
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

1

Camera Motion Estimation Using a Novel Online

Vector Field Model in Particle Filters
Symeon Nikitidis†, Stefanos Zafeiriou† and Ioannis Pitas†, Fellow Member, IEEE

Abstract— In this paper, a novel algorithm for parametric
camera motion estimation is introduced. More particularly, a
novel stochastic vector field model is proposed, which can
handle smooth motion patterns derived from long periods of
stable camera motion and can also cope with rapid camera
motion changes and periods when the camera remains still. The
stochastic vector field model is established from a set of noisy
measurements, such as motion vectors derived e.g. from block
matching techniques, in order to provide an estimation of the
subsequent camera motion in the form of a motion vector field. A
set of rules for a robust and online update of the camera motion
model parameters is also proposed, based on the Expectation
Maximization algorithm. The proposed model is embedded in a
particle filters framework, in order to predict the future camera
motion based on current and prior observations. We estimate
the subsequent camera motion by finding the optimum affine
transform parameters so that, when applied to the current video
frame, the resulting motion vector field to approximate the
one estimated by the stochastic model. Extensive experimental
results verify the usefulness of the proposed scheme in camera
motion pattern classification and in the accurate estimation of
the 2D affine camera transform motion parameters. Moreover,
the camera motion estimation has been incorporated into an
object tracker in order to investigate if the new schema improves
its tracking efficiency, when camera motion and tracked object
motion are combined.

Index Terms— Camera Motion Estimation, Expectation Max-
imization Algorithm, Particle Filtering, Vector Field Model

I. INTRODUCTION

Motion estimation and motion pattern classification produce

valuable information for video processing, analysis, index-

ing and retrieval.It has been extensively investigated by the

scientific community for semantic characterization and dis-

crimination of video streams. Moving object trajectories have

been used for video retrieval [1]-[3]. Camera motion pattern

characterization has been efficiently applied to video indexing

and retrieval [4]-[7]. However, the main limitation of the latter

methods, is that they deal only with the characterization of

the detected camera motion patterns, without explicit mea-

surement of the camera motion parameters. As a result, the

acquired information is of limited interest, since it can be used

primarily for video indexing and retrieval.

The estimation of a parametric form describing the displace-

ment of the video frame content in two subsequent video

frames due to camera motion is of broader interest and has

been proved beneficial in various applications. For instance,

camera motion parameter estimation can assist in detecting and

robustly tracking moving objects [8], in motion-based video

deblurring [9], in video shots boundaries detection [10], as

well as, in video abstraction [11],[12]. Apart from the general

2-D affine transformation model (that we have also adopted

in this paper) various parametric camera motion representation

methods have been proposed in the literature n [4], [13], [14],

[15], [16], [17], [18], [19].

In this paper, we focus on the 2D camera motion charac-

terization and the estimation of the relevant affine parametric

model. Various methods have been proposed to this end, by

exploiting estimated motion vector fields. In [5], the motion

vectors field is used as a camera motion representation and

the detected motion pattern is classified using Support Vector

Machines (SVMs) in one of the following classes: zoom,

pan, tilt and rotation. In [4], [6] and [18] camera motion

estimation within video shots is performed in the compressed

MPEG video streams, without full frame decompression, using

the motion vector fields acquired from the P- and B- video

frames. These methods rely on the exploitation of motion

vectors distribution or on a few representative global motion

parameters. The detected camera motion is then expressed in a

parametric form and is applied for video frame annotation and

retrieval. One of the main shortcomings of these approaches

is that, generally, they are neither resilient to the presence

of moving objects of significant size nor to video luminance

outliers.

In this work, we focus on accurate camera motion parameter

estimation using already estimated motion vectors fields. In

this approach, we assume the camera motion as a dynamic

system, whose state θt changes in discrete time intervals and

is described at time t by the state vector:

θt =
[

m1 m2 m3 m4 m5 m6

]T
, (1)

where parameters {m1,m2,m3,m4,m5,m6} correspond to

the affine transform coefficients, containing all the relevant

information required to describe the camera motion between

video frames. A novel stochastic vector field model is es-

tablished from a set of noisy measurements Yt, such as the

estimated motion vectors, in order to provide an estimation

of the subsequent camera motion. Our goal is to recursively

estimate the optimal affine transform parameters, by estimating

the system state vector θt, so that, when applied to the

current video frame, the resulting transformed image provided

by a motion compensation algorithm accurately recreates the

already estimated motion vectors field.

To tackle this problem, we have applied the proposed

stochastic vector field model in a particle filters framework.

Particle filters are a state-of-the-art method for the stochastic

prediction of dynamic system state. Stochastic approaches

used for the prediction of the future state of a dynamic system

have attracted considerable interest against their deterministic

 Copyright (c) 2008 IEEE. Personal use of this material is permitted. However, permission to use this material for any other

 purposes must be obtained from the IEEE by sending an email to pubs-permissions@ieee.org

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2

counterparts. Their ability to escape from local minima due

to the fact that the search operation is randomly driven, is

a significant advantage. However, the computational load is

generally more intense compared with that of a deterministic

algorithm. In summary, the novel contributions of this paper

are the following:

• The presentation of a system for 2D camera motion

estimation from a video sequence, that is able to perform

in real time.

• A novel stochastic vector field model. The proposed

model can handle smooth camera motion patterns derived

from long periods of stable camera motion and can also

cope with rapid motion changes (i.e., motion changes

from hand handled cameras) and periods when the camera

remains still.

• An online Expectation Maximization (EM) algorithm for

updating the model parameters.

The rest of the paper is organized as follows. Section II we

provide an estimation of the affine parametric model based

on the straightforward minimization of the Least Squares

Error between the motion fields. The proposed Online Vector

Field Model and the applied particle filters framework, are

presented in Section III. In the same Section, considera-

tions on enhancing its algorithmic performance and achieving

computational efficiency are analyzed. Section IV describes

the conducted experiments and summarizes the performance

evaluation results. Concluding remarks are drawn in Section

V.

II. PROBLEM FORMULATION

Initially, we present a camera motion estimation model that

translates the motion vector field derived from two consecutive

video frames into a parametric 2D affine transform. The

2D affine transformation of an image point displaced from

position (x, y) to (x′, y′) between two consecutive video

frames is given by:





x′

y′

1



 =





m1 m2 m3

m4 m5 m6

0 0 1









x
y
1



 (2)

where the parameters {m1, m2, m4,m5} control rotation and

scaling, while parameters {m3,m6} correspond to translation

along x and y axes, respectively.

We address the camera motion detection and estimation

problem by employing low level information such as motion

vectors. We detect the motion vectors between two successive

video frames by applying a motion estimation algorithm, such

as block matching and represent the detected displacements

using motion vectors. A motion vector v
i = [vi

x vi
y]T repre-

sents the displacement of the i-th block in relative coordinates,

with respect to its initial position, between two consecutive

video frames ft−1 and ft as: x′

i = xi + vi
x, y′

i = yi + vi
y

where (xi, yi) and (x′

i, y
′

i) are the coordinates of i-th block

center at frame ft−1 and ft respectively.

Similarly, with the image point displacement described by

(2), we can represent the displacement of the i-th block in

relative coordinates by a 2D affine transform as:




vi
x

vi
y

0



 =





c1 c2 c3

c4 c5 c6

0 0 0









xi

yi

1



 , (3)

where the affine coefficients are related as:

[c1 c2 c3 c4 c5 c6]
T = [m1 − 1 m2 m3 m4 m5 − 1 m6]

T .

Since we estimate the camera affine transformation by

utilizing the motion vector field, a model to compute the affine

transform coefficients directly from the motion vectors, is

required. To rephrase the problem, we seek an affine transfor-

mation matrix M to perform the approximation BM ≈ B+V,

where B is a n×3 matrix (n is the number of blocks that each

frame has been divided to) containing the center coordinates

of each block in the video frame, i.e. B = [bx by 1],
where bx = [x1 x2 . . . xn]T and by = [y1 y2 . . . yn]T .

The matrix V = [vx vy 0] contains the motion vectors,

where vx = [v1
x v2

x . . . vn
x]T and vy = [v1

y v2
y . . . vn

y]T

are n × 1 vectors containing each block’s displacement in

relative coordinates along to the x and y axes, respectively.

M = [Mx My e] is the 3 × 3 affine transformation matrix,

where Mx = [m1 m2 m3]
T , My = [m4 m5 m6]

T and

e = [0 0 1]T .

We have experimentally verified that it is preferable to

seek independently the vectors Mx and My, rather than to

search directly for the matrix M = [Mx My e]. The LS

formulation for the optimal Mx,o takes the form:

Mx,o = min
Mx

G(bx + vx,BMx) (4)

where G(A,B) = ||A−B||2F and ||.||F is the Frobenius norm.

The optimal Mx,o is given by:

Mx,o = B
+(bx + vx) (5)

and similarly for My,o.

According to (5), we can compute the affine transform

coefficients describing the camera motion directly from the

motion vector field, since the pseudo-inverse matrix B
+

remains constant. This technique, whilst being optimal for data

contaminated by Gaussian noise, is extremely inaccurate in the

presence of motion vector outliers.

III. ONLINE VECTOR FIELD MODEL

A. Basic Nomenclature for the Proposed Framework

θt The unknown state of the dynamical system.

v
j
t The motion vector v

j
t at the t-th time (frame)

of the j-th block.

Yt, Ŷ
i
t The observation (in our case a matrix of

all the motion vectors Yt = [v1
t . . .vn

t]) and the

estimate produced by the i-th particle.

Y1:t The set of observations in a time window

between 1 and t.
Et−1(., .) The system function that calculates the un-

known state of the dynamical system.

Ot(., .) The system function that calculates the ob-

servations at time t.
Pt A particle Pt = {θ̂t, wt}.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

3

P (A|B) The conditional probability of the event A
given the event B.

Ut−1 The system noise at t− 1 (it can be a vector

or a matrix).

Nt The observation noise at t.
wi

t The weight of i-th particle filter at time t.
St The stable component St = {St,x,St,y}.

St,x St,x = [s1
t,x s2

t,x . . . sn
t,x]T for the x-

coordinate, at the t-th frame and for the n-blocks.

St,y St,y = [s1
t,y s2

t,y . . . sn
t,y]T for the y-

coordinate, at the t-th frame and for the n-blocks.

Wt The wander component Wt =
{Wt,x,Wt,y}.

Wt,x Wt,x = [w1
t,x w2

t,x . . . wn
t,x]T for the x-

coordinate, at the t-th frame and for the n-blocks.

Wt,y Wt,y = [w1
t,y w2

t,y . . . wn
t,y]T for the y-

coordinate, at the t-th frame and for the n-blocks.

Lt The lost component Lt = {Lt,x,Lt,y}
Lt,x Lt,x = [l1t,x l2t,x . . . lnt,x]T for the x-

coordinate, at the t-th frame and for the n-blocks.

Lt,y Lt,y = [l1t,y l2t,y . . . lnt,y]T for the y-

coordinate, at the t-th frame and for the n-blocks.

µ
j
c,t The mean motion vector for c ∈ {St, Wt, Lt}

for the stable, the wander and the lost component for

the j-th block at the t-th frame.

Σ
j
c,t The covariance matrix for motion vectors

of the j-th block for one of the components c ∈

{St, Wt, Lt} at the t-th frame.

Pu(.) The probability density function of Gaussian

noise Ut−1.

Ft(k) The exponential envelope.

Oj
c,t,xy, Oj

c,t,x, Oj
c,t,y Ownerships for one of the com-

ponents c ∈ {St, Wt, Lt} for the j-th block at

instance t and for the xy, x and y, respectively.

M j
1,t,x,M j

1,t,y,M j
2,t,x,M j

2,t,y First and second order mo-

ments for the j-th block at x and y coordinates,

respectively for the t-th frame (only for stable com-

ponent).

mj
c,t,xy, mj

c,t,x,mj
c,t,y Mixture weights for one of the

components c ∈ {St, Wt, Lt} for the j-th block at

instance t and for the xy, x and y, respectively.

Â Denotes the estimate of A (e.g., θ̂t denotes the

estimate of θt).

µ̂t Robust estimate for mean motion vector at the t
instance.

Σ̂t Robust estimate for the covariance matrix for the

motion vectors at t-th instance.

B. Particle Filters

Considering camera motion as a dynamically varying sys-

tem, we formulate the problem as to predict the unknown state

θt based on a series of usually noisy motion observations

(already estimated motion vectors) Y1:t = {Y1, . . . ,Yt},

arriving sequentially. Moreover, we assume that the state evo-

lution and observation models are described by the functions

Et−1(., .) and Ot(., .) respectively:

θt = Et−1(θt−1, Ut−1) (6)

Yt = Ot(θt, Nt), (7)

where Ut−1 is the system noise and Nt is the observation

noise.

A particle is a weighted sample that estimates a required

posterior density function [20],[21]. In the state evolution

problem summarized in (6), a particle Pt = {θ̂t, wt} describes

at time t the posterior distribution P (θt|Y1:t), where the

weight wt is normalized and is proportional to the posterior

probability P (Yt|θ̂t). To initialize a particle filters framework,

we first draw K samples {θi
t−1}

K
i=1 from P (θt−1|Y1:t−1) and

additionally, K samples {U i
t−1}

K
i=1 from Ut−1. By applying

state evolution as formed in (6), we obtain K estimates

{θ̂
i

t}
K
i=1 of state θt, which are being fed along with K

noise samples {N i
t}

K
i=1, drawn from Nt, to (7). Finally, K

observation estimates {Ŷi
t}

K
i=1 for state θt are obtained. Each

particle’s weight is being evaluated with respect to the state

and observation estimations, according to the formula:

wi
t ∝

P (Yi
t|θt)P (θt|θt−1)

g(θt|θt−1,Y1:t),
(8)

where g(θt|θt−1,Y1:t) is a proposal distribution. In order the

weights to sum up to one, they are normalized as:

wi
t =

wi
t

∑N
i=1 wi

t

(9)

Here we model each posterior distribution P (Ŷi
t|θ̂

i

t) using

a mixture of bivariate Gaussian density functions, while we

assume that noise Ut−1 and Nt are also Gaussian.

C. Probabilistic Mixture Model

The proposed Online Vector Field Model (OV FMt) is a

modified version of the Online Appearance Model (OAM) by

Jepson et al. presented in [22]. OAM is a three parts mix-

ture model containing the following components: the stable

component designed such as to identify slowly varying robust

appearance properties of the tracked object, the wandering

component that models the rapid variations of the object

appearance and the lost component designed to handle data

outliers that burst during occlusion. The first two components

have been designed to follow the Gaussian distribution, while

the data modelled by the lost component are assumed to be

uniformly distributed.

We modified this model so as to facilitate camera motion

estimation. The proposed OV FMt is a Gaussian mixture

model extending the notion of stable or rapidly changing

image structures of OAM to the description of the motion

vector field. Thus, we can identify not only reliable motion

structures but also rapid motion changes, as well. Moreover,

we have modified the lost component, so as to represent the

ideal stationary scene in order to adjust the model to have

a prior preference in generating stationary camera motion

estimations in the presence of data outliers, as for instance, due

to motion vectors generated by moving objects. Additionally,

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4

we handle motion outliers using robust statistics. Finally,

we combined the OV FMt in a particle filter framework to

estimate the camera motion parameters, while in [22] the EM

algorithm is used in order to perform object tracking.

The previously presented fundamental types of 2D camera

motion (in Section II) could be combined or appear in cascade

in a video sequence. However, there are temporal camera

motion characteristics that could be exploited in a camera

motion estimation model. For example, in a typical video

sequence, we expect long periods of smooth camera motion

towards a specific motion direction which are also followed

by extended camera immobility periods. These two motion

patterns are usually interrupted by brief time intervals of rapid

camera motion that could be of arbitrary type. For the first

two motion patterns, a model that identifies slowly varying (or

absence of) motion observations over a long period of time is

more appropriate for their description. In the latter case, when

the camera is rapidly and arbitrary moving, a flexible model

based on two video frame variations can better approximate

the rapid changes.

In the presented OV FMt, we use the motion vector field

derived either by applying of block matching algorithm or

directly from compressed MPEG video streams. The model

is time-varying and comprises of three different components

OV FMt = {St, Wt, Lt}, which are combined in a probabilis-

tic mixture model applied in a particle filters framework, in

order to estimate the camera motion.

• The camera motion stable component St = {St,x,St,y}
learns a smooth motion pattern that describes the cam-

era motion obtained from a relatively long period of

the video sequence. The component St comprises of

the vectors St,x = [s1
t,x s2

t,x . . . sn
t,x]T and St,y =

[s1
t,y s2

t,y . . . sn
t,y]T , where values sj

t,x and sj
t,y contain

the block j spatial displacement of time t smoothed

over a predefined time window along the x and y axes,

respectively: sj
t,x = λvj

t,x + (1 − λ)sj
t−1,x

sj
t,y = λvj

t,y + (1− λ)sj
t−1,y where the smoothing factor

λ is proportional to the temporal window size (measured

in video frames), vj
t,x and vj

t,y are respectively the x and

y motion vector components referred to the j-th block.

• Since the component St requires a long sequence of

observations in order to construct a smoothed camera

motion vector field, we cannot have a good approximation

when severe camera motion changes occur. In order to

address this problem, we introduce the camera motion

wander component Wt = {Wt,x,Wt,y}, which identi-

fies sudden motion changes, and adapts to a short time

motion field observation sequence, as a two frame motion

change model. Vectors Wt,x = [w1
t,x w2

t,x . . . wn
t,x]T

and Wt,y = [w1
t,y w2

t,y . . . wn
t,y]T contain each block

displacement between two consecutive frames, in relative

coordinates, along the x and y axes, respectively.

• Finally, the lost component Lt = {Lt,x,Lt,y} is fixed

and represents the ideal stationary video scene when all

the motion vectors are equal to zero. This is the state

that is expected to be observed more often. Moreover,

it is used for the initialization of a new camera motion

estimation process and also enables the model to have a

prior preference in generating stationary camera motion

estimations when sparse non zero motion vectors are

observed, as for instance, due to objects motion.

We model the probability density function for the St, Wt

and Lt components with the bivariate Gaussian distribution

N(vj ; µj
c,t,Σ

j
c,t) c ∈ {St, Wt, Lt}, where µ

j
c,t denotes the

mean value of the j-th motion vector and Σ
j
c,t is a 2 × 2

covariance matrix referred to c-th component j-th motion

vector v
j = [vj

x vj
y]T , as it varies during the video sequence.

We consider the general case that correlation exists between

the two random variables vj
x, vj

y of the same motion vector

v
j , as it evolves over time. It should be noted that the stable

component covariance matrices Σ
j
S,t and mean values µ

j
S,t

are functions of time computed for each motion vector. The

wander component, the mean values are the observations of

the previous frame and for Lt the mean values are set to

zero. Moreover, in order to avoid some prior preference in

either component, the covariance matrices are initially set

as: Σ̂
j
S,t = Σ̂

j
W,t = Σ̂

j
L,t (more details are given in Model

Initialization subsection).

OV FMt combines probabilistically the components St, Wt

and Lt in a mixture model according to the formula:

P (Yt|θt)

=
∏n

j=1

{

P (vj
t |S

j
t) + P (vj

t |W
j
t) + P (vj

t |L
j
t)

}

=
∏n

j=1

{

∑

c=S,W,L mj
c,t,xyN

(

v
j
t ; µ

j
c,t,Σ

j
c,t

)

}

,

(10)

where Yt = [v1
t . . .vn

t]T is the observation data derived for

state θt and N(vj
t ; µ

j
c,t,Σ

j
c,t) is the bivariate Gaussian density

function:

N(vj
t ; µ

j
c,t,Σ

j
c,t) =

1

2π
√

|Σj
c,t|

e−
1
2
(vj

t−µj
c,t

)T (Σj
c,t)

−1(vj
t−µj

c,t
)

(11)

where v
j
t = [vj

t,x vj
t,y]T , µ

j
c,t =

[µj
c,t,x µj

c,t,y]T ,m
j
c,t[m

j
c,t,x mj

c,t,y mj
c,t,xy]T ,

Σ
j
c,t =

[

(σj
c,t,x)2 (σj

c,t,xy)2

(σj
c,t,xy)2 (σj

c,t,y)2

]

, c ∈ {S, W, L}.

{mj
S,t,xy , mj

W,t,xy , mj
L,t,xy} are the mixing probabilities

that regulate the contribution each component j-th motion

vector makes to the complete observation likelihood at time

t, n is the number of motion vectors, Σ
j
c,t and µ

j
c,t are the

covariance matrix and mean value, respectively, referred to the

j-th motion vector of the c-th component.

OV FMt is embedded in the particle filter framework

evaluating each potential future state of the system. A state

estimate θ̂
i

t is generated by first drawing a noise sample

U i
t−1 ∼ Pu(Ut−1) and applying the state transition function

θ̂
i

t = Et−1(θ
i
t−1, U

i
t−1) where Pu(.) is the probability density

function of Gaussian noise Ut−1. Each state estimate θ̂
i

t

determined by particle i is being evaluated with respect to

the available motion representation in OV FMt, by comput-

ing the observation likelihood according to (10). Although

the conventional particle filters configuration determines the

particle weight using (8), we instead update the weights by

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

5

applying the an approach similar to the Sequential Importance

Re-sampling filter (SIR) [23], since the following assumptions

hold:

• The state evolution Et−1 and observation Ot functions

are known.

• The observation likelihood function P (Yt|θt) could be

applied for pointwise evaluation.

As a result, we assign weights to particles as:

wi
t ∝ P (Yi

t|θ
i
t),

wi
t =

wi
t∑

N
i=1

wi
t

,
(12)

this basically dropping the factors p(θt|θt−1) and

g(θt|θt−1,Y1:t). The applied particle filters framework

is similar to the one used in [24]. The particle filters

framework generates a set of possible future states of the

camera motion, expressed in the form of affine transform

matrices. Each affine transform matrix corresponds to a

motion vector field which can be computed using equation

(5). Consequently, each state estimate is evaluated with

respect to the available motion representation in OV FMt

via equation (10) and is assigned a weight according to (12).

The particle that is assigned the highest weight or differently

the prediction that achieves the highest probability value is

selected as the system’s future state.

D. Online Model Update

In order to update the camera motion mixture model

OV FMt to OV FMt+1, describing the camera motion mix-

ture model in the next video frame the new mean values,

covariance matrices and mixture probabilities for each motion

vector contained in each component at time t + 1 should be

estimated. We assume that OV FMt has limited memory over

the past motion vector field observations, extended during a

defined time window, which is exponentially forgotten. When

newer information is available, previous knowledge is forgot-

ten and is combined with newer observations. The exponential

envelop Ft(k) = αe(−(t−k)/τ) for k 6 t is being used where

τ = ns/ log 2 and ns is the envelope half life time, measured

in video frames that the current information is preserved in

the system’s memory. This information exponentially weakens

during time and completely vanishes after a predefined time

window. Thus, parameter Ft(k) is used in order to regulate

the influence of prior knowledge. Parameter α is defined as

α = 1 − e−1/τ , so that the envelop weights Ft(k) sum to

1. The new mixing and ownership posterior probabilities, the

mean values and covariance matrices for each motion vector

of the St and Wt components are being updated with respect

to the envelop weights Ft(k).
The posterior ownership probabilities Oj

c,t denote the contri-

bution of each motion vector to the complete observation prob-

ability likelihood function. We favor these motion vectors that

continuously produce higher probability values by increasing

their ownership probability. On the other hand, motion vectors

that tend to produce lower probability values are penalized

and their contribution to the complete observation likelihood

is gradually reduced. Ownership are evaluated by applying the

EM algorithm in [22],[25] as:

Oj
c,t,xy ∝ mj

c,t,xyN(vj
t ; µ

j
c,t,Σ

j
c,t)

Oj
c,t,x ∝ mj

c,t,xN
(

vj
t,x; µj

c,t,x, (σj
c,t,x)2

)

Oj
c,t,y ∝ mj

c,t,yN
(

vj
t,y; µj

c,t,y, (σj
c,t,y)2

)

(13)

and
∑

c=S,W,L Oj
c,t,x = 1,

∑

c=S,W,L Oj
c,t,y = 1 ,

∑

c=S,W,L Oj
c,t,xy = 1, where N

(

vj
t,x; µj

c,t,x, (σj
c,t,x)2

)

is the

normal density function. The Ownerships are subsequently

used for updating the mixing probabilities (parameter α is as

previously defined, α = 1 − e−1/τ):

mj
c,t+1,x = αOj

c,t,x + (1 − α)mj
c,t,x

mj
c,t+1,y = αOj

c,t,y + (1 − α)mj
c,t,y

mj
c,t+1,xy = αOj

c,t,xy + (1 − α)mj
c,t,xy

(14)

and
∑

c=S,W,L mj
c,t,x = 1,

∑

c=S,W,L mj
c,t,y = 1,

∑

c=S,W,L mj
c,t,xy = 1.

We compute the new mean values and the new covariance

matrices for each motion vector by utilizing the first and

second order data moments. First order data moments are

updated as:

M j
1,t+1,x = αOj

S,t,xvj
t,x + (1 − α)M j

1,t,x

M j
1,t+1,y = αOj

S,t,yvj
t,y + (1 − α)M j

1,t,y

M j
1,t+1,xy = αOj

S,t,xyvj
t,xvj

t,y + (1 − α)M j
1,t,xy.

(15)

Second order data moments are updated as:

M j
2,t+1,x = αOj

S,t,x(vj
t,x)2 + (1 − α)M j

2,t,x

M j
2,t+1,y = αOj

S,t,y(vj
t,y)2 + (1 − α)M j

2,t,y.
(16)

The stable component is updated using the first order data

moments:

sj
t+1,x = µj

S,t+1,x =
Mj

1,t+1,x

mj

S,t+1,x

sj
t+1,y = µj

S,t+1,y =
Mj

1,t+1,y

mj

S,t+1,y

.
(17)

The stable component new covariance matrices are evaluated

as:

(σj
S,t+1,x)2 =

Mj

2,t+1,x

mj

S,t+1,x

− (sj
t+1,x)2

(σj
S,t+1,y)2 =

Mj

2,t+1,y

mj

S,t+1,y

− (sj
t+1,y)2

(σj
S,t+1,xy)2 =

Mj

1,t+1,xy

mj

S,t+1,xy

− (sj
t+1,x)(sj

t+1,y).

(18)

The wander component contains the current motion vectors,

since it adapts as a two frame motion change model:

wj
t+1,x = µj

W,t+1,x = vj
t,x

wj
t+1,y = µj

W,t+1,y = vj
t,y.

(19)

Covariance matrices for the wander and lost components

are set equal to the estimated stable component covariance

matrice Σ̂
j
W,t+1 = Σ̂

j
L,t+1 = Σ̂

j
S,t+1. Moreover, as it has

been designed, component Lt remains constant by setting:

l̂jt+1,x = l̂j1,x = 0 and l̂jt+1,y = l̂j1,y = 0.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6

E. Model Initialization

To initialize OV FM1, the array R = [rx ry] is con-

sidered, where rx and ry are n × 1 vectors containing the

motion vectors residuals in the x and y directions obtained

from the first two frames of the video sequence. The stable,

wander and lost components of the OV FM1 model are then

initialized by setting: Ŝ1,x = Ŵ1,x = rx,Ŝ1,y = Ŵ1,y = ry ,

L̂1,x = L̂1,y = 0.

Moreover, the covariance matrices and mixing

probabilities for each component, as well as, the

first and second order data moments are instantiated

as follows: m̂j
c,1,x = m̂j

c,1,y = m̂j
c,1,xy = 1

3

,Σ̂
j
S,1 =

[

(σ̂j
S,1,x)2 (σ̂j

S,1,xy)2

(σ̂j
S,1,xy)2 (σ̂j

S,1,y)2

]

=

[

0.25 0.15
0.15 0.25

]

,

Σ̂
j
W,1 = Σ̂

j
L,1 = Σ̂

j
S,1, M̂ j

1,1,x = ŝj
1,xm̂j

S,1,x, M̂ j
1,1,y =

ŝj
1,ym̂j

S,1,y , M̂ j
1,1,xy =

(

(σ̂j
S,1,xy)2 + ŝj

1,xŝj
1,y

)

m̂j
S,1,xy,

M̂ j
2,1,x =

(

(σ̂j
S,1,x)2 + (ŝj

1,x)2
)

m̂j
S,1,x, M̂ j

2,1,y =
(

(σ̂j
S,1,y)2 + (ŝj

1,y)2
)

m̂j
S,1,y , where c ∈ {S, W, L}.

F. State Transition

In various particle filter applications, the quantity of the

system disturbance during state transition plays a crucial role

in the state estimation process. By measuring the system dis-

turbance during the previous states, we can infer the expected

system disturbance at a future state. This approach creates

the necessity for an adaptive state transition model. In our

approach, as will be discussed below, we have incorporated the

system disturbance momentum in order to regulate the applied

noise variance and to resize the generated particle filters set. In

[26], system disturbance is measured as the sum of the abso-

lute difference between the states corresponding to successive

video frames. This parameter is associated with the decision

that is acquired in order to switch between a deterministic

and a stochastic search method that is used for each particle.

Moreover in [24], the tracked object velocity is measured as

the shift in the state vector between two consecutive frames

and is computed using a first order Taylor series expansion

around a current state estimate. The computed velocity usually

indicates the minimization direction of the difference between

the compared image patches and is exploited in order to further

stabilize the tracker by fine tuning around the state estimate

with the highest likelihood.

In this approach, the motion vector field Yt is available

(e.g., from block matching) when a new frame is processed, in

contrast with the previously presented approaches, where the

exact block position, inside the current video frame t, could

only be approximated using the state estimate θ̂t. As a result,

we can evaluate our estimation error et, by measuring the

distance between the estimated motion vector field Ŷt, that

the OV FMt model contains and the actual motion vector field

we obtain, as:

et = 1 − P (Yt|θ̂t)

= 1 −
∏n

j=1

{

∑

c=S,W,L mj
c,t,xyN

(

v
j
t ; µ

j
c,t,Σ

j
c,t

)

}

,

(20)

where the vector Yt = [v1
t . . .vn

t] contains the motion vector

field.

We exploit the computed estimation error et, in order to

dynamically adjust not only the applied noise variance, but

also the population of particle filters that will be generated in

the following estimation process. The complete state transition

method is summarized by the equation:

θ̂t = θt−1 + Ut−1, (21)

where Ut−1 is the applied noise. In order to reduce the

computational load and enhance the robustness of the proposed

algorithm, we have adapted strategies that are described in the

following two subsections.

G. Adaptive Noise - Adaptive Number of Particles

In the applied particle filter framework, the introduced noise

variance and the generated particle filters population size,

severely affect the accuracy of the camera motion parameter

estimation. Concisely, it is noted that the size of the search

space that is covered in each search iteration is proportional to

the variance of the applied noise. Larger noise variance enables

searches in broader regions of the state space, thus allowing the

model to adapt to severe changes in the motion parameter state.

On the other hand, smaller noise variance enables the model

to fine tune around a persistent motion parameter state. In

addition, the accuracy of the estimation is proportional to the

number of the used particle filters. More particle filters offer

greater coverage of possible motion states while demanding

greater computational effort.

We exploit these characteristics in order to find the optimal

trade off between the estimation accuracy and the required

computational effort. Our intention is to dynamically adjust the

noise variance and the number of processed particles, so as to

generate fewer number of particles with small noise variance,

when small changes in the camera motion are required. When

large jumps in the motion state space need to be covered, we

adjust our settings so as to process a larger number of particle

filters with larger noise variance.

We evaluate the accuracy of our previous prediction by com-

puting the estimation error et. Subsequently, the number of the

processed particle filters At and the applied noise variance σt,

are adjusted for the following prediction step proportionally

to the estimation error, according to the formulae:

At = min(Amin

et
, Amax)

σt = min(σmin

et
, σmax),

(22)

where both the population of the generated particles, as

well as, the noise variance, are bounded in order to ensure

computational efficiency, algorithm robustness and optimal

performance. In our experiments the number of particles have

been between 150 and 300.

H. Robust Parameter Estimation

Data outliers are common in motion vector fields and in

order to further stabilize the system in such settings an addi-

tional data pre processing step has been applied that enables

the system not only to statistically identify data outliers but

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

7

also to reform those motion vectors that have been obviously

assigned invalid values.

To address this problem, a 3 × 3 spatial median filter is

initially applied to the motion vector field x,y components,

thus reducing motion vector field outliers appearing in homo-

geneous video frame regions. Moreover, we use an iterative

bivariate Winsorization transform [27], [28] which provides a

mechanism for data outlier detection and rectification. For each

motion vector v
i
t = [vi

t,x vi
t,y]T , the Mahalanobis distance

D(vi
t) is computed based on an initial bivariate covariance

matrix Σ̂t and mean value µ̂t estimates, according to the

formula:

D(vi
t) = (vi

t − µ̂t)
T
Σ̂t

−1
(vi

t − µ̂t) (23)

where µ̂t = [µ̂t,xµ̂t,y]T and Σ̂t = diag{ δt,x

0.6745 ,
δt,y

0.6745} where

µ̂t,x , µ̂t,y are the robust mean values, δt,x and δt,y are the

adjusted mean absolute deviations computed from the motion

vector components along the x and y axes, respectively. We

treat a motion vector as an outlier when its Mahalanobis

distance D(vi
t) > T , where T is a positive constant. Based

on experimental evidence we choose T = 5.99 which gives

95% efficiency at the X 2
2 distribution. Rectification of detected

data outliers is performed by truncating such motion vectors

to the border of a two-dimensional ellipse which contains

the majority of the motion vectors, by using the bivariate

transformation:

ṽ
i
t = [ṽi

t,x ṽi
t,y]T = µ̂t + min

(

√

T

D(vi
t)

, 1
)(

v
i
t − µ̂t

)

. (24)

The process is recursively executed until no more motion

vector field outliers are detected. In a final data pre-processing

step, a whitening transform is applied to the motion vector

field. The data set is transformed so that the motion vectors

have zero mean value and their covariance matrix Σ̂t is equal

to the identity matrix.

I. Conformal Affine Transform

The restricted 2-D affine transformation model includes

four affine parameters, thus constituting the more appropri-

ate parametric model in describing the camera motion, if

we neglect the introduced lens distortion. According to this

transformation only conformal scaling and rotation along the

x and y axes video frame deformation is performed, due to

camera motion. The 2-D affine transformation of the i-th block

center displaced from position (xi, yi) to (x′

i, y
′

i) according to

this model is given by:




x′

i

y′

i

1



 =





αcosφ −sinφ Tx

sinφ αcosφ Ty

0 0 1









xi

yi

1



 (25)

α, φ, Tx, Ty correspond to scaling by a factor α, rotation by φ
degrees and translation by Tx and Ty pixels along the direction

of x and y axes, respectively.

We generate conformal scaling and rotational potential

future states, when the state estimates set is populated, by

regulating the applied noise in each particle equivalently for

the respective affine transform parameters.

IV. EXPERIMENTAL RESULTS

We evaluate the efficiency of the proposed method through

extensive experimental testing. The testing dataset comprises

of 30 edited outdoor video streams, including in total 26, 245
frames, while the motion vector fields have been obtained by

applying the block matching algorithm. The dataset includes

all patterns of distinct camera motion (zoom in, zoom out, pan,

tilt and rotation) and also combinations of them. Moreover,

since the presented algorithm not only identifies the performed

camera motion pattern but also measures the motion param-

eters, we have included in our test collection video streams

that contain sequential frame regions, where the camera moves

according to a specific pattern but at a variable pace.

A. Camera Motion Pattern Classification

The acquired after each prediction process, affine transform

parameters, are used to infer the type of the performed

camera motion. However, due to the fact that we generate

our solutions set in each prediction step by adding random

noise, our method, as every stochastic approach, moves around

the optimum solution. This fact introduces some error in the

classification of the performed camera motion, when the affine

transform coefficients vary around critical boundaries, in terms

of camera motion interpretation. To alleviate this error in the

camera motion characterization, we assume that any camera

motion, in order to be classified as of a specific pattern,

should have a minimum duration of five consecutive frames,

otherwise, it is absorbed by preceding or succeeding dominant

camera motions. Moreover, in order to further stabilize our

camera motion detection method, we filter the obtained affine

transform coefficients set by applying a temporal median filter

having window size 3.

We interpret the affine transform coefficients contained in

the state vector θt as follows:

• If m̀1 = m1

cosφ > 1, then the detected camera motion is

classified as zoom in.

• If m̀1 = m1

cosφ < 1, then the detected displacement is

characterized as zoom out.

• If m2 < 0, the camera rotates in a clockwise manner.

• If m2 > 0, the camera rotates in an anti-clockwise

manner.

• Parameters m3 and m4 define pan and tilt along the

direction of x and y axes, respectively.

We provide experimental results obtained by applying the

proposed method in representative video sequences for each

camera motion pattern. The variation of the affine coeffi-

cients describing the camera motion at each video frame

it is presented at the accompanying graphs. Moreover, at

key moments, when the camera motion pattern alters, the

respective video frames are provided for visual confirmation

of the obtained results.

In Fig. 1, the results that are obtained by applying the

proposed method in a video sequence comprised of 992 frames

where the camera performs pan and tilt, are presented. The

variation of the affine coefficients responsible for translation

according to x and y axes, it is sketched in this graph, as the

test video evolves over time. As shown, the camera pans to

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8

the right during the frame intervals 1 − 107 and 250 − 352,

while it pans to the left at the frame intervals 108 − 249
and 805− 918. Moreover, during the video frames 353− 437
and 624 − 681 the camera tilts up, while during the temporal

intervals 438 − 560 and 919 − 992 the camera tilts down.

Finally, during the interval 561−623 camera stands still, while

from frame 718 and until frame 804 camera moves diagonally

up and to the right.

The lower graph in Fig. 1 presents the variation of the mix-

ture probabilities that regulate each component’s contribution

to the observation likelihood derived from the same video

stream. As it is observed the stable component’s membership

initially declines, as expected, since the model has not created

an accurate motion representation during that period. On the

other hand, the wander component adapts faster than the

stable, as it has been designed, and as a result its contribution

during the same temporal interval increases. In general, the

mixing probability of the stable component reaches its highest

value, at the exact moment the camera completes a distinct

motion pattern, since at that time the stable component has

the optimum smoothed camera motion representation. On the

other hand, at the same moment the wander component’s

membership is assigned its lowest value.

Fig. 1. Variation of translation factors m3 and m4 according to x and y axes,
respectively. The lower graph shows the variation of the components mixing
probability as the video stream evolves. Each model component identifies a
different type of camera motion.

The next examined test video sequence contains 237 frames,

in which the camera zooms in and out, while there are sequen-

tial video frame temporal regions where camera remains still.

Fig. 2 depicts the variation of the obtained scale factor m̀1.

The proposed method successfully identified and classified the

performed camera motion in three different patterns. During

the frame interval 37−114, camera motion has been classified

as zoom in, while for the frame interval 152 − 232, it has

been characterized as zoom out. There are three groups of

sequential frame regions (1 − 36, 115 − 152 and 232 − 237)

where the proposed algorithm has not detected any significant

camera motion and these periods have been characterized as

still ones.

Fig. 2. Variation of the scale factor when the camera performs zooming in
and out. At key frames when camera changes its motion pattern video frames
are provided.

Fig. 3 presents a camera motion case for a video of

695 frames, where the camera rotates in a clockwise and

in an anti-clockwise manner, while there are 9 video frame

intervals, where the camera remains stationary. These labelled

video frame groups either have been successfully detected

and characterized or they have been absorbed by preceding

or succeeding dominant camera motions. It should be noted

that according to the conformal affine transformation model,

the rotation coefficient corresponds to m2 = sinφ. The camera

motion has been identified and classified as follows: rotation in

a clockwise manner inside the video frame intervals 12− 197
(region 2 has been absorbed), 565 − 615 and 625 − 660
and rotation in an anti-clockwise manner in the video frame

interval 213 − 564 (except from the labelled regions 4, 5, 6
and 7 which have not been absorbed). Finally, the performed

camera motion pattern has been characterized as stationary

inside the labelled video frame intervals 1,3,4,5,6,7,8 and 9.

Fig. 3. Variation of sinφ which declares the affine coefficient responsible
for rotation. Nine regions are distinguished in which the camera remains
stationary.

B. Camera Motion Modelling Accuracy

In each prediction step, the system state vector defined in

(1), is adjusted so as to approximate the affine transform coef-

ficients that better fit the motion representation that OV FMt

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

9

contains. On the other hand, the predicted future state de-

termines a motion vector field which could be obtained by

repositioning the video frame block centers, as determined by

the affine transformation and compute each block displacement

with respect to its previous position. Therefore, since the

real motion vector field is available when a new frame is

processed, the accuracy of the last prediction could be assessed

by computing the Mean Square Error (MSE) between the

estimated and the real motion vector fields:

MSEt = 1
n

∑n
i=1

(

(

v̂i
t,x − vi

t,x

)2
+

(

v̂i
t,y − vi

t,y

)2
)

,

(26)

where v̂
i
t = [v̂i

t,x v̂i
t,y] and v

i
t = [vi

t,x vi
t,y] correspond to

the i-th estimated and real motion vector at time t, respectively.

The proposed method has been applied in a video sequence

containing 186 frames, where the camera zooms in with

variable pace, except from a temporal interval between frames

181 − 186, where it remains still. Fig. 4 presents the MSE

produced by the LS solution and the proposed method. As

depicted, while the camera zooms in at a growing pace from

the beginning of the video sequence until frame 180 (during

this interval the scaling factor has tripled), the increase in

the scale factor value is also followed by an increase in

the generated MSE. The radical drop in the MSE at frame

181 occurs since the camera changes its motion pattern and

remains still. As depicted, the proposed method constantly

generates lower error compared with the LS solution. During

the complete video sequence the average generated MSE by

the proposed method is MSE = 0.588, while the LS solution

produces on average almost a triple value since MSE =
1.6744.

Fig. 4. Computed MSE error produced by the LS solution and the proposed
method.

Fig. 5 shows the MSE obtained for the video sequence

presented in Fig. 3. The nine video frame temporal intervals,

in which the camera remains still, are distinctive, since the

majority of the contained motion vectors are equal to zero

and as a result, the generated error is minimal. The proposed

method clearly outperforms the LS solution, since the com-

puted MSE is constantly lower than 1.0. Moreover, the average

MSE introduced by the LS solution is MSE = 0.65847, while

the corresponding average MSE for the proposed method is

MSE = 0.1977.

In Fig. 6, average MSE generated by both solutions and

computed over the complete test dataset is presented. As can

be seen, the proposed method clearly generates smaller MSE

Fig. 5. Comparison of the produced MSE between the proposed method
and the LS solution. In this video, the camera rotates while there exist nine
sequential frame regions in which it remains still.

values, independently of the performed camera motion pattern.

Fig. 6. MSE computed for each video in the test dataset.

C. Compressed Video

In order to reduce the processing time, we have applied

the proposed method directly on compressed MPEG video

streams without performing full frame decompression in ad-

vance. MPEG video streams are composed of an hierarchically

organized structure [29], [30] consisting of: sequences, Group

Of Pictures (GOP), pictures, slices, macroblocks and blocks. A

GOP consists of three different types of pictures: the I-frames

which are coded pictures using only information present in

the picture itself, the predicted pictures (P-frames) coded

with respect to the nearest previous I- or P-frame and the

bidirectionally predicted pictures (B- frames) coded using both

a past and a future I- or P-frame as a reference.

Since I-frames are intracoded and B-frames are coded

bidirectionally, we can neglect them and apply our method

directly to the resulting P-frames exploiting the contained

motion vectors. As a result of this approach, significant com-

putational gain is observed, since we essentially sub sample

over time. On the other hand, we expect an increase in the

estimation error, especially in video sequences in which rapid

changes in camera motion occur frequently. Fig. 7 presents a

comparison of the MSE obtained by applying the proposed

method either in the complete video stream or only in P-

frames. As expected, the difference in the MSE is smaller

when camera moves smoothly, since there are no radical

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10

variations in the motion vector fields across P-frames, as for

instance, during the frame intervals 1 − 38 and 120 − 177.

On the other hand, we observe severe performance difference

between the two approaches, when the camera moves faster.

Moreover, the average MSE computed from the uncompressed

video stream is MSE = 0.20496 while for the compressed

MPEG video is MSE = 0.32213.

Furthermore, the time required to perform camera motion

estimation has been evaluated. Experiments have been con-

ducted on an Intel Pentium 4 processor, running at 3.0 Ghz and

using 1 GB of RAM. The under examination video consists of

237 frames, sized 360 × 240 pixels, where 61 of them are P-

frames. Since for the MPEG coder each block is of dimension

8 × 8 pixels, we have applied the same settings in the block

matching algorithm in order to obtain equally sized motion

vector fields. The system requires 0.144 seconds to process one

video frame or, equivalently, it processes 6.93 motion vector

fields per second, which is a prohibitive amount of time for

real time systems. However, in compressed MPEG videos of

NTSC quality, coded in a rate of 30 frames per second, there

are available 8 P-frames per second, which means that such

MPEG video streams can be processed almost in real time.

Fig. 7. MSE computed for the same compressed MPEG and uncompressed
video stream.

D. Incorporation of Camera Motion Estimation with Moving

Object Tracking.

The effectiveness of incorporating the proposed method

within an object tracker in order to separate the camera motion

from the tracked object motion, has been also investigated.

We have embedded our algorithm within the object tracker

proposed in [24], which also predicts the future position of the

tracked object. We have applied the new schema in a video

sequence in which, while the camera zooms in, the tracked

object moves along the y axis. Moreover, since tracking is

performed in each frame of the video sequence, we obtain

the motion vector fields using a block matching algorithm.

Firstly, the proposed method determines the affine transfor-

mation describing the camera motion and then launches the

object tracker. Both state vectors denote affine transformations

therefore, the generated future state estimates by the object

tracker {θi
o,t}

K
i=1, determining the position of the image region

of interest inside the video frame, are transformed prior their

evaluation as:{θ̀
i

o,t}
K
i=1 = θt{θ

i
o,t}

K
i=1. In Fig. 8, screen

shots of the tracking process with and without camera motion

incorporation are provided. Both tracking processes have been

initialized to track exactly the same regions. Fig. 9a presents

the tracking results where camera motion estimation has not

been incorporated. Fig. 9b presents the obtained results where

camera motion prevention has been included, while Fig. 9c

shows the ground truth for the respective video frames. Notice

that the bounding box has been scaled up during the video

sequence since the detected camera motion is zoom in. We

have quantitatively measured the performance of the new

schema by comparing the spatial overlap amount between

the highlighted by the object tracker region and the ground

truth data with and without considering the camera motion.

The obtained measurements for each video frame have been

sketched in a graph, shown in Fig. 9. In the examined video

sequence the mean spatial overlap with respect to the ground

truth data has been increased by 30.4%.

(a)

(b)

(c)
Frame 1 Frame 25 Frame 50 Frame

70 Frame 82

Fig. 8. a) The tracking results where camera motion detection has not been
included. b) Tracking results of the new schema. c) Ground truth.

Fig. 9. Spatial overlap amount between tracks obtained with and without
considering the camera motion.

V. CONCLUSION

Our main aim in this work is to determine accurately the

motion parameters of the performed camera movement and

not only to identify the performed 2D motion pattern. To

do so, a novel camera motion estimation method based on

using the motion vector field has been presented in this paper.

The features that distinguish our method from other proposed

camera motion estimation techniques are: 1) the integration

of a novel stochastic vector field model, 2) the incorporation

of the vector field model inside a particle filters framework

where an online EM algorithm for model parameters update

enables the method to estimate the future camera movement

and 3) the ability to detect, characterize and estimate the

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

11

performed camera motion pattern. Motivated by the fact that

camera motion could be temporarily characterized by rapidly

varying, slowly varying and stationary movement patterns,

we have designed the proposed model, that easily adapts to

camera motion types having possibly variable pace. Extensive

experimental results have verified that the proposed method

not only successfully characterizes the detected camera motion

pattern but also predicts the subsequent performed camera

motion with minimal error.

REFERENCES

[1] W. Lie and W. Hsiao, “Content-based video retrieval based on object
motion trajectory,” in IEEE Workshop on Multimedia Signal Processing,
December 2002, pp. 237–240.

[2] W. Hu, D. Xie, Z. Fu, W. Zeng, and S. Maybank, “Semantic-based
surveillance video retrieval,” IEEE Transactions on Image Processing,
vol. 16, no. 4, pp. 1168 – 1181, April 2007.

[3] Y. Jianfeng and L. Zhanhuai, “Modeling of moving objects and querying
videos by trajectories,” in MMM ’04: Proceedings of the 10th Interna-

tional Multimedia Modelling Conference. Washington, DC, USA: IEEE
Computer Society, 2004, pp. 373–380.

[4] Y.-P. Tan, D. D. Saur, S. R. Kulkarni, and P. J. Ramadge, “Rapid
estimation of camera motion from compressed video with application to
video annotation,” IEEE Transactions on Circuits and Systems for Video

Technology, vol. 10, no. 1, pp. 133–145, 2000.
[5] L.-Y. Duan, J. S. Jin, Q. Tian, and C.-S. Xu, “Nonparametric motion

characterization for robust classification of camera motion patterns,”
IEEE Transactions on Multimedia, vol. 8, no. 2, pp. 323–340, 2006.

[6] X. Zhu, A. K. Elmagarmid, X. Xue, L. Wu, and A. C. Catlin, “In-
sightvideo: Toward hierarchical video content organization for efficient
browsing, summarization and retrieval,” IEEE Transactions on Multime-

dia, vol. 7, no. 4, pp. 648–666, 2005.
[7] T. Lertrusdachakul, T. Aoki, and H. Yasuda, “Camera motion charac-

terization through image feature analysis,” in ICCIMA’05, 16-18 Aug.
2005, pp. 186 – 190.

[8] H. Yi, D. Rajan, and L.-T. Chia, “Automatic generation of mpeg-
7 compliant xml document for motion trajectory descriptor in sports
video,” Multimedia Tools Appl., vol. 26, no. 2, pp. 191–206, 2005.

[9] M. Ben-Ezra and S. K. Nayar, “Motion-based motion deblurring,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 26,
no. 6, pp. 689–698, 2004.

[10] C. Cotsaces, N. Nikolaidis, and I. Pitas, “Video shot detection and
condensed representation. a review,” Signal Processing Magazine, IEEE,
vol. 23, no. 2, pp. 28–37, March 2006.

[11] H. J. Zhang, C. Y. Low, S. W. Smoliar, and J. H. Wu, “Video parsing,
retrieval and browsing: an integrated and content-based solution,” in
MULTIMEDIA ’95: Proceedings of the third ACM international con-

ference on Multimedia. New York, NY, USA: ACM Press, 1995, pp.
15–24.

[12] Y. F. Ma, L. Lu, H. J. Zhang, and M. Li, “A user attention model for
video summarization,” in MULTIMEDIA ’02: Proceedings of the tenth

ACM international conference on Multimedia. New York, NY, USA:
ACM Press, 2002, pp. 533–542.

[13] M. Irani and P. Anandan, “Video indexing based on mosaic representa-
tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 86, no. 5, pp. 905–921, May 1998.

[14] Z. Duric and A. Rosenfeld, “Stabilization of image sequences,” College
Park, MD, USA, Tech. Rep., 1995.

[15] Y. S. Yao and R. Chellappa, “Electronic stabilization and feature tracking
in long image sequences,” College Park, MD, USA, Tech. Rep., 1995.

[16] H. Jozawa, K. Kamikura, A. Sagata, H. Kotera, and H. Watanabe, “Two-
stage motion compensation using adaptive global MC and local affine
MC,” IEEE Trans. Circuits Syst. Video Technol., vol. 7, no. 2, pp. 75–85,
1997.

[17] S. F. Wu and J. Kittler, “A differential method for simultaneously
estimation of rotation, change of scale and translation,” Signal Process.

Image Commun., vol. 2, no. 1, pp. 69–80, 1990.
[18] J.-G. Kim, H.-S. Chang, J. Kim, and H.-M. Kim, “Efficient camera

motion characterization for MPEG video indexing,” in ICME ’00, vol. 2,
30 July-2 Aug. 2000, pp. 1171 – 1174.

[19] F. Dufaux and J. Konrad, “Efficient, robust, and fast global motion
estimation for video coding,” IEEE Transactions on Image Processing,
vol. 9, no. 3, pp. 497–501, 2000.

[20] J. H. Kotecha and P. M. Djuric, “Gaussian particle filtering,” IEEE

Transactions on Signal Processing, vol. 51, no. 10, pp. 2592–2601,
October 2003.

[21] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on
particle filters for on-line non-linear/non-gaussian bayesian tracking,”
IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174–188,
February 2002.

[22] A. D. Jepson, D. J. Fleet, and T. F. El-Maraghi, “Robust online
appearance models for visual tracking,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 25, no. 10, pp. 1296–1311, 2003.
[23] N. Gordon, D. Salmond, and A. Smith, “Novel approach to

nonlinear/non-Gaussian bayesian state estimation,” in IEE Proc.-F, vol.
140, no. 2, April 1993, pp. 107–113.

[24] S. K. Zhou, R. Chellappa, and B. Moghaddam, “Visual tracking and
recognition using appearance-adaptive models in particle filters.” IEEE

Transactions on Image Processing, vol. 13, no. 11, pp. 1491–1506, 2004.
[25] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood

from incomplete data via the em algorithm,” Journal of the Royal

Statistical Society. Series B (Methodological), vol. 39, no. 1, pp. 1–38,
1977.

[26] J. Sullivan and J. Rittscher, “Guiding random particles by deterministic
search,” in ICCV, 2001, pp. 323–330.

[27] J. Chilson, R. Ng, A. Wagner, and R. Zamar, “Parallel computation of
high-dimensional robust correlation and covariance matrices,” Algorith-

mica, vol. 45, no. 3, pp. 403–431, 2006.
[28] P. Huber, Robust Statistics. Wiley, New York, 1981.
[29] A. M. Tekalp, Digital video processing. Upper Saddle River, NJ, USA:

Prentice-Hall, Inc., 1995.
[30] V. Bhaskaran and K. Konstantinides, Image and Video Compression

Standards: Algorithms and Architectures. Norwell, MA, USA: Kluwer
Academic Publishers, 1997.

