting polynomials. In the general
case, it will be difficult to analyze the number of admissi-
ble solutions of such a set of polynomials [14]. Although
in practice these polynomials will be solved using numeri-
cal methods, such as the Newton method for finding roots of
sets of polynomials, it is crucial to be able to state in advance
the exact number of practical solutions.

We denote these sets of solutions by (α(i), β(i), λ(i)).
They are in the intervals [α0 − π, α0 + π], [β0 − π, β0 + π]
and we must have λ > 0. So far, we considered the most
general case. We analyze in detail a simplified pan–tilt de-
vice and we show that in this case there is a unique solution.
We conclude that the general case also admits a unique so-
lution.

2.3 Simplified pan and tilt model

In the case where the pan and tilt axes are mutually orthog-
onal, the kinematic model of the device is simplified, as de-
scribed in Appendix B. This simpler kinematic model al-
lows an algebraic analysis of the number of solutions asso-
ciated with the inverse kinematics of the pan and tilt camera.
Moreover, and for the sake of this analysis, one may choose
α0 = β0 = 0. The matrices become:

Q1 =




cos β 0 sin β t1
1

0 1 0 t1
2− sin β 0 cos β t1
3

0 0 0 1


 (21)

Q2 =




1 0 0 t2
1

0 cos α − sin α t2
2

0 sin α cos α t2
3

0 0 0 1


 (22)

It follows that Eq. (20) becomes:



cos β 0 sin β

0 1 0

− sin β 0 cos β







p1

p2

p3


 +




t1
1

t1
2

t1
3




+



1 0 0

0 cos α sin α

0 − sin α cos α







t2
1

t2
2

t2
3


 =




0

λ2 sin α

λ2 cos α




which yields the following equations in tan β
2 = tβ , tan α

2 =
tα , and λ = λ2:
(
t1
1 + t2

1 − p1
)

t2
β + 2p3 tβ + (

t1
1 + t2

1 + p1
) = 0

(
t1
2 − t2

2 + p2
)

t2
α + 2

(
t2
3 − λ

)
tα + (

t1
2 + t2

2 + p2
) = 0(

1 + t2
α

)((
t1
3 − p3

)
t2
β − 2p1 tβ + p3 + t1

3

)

+ (
1 + t2

β

)((
λ − t2

3

)
t2
α − 2t2

2 tα − (
λ − t2

3

)) = 0

The first equation has two real solutions for tβ . Indeed,
its discriminant is � = (p3)

2 + (p1)
2 − (t1

1 + t2
1 )2. Ob-

viously, the coordinates of vector p have larger values than
t1
1 + t2

1 . We recall that vector p represents the coordinates
of the observed point M in the zero-reference camera frame.
Therefore, � > 0 and there are two solutions for β in the in-
terval [−π, π]. Only one of these solutions can be achieved
in practice, i.e., when the observed point lies in front of the
camera. To conclude, the first equation always admits two
solutions and only one solution is achievable in practice.

The second equation has two real solutions for tα as well.
Indeed its discriminant is � = (t2

3 −λ)2 −(p2)
2 +(t2

2 − t1
2 )2.

Recall that λ represents the depth from the camera to the
observed point and in practical configurations λ � t2

3 and
λ � p2. Therefore, this equation admits two solutions as
well and with the same reasoning as given earlier we con-
clude that only one solution is achievable in practice.

3 Event/background separation

In the previous section we described the geometric and me-
chanical coupling allowing the active camera to rotate such
that an event detected and tracked with the static camera may
be visualized at a higher resolution. In order to be able to an-
alyze this event in more detail, one must properly isolate it
from the background.

In the past, event background separation has been mainly
addressed with static cameras. When a camera moves, the
problem is more difficult because one has to distinguish be-
tween camera motion (egomotion) and event motion. Nev-
ertheless, whenever the camera undergoes a pure rotational
motion, i.e., when the center of projection lies on the axis of
rotation, it is possible to separate egomotion from event mo-
tion by assuming that the background pixels are transformed
from one image to another by a 2-D projective mapping [15].

The motion of the pan and tilt camera is described by
Eq. (10). In general, this does not guarantee that the cam-
era undergoes a pure rotation around its center of projection
because of the mechanical offsets. In practice, the latter are
small compared to the distance from the camera to the back-
ground and therefore the background may well be viewed as
a plane at infinity [15].

Let mt−1
2 and mt

2 describe the homogeneous coordinates
of an image point at times t − 1 and t . The subscript 2 indi-
cates that we deal with the active camera. One can apply Eqs.
(3) and (4) to the active camera and assume that the trans-
lational part of the motion is null. We obtain the following
well-known formula for cameras undergoing pure rotation:

mt
2 = K2Rt,t−1

2 Rt,t−1
1 K−1

2 mt−1
2 (23)

where Rt,t−1
2 Rt,t−1

1 models the rotation of the active camera.
We denote this mapping by:

Ht,t−1 = K2Rt,t−1
2 Rt,t−1

1 K−1
2 (24)
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and the problem is to estimate the 3 × 3 matrices H as the
camera rotates.

The relationship between mt−1
2 and mt

2 given earlier is
valid for static scene points. In the past, this was used in
combination with an outlier rejection technique in order to
segment the image into two layers: a static layer correspond-
ing to a static background and a dynamic layer correspond-
ing to moving objects – a foreground. However, such a strat-
egy is generally based on robust statistical methods applied
to a single rotating camera.

With the two-camera configuration being used here, the
segmentation algorithm is greatly simplified. Indeed, mov-
ing objects are detected as events in the image associated
with the static camera. The camera coupling allows to pre-
dict the main event under investigation, to place the sec-
ond camera, and to adjust its settings, such that this event
is centered with respect to the active camera coordinate
frame. Therefore, a major advantage associated with this
two-camera configuration is that a robust statistical method
is not required. This is best shown in Fig. 2.

The separation between an event and its background is
therefore based on (i) aligning the images based on the static
background and (ii) on comparing them, pixel by pixel. The
event detection, performed with the low-resolution static im-
age, bootstraps this process.

Fixed
camera 

Active
camera

Event

Foreground

Background

Fig. 2 The coupling between the cameras allows one to associate fore-
ground and background regions with the active camera’s image. The
event, which is predicted in the static camera at low resolution, must
lie in the foreground region associated with the active camera’s image
sequence

From now on, we consider the images associated with
the active camera and we assume that these images are seg-
mented into two regions: foreground F and background B.
In order to find the homography that aligns the backgrounds
between times t and t − 1, the following error must be min-
imized (for the sake of simplicity we drop the subscript 2):

Emin = min
hi

∑
m∈B

‖I t−1(�(mt−1))

− I t (�(Ht,t−1mt−1))‖2 (25)

The function �( ) denotes the non-linear mapping from
homogeneous to Euclidean coordinates of m, �(m1, m2,
m3) = (m1/m3, m2/m3)

�. Various methods were devel-
oped in the past for solving this non-linear minimization
problem [16, 17, 18].

Once such a homography is estimated, it optimally
aligns the backgrounds. The statistics associated with the
actual minimization result (Emin) allows one to associate
a probability of background with each pixel. These statis-
tics can be improved if a background image is incrementally
built as is done in [18]. Eventually, one may use a decision
rule in order to decide whether a pixel belongs to the back-
ground or to the foreground [19]. In practice, such an ap-
proach will not perform as well as expected simply because
background and foreground image regions may have similar
grey-level or color values.

Therefore, to further refine the foreground area we pro-
ceed by pixel-to-pixel comparison between three images at
times t − 2, t − 1, and t . The difference between two pixels
corresponding to two aligned images writes:

Dt,t−1(�(mt−1))

= (I t−1(�(mt−1)) − I t (�(Ht,t−1mt−1)))2 (26)

There is a similar expression for Dt−1,t−2(�(mt−2))
where the mapping mt−1 = Ht−1,t−2mt−2 holds for the
background. As already mentioned, statistics associated
with the minimization of Eq. (25) allows the estimation of
a threshold s such that the following simple decision rule is
used: A pixel mt belongs to the foreground if:

Dt,t−1(�(mt−1)) ≥ s and Dt−1,t−2(�(mt−2)) ≥ s

4 Methodology, implementation, and experiments

High-quality pan–tilt cameras available today can achieve a
precision of about 0.05◦ in pan and tilt. The precision to be
reached in practice, using a calibrated camera setup, such as
the one described in this section, is of the order 0.1◦. Con-
sider, for example, a field of view with an aperture angle of
about 2◦. At 100 m the width of the field of view is 3.5 m and
therefore the precision is of the order of 0.2 m. This is suffi-
cient to gaze and zoom onto a football player, onto a bicycle,
onto a pedestrian, or onto a car in a typical traffic scenario.
This overall precision – 0.1◦ – can be achieved only if the
system is properly calibrated.
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Another important ingredient of such a two-camera de-
vice is the control of the active camera such that it contin-
uously looks towards the object of interest and maintains
its gaze such that this object appears nearby its image cen-
ter, even if the object’s appearance changes, if its depth
changes, and/or if the object is partially occluded. This pro-
cess requires three steps: off-line calibration, initialization,
and gaze control.

The two-camera visual attention system proceeds as fol-
lows.

• Off-line calibration: see Sect. 4.1.
• Initialization:

– A scene object is detected and tracked over time (au-
tomatically, semi-automatically, or manually) using
the static camera;

– The active camera rotates such that this scene ob-
ject falls within its field of view and the depth of this
scene object is estimated, i.e., Sect. 4.2;

– Pan and tilt values are estimated from scratch by
solving a set of three polynomials associated with the
inverse kinematics of the pan-and-tilt device and the
active camera is rotated accordingly;

• Gaze control:

– The pan and tilt angle values estimated at time t − 1
are used as initial guesses to find their values at time
t . Notice that the depth information is maintained
constant and the consequences of this choice are ex-
plained later.

– Images at times t −1, t , and t +1 are used to separate
the moving object from the background.

Notice that during the gaze-control stage of the algo-
rithm the depth associated with the scene object is not up-
dated: Instead, its previously estimated value (during the ini-
tialization stage) is used. As a consequence, the object will
not appear at the image center of the active camera as its
depth varies over time.

4.1 Calibration of the two-camera device

The camera cooperation method described in this paper ef-
fectively works in practice only on the premises that the ge-
ometric and kinematic parameters of the two-camera device
are properly estimated. This is performed by the following
steps:

1. Intrinsic camera calibration. The intrinsic parameters of
both cameras, i.e., K1 and K2 in Eqs. (3) and (4), are
calibrated using a classical camera calibration process as
described in detail in [20].

2. Stereo calibration. When the active camera is in its dock-
ing or zero-reference position, the two cameras may be
viewed as a standard stereoscopic pair characterized ei-
ther by the rotation and translation between the two cam-
era frames (stereo calibration) or by the epipolar geom-
etry (weak stereo calibration). The method described in

[21] allows for an accurate stereo calibration by moving
a 3-D pattern in front of the cameras. Eventually, the ma-
trix R0 and the vector t0 characterizing the camera setup
in its docking position are evaluated.

3. Kinematic calibration. The active camera is mounted
onto a pan and tilt device – two coupled rotational mo-
tions. Kinematic calibration consists in estimating the
tangent operators associated with these constrained mo-
tions, i.e., Q̂1 in Eq. (11). The pan–tilt kinematic model
is formally described in Appendix A. The kinematic cal-
ibration procedure is described in detail in Appendix B.

4.2 Depth estimation

The method described in Sects. 2.2 and 2.3 returns a unique
set of values for the pan and tilt angles, provided that an
estimation of the depth from the static camera to a scene
object is available, λ1. In this section we describe a practical
technique for estimating the depth to a scene object. This
involves the following steps:

1. Detect this object in the static image and locate its center,
say m1;

2. Control the active camera such that it looks in the right
direction and therefore the epipolar line associated with
m1 is visible in its image;

3. Search along this epipolar line in order to find the best
match of m1, say m2, and estimate the depth to the scene
object.

Let us suppose that this object is detected and located in
the fixed image and let m1 with camera coordinates n1 be the
image of its center. The scene object lies somewhere along
the line of sight associated with this image point, i.e., Fig. 3.

Let λmin and λmax be the minimum and maximum ex-
pected depth values along this line of sight such that λmin ≤
λ1 ≤ λmax. We associate two points with these depth val-
ues, Mmin and Mmax. They project onto the active camera’s
image plane at mmin and mmax. These image-plane points
lie on the epipolar line associated with m1. We seek a posi-
tion, an orientation, and a focal length for the active camera
such that the epipolar line segment between mmin and mmax
is actually visible in the image.

We constrain this epipolar line segment to be a horizon-
tal image line passing through the image center, i.e., the co-
ordinates of mmin and mmax verify: nmin = (c, 0, 1)� and
nmax = (−c, 0, 1)�, where 2c corresponds to the image
width. The image coordinates of these points verify Eq. (6):

c = f
(λminRn1 + t)1

(λminRn1 + t)3
0 = f

(λminRn1 + t)2

(λminRn1 + t)3

−c = f
(λmaxRn1 + t)1

(λmaxRn1 + t)3
0 = f

(λmaxRn1 + t)2

(λmaxRn1 + t)3

In order to solve these equations and estimate R, t , and
f , we recall that the rotation matrix and the translation vec-
tor can be parameterized by the pan and tilt angles α, β
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λ min
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1

M
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camera
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Fig. 3 In order to estimate the depth to the point M , the active camera
must see this point. The degrees of freedom of the active camera – pan,
tilt, yaw, and focal length – are estimated such that the line of sight
associated with image point m1 is seen in the active image plane

and by the stereo calibration parameters R0 and t0, e.g.,
Eqs. (17) and (18). Nevertheless, this parameterization does
not allow proper alignment because the active camera cannot
rotate around its optical axis. For this reason, we introduce a
third rotation allowing a virtual rotation of the active camera
around its z-axis, R3(γ ).

Therefore, there are four equations in four unknowns:
f , α, β, and γ . A solution can be found using the Newton’s
method for solving a set of polynomials. Notice that for each
point-to-point correspondence and for a given depth value,
there is a unique solution in α and β. Hence, one can use
the known triplets n1, nmin, λmin and n1, nmax, λmax to find

Fig. 4 This figures shows 8 frames out of a 550-frame image sequence available with the static camera. The second frame shows the trajectory
of the moving person

initial values for the pan and tilt angles and guarantee that
the active camera gazes in the right direction.

The active camera is controlled to zoom and rotate in
order to reach the solution found earlier, up to a rotation
γ around its optical axis. Eventually, standard stereo tech-
niques are applied in order to find the best match along
the epipolar line and to estimate the depth to the scene
object.

4.3 Experiments

A full set of experiments is summarized through Figs. 4–9.
The stereo-baseline between the static and active cameras is
of the order 1 m. The cameras observe an outdoor environ-
ment. The frames that are shown correspond to 8 samples
out of a 550-frame image sequence.

In the first example (Figs. 4–6) the object of interest is
a pedestrian. During the initialization phase, this object is
first detected in the image associated with the static cam-
era. Given minimum and maximum depth estimates (from
the static camera to that person), the active camera rotates
and zooms such that the person falls within its field of view.
Since the camera couple is calibrated, it is possible to pre-
dict an epipolar line, to search for a match along this line,
and to estimate the depth from the pedestrian to the static
camera.

The pan and tilt values allowing to place the person’s
center of gravity at the image center are estimated and the
active camera’s mechanism is controlled to actually place
the person in its center. A region of interest is defined around
the moving object. Notice, however, that the pedestrian is
not displayed at the image center. This is because there is
an error in the depth estimate. The pan and tilt values are
computed based on a depth estimation that is different than
the true depth value.

It is worth noticing the behavior of the system in the
presence of occlusions and of missing data. The pedestrian
is first occluded by a car, then appears, and then walks
outside the field of view of the camera, turns, and comes
back. Instead of these disturbances, the gaze of the active
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Fig. 5 The output of the active camera after gaze control

Fig. 6 The foreground pixels extracted from the sequence shown in the text

Fig. 7 A second example showing eight frames associated with the active camera

camera is correctly controlled. Whenever the object disap-
pears from the field of view of the static camera, the active
camera tracks the moving object using the event/background
separation method outlined earlier.

In the second example (Figs. 7–9) the object of interest
is a bicycle rider. Notice that the object is properly tracked
in spite of partial occlusions by surrounding objects. In or-
der to assess the quality of homography estimation between

consecutive images in the sequence, we removed the fore-
ground pixels and built a “foreground” image sequence, as
shown in Fig. 9.

From a more practical point of view, the size of the im-
ages is 640 × 480. The focal length of the static camera
is of 500 pixels. Event/background separation operates on
320 × 240 images. The whole two-camera system runs at 10
frames per second on a 1.7 GHz processor.
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Fig. 8 The result of foreground detection applied to the second example

Fig. 9 The foreground pixels were removed from the image sequence and replaced by background using the image-to-image homographies

5 Conclusion

In this paper we addressed the problem of coupling two cam-
eras in order to achieve visual attention – controlling a cam-
era to gaze in a selected direction. The first camera is static
and has a wide field of view. Therefore, it is able to capture,
at low resolution, such events as moving objects. The second
camera is mounted onto a rotating device with 2 degrees of
freedom. Moreover, it has a narrow field of view–of the order
2◦. Therefore, it is able to provide a high-resolution image
of a scene object, provided that the latter falls within its field
of view.

We analyzed in detail the geometric and kinematic cou-
pling between a static camera and a rotating camera. We de-
rived a solution for this coupling both for a general kine-
matic mechanism and for a simpler pan–tilt model. We
showed that under the practical setup that we used, there is
a unique solution allowing to rotate the camera such that it
gazes towards an object scene. This solution is parameter-
ized by a depth parameter (the distance from the static cam-
era to the object) and we described a practical solution to
estimate this depth.

Once the object of interest lies along the active cam-
era’s optical center, a gaze-control loop is activated in or-

der to estimate the camera’s rotational degrees of free-
dom. Moreover, the system is able to use event detection
(performed with the static camera) in order to facilitate
event/background segmentation performed with a rotating
camera.

The camera cooperation principle developed in this pa-
per could easily be generalized to several rotating cameras.
Therefore, multiple moving objects detected with the static
camera could be handled separately by multiple rotating
cameras.

The vast majority of visual surveillance and visual atten-
tion systems use a single camera. Cooperation between static
and active cameras is an essential step forward allowing to
rapidly analyze an event at low resolution, and to switch to
high resolution if further recognition and interpretation steps
are necessary.

Appendix A: The pan–tilt kinematic model

In this appendix we formally define the rotational mechanism associ-
ated with the active camera. First, we consider the most general kine-
matic model. We adopt the zero-reference kinematic representation.
The angle associated with the “tilt” rotation is denoted by β. The an-
gle associated with the “pan” rotation is denoted by α. The kinematic
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chain is composed of five Euclidean frames and four rigid transforma-
tions between these frames, see Fig. 10:

• Frame #5 is attached to a fixture, it is equivalent to the “base” of
the device;

• Frame #4 is a moving frame rotating around frame #5. This tilt
rotation is denoted by T1, which is a 4 × 4 homogeneous matrix
denoting a rigid transformation;

• Frame #3 is rigidly attached to frame #4 through the fixed trans-
formation L1;

• Frame #2 is a moving frame rotating around frame #3. This pan
rotation is denoted by T2;

• Frame #1, or the camera frame, is rigidly attached to frame #2
through the fixed transformation L2.

The coordinates of the physical point M (observed by the cam-
era) can be written in camera coordinates, M(1), as well as in fixture
coordinates, M(5). Obviously, we have:

M(1)(α, β) = L2T2(α)L1T1(β)M(5) (A.1)

The same formula holds for a docking position, which is referred to
as the zero-reference and is characterized by fixed values for the two
angles:

M(1)(α0, β0) = L2T2(α0)L1T1(β0)M(5) (A.2)

By eliminating M(5) between these two equations and by properly
adding some dummy transformations, we obtain:

M(1)(α, β)

= L2T2(α)T−1
2 (α0)L

−1
2 L2T2(α0)L1T1(β)T−1

1 (β0)

× L−1
1 T−1

2 (α0)L
−1
2 M(1)(α0, β0)

= L2T2(α − α0)L
−1
2︸ ︷︷ ︸

Q2

× L2T2(α0)L1T1(β − β0)L
−1
1 T2(−α0)L

−1
2︸ ︷︷ ︸

Q1

M(1)(α0, β0)

This is the zero-reference kinematic model of the active camera,
i.e., Eq. (10):

M(1)(α, β) = Q2(α, α0)Q1(β, β0, α0)M(1)(α0, β0) (A.3)

The reference frames have been appropriately defined such that
(without the loss of generality) the transformations T1 and T2 can be
written in a canonical form, i.e., rotation around the local z-axis:

T1(β) =



cos β − sin β 0 0
sin β cos β 0 0

0 0 1 0
0 0 0 1


 (A.4)

These matrices form a one-dimensional Lie group with T−1
1 (β) =

T1(−β). Therefore, from the previous equations we obtain the follow-
ing expressions for Q2 and Q1:

Q2(α, α0) = L2T2(α − α0)L
−1
2 (A.5)

Q1(β, β0, α0) = L2T2(α0)L1︸ ︷︷ ︸
U1

T1(β − β0) L−1
1 T−1

2 (α0)L
−1
2︸ ︷︷ ︸

U−1
1

(A.6)

Since matrices Qi and Ti are related by similarity transformations, it
follows that both Q1 and Q2 form one-dimensional Lie groups as well.
It is well known [11] that these groups can be parameterized using their
Lie algebra and their angle of rotation, i.e., Eq. (11).

= panα

= tiltβ

M

m2

frame #1

frame #2

frame #3

frame #4

frame #5

L2 (coordinate change)

T2 (pan rotation)

L1 (coordinate change)

T1 (tilt rotation)

z

x

y

Fig. 10 This figure shows a general pan–tilt mechanical model, which
attaches a camera (frame #1) to a rigid fixture (frame #5). Estimating
the pan and tilt angles such that a given scene point appears at the
image center is a non-trivial inverse kinematic problem

Appendix B: Simple pan–tilt model

In the case of a simplified model it is assumed that the pan and tilt
axes are mutually perpendicular. In this case, matrices L1 and L2 (see
Appendix 1 and Fig. 10) are pure translational offsets:

L1 =




0 0 1 l1
1

1 0 0 l1
2

0 1 0 l1
3

0 0 0 1


 (B.1)

L2 =




0 0 1 l2
1

1 0 0 l2
2

0 1 0 l2
3

0 0 0 1


 (B.2)

We obtain

Q2 =




1 0 0 t2
1

0 cos(α − α0) − sin(α − α0) t2
2

0 sin(α − α0) cos(α − α0) t2
3

0 0 0 1


 (B.3)

Q1 = U1




cos(β − β0) − sin(β − β0) 0 0

sin(β − β0) cos(β − β0) 0 0

0 0 1 0

0 0 0 1


 U−1

1 (B.4)
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with

U1 =




0 1 0 l1
3 + l2

1

− sin α0 0 cos α0 l1
1 cos α0 − l1

2 sin α0 + l2
2

cos α0 0 sin α0 l1
1 sin α0 + l1

2 cos α0 + l2
3

0 0 0 1




Appendix C: Kinematic calibration

Kinematic calibration consists of estimating the Lie algebras associ-
ated with the matrices Q1 and Q2 formally defined in Appendix 1.
Each of these matrices form a one-parameter Lie group such that
Q1(β1)Q1(β2) = Q1(β1 + β2). Moreover, once a reference frame is
chosen, the tangent operator (or the Lie algebra) remains fixed. There-
fore, the kinematic calibration process consists of finding a numerical
estimate of Q̂1 and of Q̂2, i.e., Eq. (14). For that purpose we consider
again Eq. (A.3). Notice that the transformation from position α1, β1 to
position α2, β2 writes:

Qα1→α2,β1→β2
= Q2(α2)Q1(β2 − β1)Q2(α1)

Let the pan–tilt device perform two one-parameter motions: a motion
from α1 to α2 and another from β1 to β2. From the previous equation
we obtain:

Q2(α2 − α1) = Qα1→α2,β1
(C.1)

Q1(β2 − β1) = Q2(−α1)Qα1,β1→β2
Q2(α1) (C.2)

In practice, the kinematic calibration proceeds as follows:

Step 1: Move the device in the α1, β1 position;
Step 2: Using camera calibration tools, estimate the external cam-
era parameters, i.e., the position and orientation of the camera
frame with respect to a calibration fixture expressed as a rigid
transformation T(α1, β1);
Step 3: Move the device in the α2, β1 position;
Step 4: Repeat Step 2 for this position and estimate T(α2, β1);
Step 5: Move the device in the α1, β2 position;
Step 6: Repeat Step 2 for this position and estimate T(α1, β2);
Step 7: Compute Qα1→α2,β1

= T(α2, β1)T(α1, β1)
−1;

Step 8: Compute Q̂2 from Q2(α2 − α1) using Eq. (14);
Step 9: Compute Qα1,β1→β2

= T(α1, β2)T(α1, β1)
−1;

Step 10: Compute Q2(α1), Q2(−α1), and Q1(β2 − β1); and
Step 11: Compute Q̂1 from Q2(β2 − β1) using Eq. (14).
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