

 Camera Phone Based Motion Sensing: Interaction
Techniques, Applications and Performance Study

Jingtao Wang
♦ Shumin Zhai

§
 John Canny

♦

♦Computer Science Division

UC Berkeley, 387 Soda Hall, Berkeley, CA, U.S.A

{jingtaow, jfc}@cs.berkeley.edu

§
IBM Almaden Research Center

650 Harry Road, San Jose, CA, U.S.A.

zhai@almaden.ibm.com

ABSTRACT

This paper presents TinyMotion, a pure software approach

for detecting a mobile phone user’s hand movement in real

time by analyzing image sequences captured by the built-in

camera. We present the design and implementation of Ti-

nyMotion and several interactive applications based on

TinyMotion. Through both an informal evaluation and a

formal 17-participant user study, we found that 1. TinyMo-

tion can detect camera movement reliably under most back-

ground and illumination conditions. 2. Target acquisition

tasks based on TinyMotion follow Fitts’ law and Fitts’ law

parameters can be used for TinyMotion based pointing per-

formance measurement. 3. The users can use Vision Tilt-

Text, a TinyMotion enabled input method, to enter sen-

tences faster than MultiTap with a few minutes of practic-

ing. 4. Using camera phone as a handwriting capture de-

vice and performing large vocabulary, multilingual real

time handwriting recognition on the cell phone are feasible.

5. TinyMotion based gaming is enjoyable and immediately

available for the current generation camera phones. We

also report user experiences and problems with TinyMotion

based interaction as resources for future design and devel-

opment of mobile interfaces.

ACM Classification: H5.2 [Information interfaces and

presentation]: User Interfaces. - Graphical user interfaces;

Input devices and strategies, Theory and methods

General terms: Design, Human Factors, Performance

Keywords: Input Techniques and Devices, Mobile Devices,

Computer Vision, Mobile Phones, Camera Phones, Motion

Estimation, Fitts’ Law, Human Performance, Handwriting

Recognition, Gesture Recognition

INTRODUCTION

Mobile phones have become an indispensable part of our

daily life. Their compact form has the advantage of port-

ability, but also imposes limitations on the interaction

methods that can be used. While the computing and display

capabilities of mobile phones have increased significantly

in recent years, the input methods on phones largely remain

button based. For basic voice functions, a button press

based keypad is quite adequate. But mobile phones are

rapidly moving beyond voice calls into domains such as

gaming, web browsing, personal information management,

location services, and image and video browsing. Many of

these functions can greatly benefit from a usable analog

input device. Mobile phones may take on even more com-

puting functions in the future if higher performance user

interfaces can be developed. We show in this paper that the

built-in camera in mobile phones can be utilized as an input

sensor enabling many types of user interactions.

Various technologies have been proposed and tested to

improve interaction on mobile devices by enhancing ex-

pressiveness [11, 12, 18, 23, 24], or sensing contextual

features of the surrounding environment [12]. Accelerome-

ters [12, 18, 23, 24], touch sensors [11, 12] and proximity

sensors [12] have been used. While some of these tech-

nologies may eventually make their way inside the phone,

they are rarely seen in phones today.

Figure 1: Using TinyMotion enabled applications
out-doors (left) and in-doors (right)

On the other hand, camera phones are already popular and

pervasive. The global cell phone shipment in 2005 was 795

million units, 57% of which (about 455 million units) were

camera phones. It is predicted that 85% of the mobile

phones will be camera phones by 2008 with a shipment of

800 million units [21].

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior spe-

cific permission and/or a fee.

UIST’06, October 15–18, 2006, Montreux, Switzerland.

Copyright 2006 ACM 1-59593-313-1/06/0010...$5.00.

We have developed a technique called TinyMotion (figure

1) for camera phones. TinyMotion detects the movements

of a cell phone in real time by analyzing image sequences

captured by its built-in camera. Typical movements that

TinyMotion detects include horizontal and vertical move-

ments, rotational movements and tilt movements. In con-

trast to earlier work, TinyMotion does not require addi-

tional sensors, special scenes or backgrounds. A key con-

tribution of the paper is an experimental validation of the

approach on a wide variety of background scenes, and a

quantitative performance study of TinyMotion on standard

target acquisition tasks and in real world applications.

RELATED WORK

Related work fall into three categories: emerging camera

phone applications, new interaction techniques for mobile

devices and computer vision based interaction systems.

Emerging Camera Phone Applications

Inspired by the success of CyberCode[19] from SONY,

several researchers[20] and companies have designed cus-

tomized 2D barcodes that can be recognized easily by cam-

era phones. Most of these systems measure the size, posi-

tion and angle of the barcode relative to the camera’s opti-

cal axis, which can be used to infer the camera’s 3D posi-

tion relative to the barcode, and provide an alternative spa-

tial input channel. SemaCode (http://semacode.org) is posi-

tioned as a general purpose tagging solution, Spot-

Code(a.k.a. ShotCode) has a feature that maps 2D bar

codes to online URLs. On top of their barcode system Vis-

ual Codes [20] have also built UI widgets to achieve desk-

top-level interaction metaphors. Visual Codes is also used

to manipulate objects on large public displays interactively

[1].

Hansen and colleagues [4] proposed the idea of a “mixed

interaction space” to augment camera phone interaction.

Their method relies on camera imaging of a light uniform

background with a circular marker. This image needs to be

laid out on a suitable flat surface. 2D bar codes [1], Or-

thogonal axis tags [16], high gradient still objects [3] and

human faces can all be used as markers to facilitate the

tracking task. In contrast, TinyMotion provides general

motion sensing from whatever scene the camera is pointed

at, near or far.

If we make assumptions on the texture/gradient distribution

of surrounding environments, other vision based approach

such as Projection Shift Analysis [2] or gradient feature

matching [9] could also provide real time motion detection

on mobile devices. However, these approaches will fail

when these strong assumptions do not hold. E.g., image

projection based approach won’t work on background with

repeating patterns [2]. Many everyday backgrounds with

less gradient, e.g. floors, carpets and the sky, will make

gradient feature detection infeasible.

New Interaction Techniques for Mobile Devices

Previous work has proposed many compelling interaction

techniques based on physical manipulation of a small

screen device, including contact, pressure, tilt, motion and

implicit biometric information. Specifically with regard to

navigation, Rekimoto [18] used tilt input for navigating

menus, maps, and 3-D scenes, and Harrison et al. [11] and

Hinckley et al. [12] have used tilt for scrolling through

documents and lists. Peephole Displays [25] explored the

pen interactions on spatially aware displays on a PDA. Ear-

lier before the current generation of phones and PDAs,

Fitzmaurice et al. [5] explored spatially aware ‘Palmtop

VR’ on a miniature handheld TV monitor.

Computer Vision in Interactive Systems

Considering the amount of information captured by human

eyes, using computer vision in interactive systems has long

been a popular topic [7]. Much previous research in this

category covers multimodal interaction [6], gesture recog-

nition, face tracking, body tracking [17] etc. There are also

numerous systems that map certain types of user’s move-

ments, for example, body, gesture, finger, face, and mouth

movements into computer inputs. Please refer to [6, 17],

which include some extensive survey in the related direc-

tions, and [7] for some commonly used basic algorithms.

However, most of those applications are built on powerful

desktop computers in controlled lab environments.

THE TINYMOTION ALGORITHM

Computer vision techniques such as edge detection [9],

region detection [7] and optical flow [13] can be used for

motion sensing. Ballagas et al [1] had implemented an opti-

cal flow based interaction method - “sweep” on camera

phones. However, optical flow [13] is a gradient based

approach and it uses local gradient information and the

assumption that the brightness pattern varies smoothly to

detect a dense motion field with vectors at each pixel. Due

to the additional assumptions on gradient distribution and

the smoothness of illumination, they are usually less robust

than direct methods based on correlation or image differ-

ence. The latter are used in optical mice, video codecs etc,

and we follow suit. TinyMotion has used both image differ-

encing and correlation of blocks [8, 14] for motion estima-

tion.

The TinyMotion algorithm consists of four major steps: 1.

Color space conversion. 2. Grid sampling. 3. Motion esti-

mation. 4. Post processing. All of these steps are realized

efficiently by integer only operations.

To use TinyMotion, the camera is set in preview mode,

capturing color images at a resolution of 176x112 pixels,

at a rate of 12 frames/sec1.

Color Space Conversion

After a captured image arrives, we use a bit shifting

method (equation 2, an arithmetic approximation of equa-

tion 1) to convert the 24-bit RGB color (20 effective bits in

each pixel for our specific camera phone used) to an 8-bit

gray scale image.

1 Without displaying the captured image and additional computa-

tion, the camera phones in our experiments can capture images

at the maximal rate of 15.2 frames/sec.

 0.114B 0.587G R*.299 0 Y ++= (1)

3)B(3)(G)1(G2)(R Y >>+>>+>>+>>= (2)

Grid Sampling

Grid Sampling, a common multi-resolution sampling tech-

nique [14], is then applied on the gray scale image to re-

duce the computation complexity and memory bandwidth

for the follow-up calculations. We use 8x8 sampling win-

dow in our current implementation after much experimen-

tation.

Motion Estimation

The motion estimation technique we use is similar to those

commonly used by video encoders (MPEG2, MPEG4 etc).

We denote the result of grid sampling as a macro-block

(MB) and apply Full-search Block Matching algorithm

(FBMA)[14, 8] on temporally adjacent fames.

Let Ik represent the current frame and Ik-1 represent the pre-

vious frame. In any frame I, I(x,y) is the pixel value at lo-

cation (x, y). For FBMA, the MB in current frame Ik is

shifted and compared with corresponding pixels in previ-

ous frame Ik-1. The shifting range is represented as Rx and

Ry respectively. In our current implementation, Rx = (-3,

3), Ry = (-3, 3). Common distance measurements include

Mean Square Error (MSE, equation 3[14]), Sum of Abso-

lute Difference (SAD) and Cross-Correlation Function

(CCF). After block matching the motion vector MV is

chose as the corresponding block shifting distance (equa-

tion 4).

[]∑ ∑
−+

=

−+

=
− ++−

=
1 1

2

1),(),(
1

),(

Mx

xm

Ny

yn

kk dyndxmInmI
MN

dydxMSE
 (3)

),(min),(2),(
dydxMSEMVMVMV

Rdydxyx ∈
== (4)

The motion vector),(yx MVMVMV = represents the

displacement of the block with the best result for the dis-

tance criterion after the search procedure is finished. Ac-

cording to the output of the motion estimation, tilting left is

equivalent to moving the phone left, tilting the upper part

of the phone towards the user is equivalent to moving the

phone upwards, and so on. To detect camera rotation, we

split each global MB into 2x2=4 sub MBs and estimate

their relative motions respectively.

Post Processing

The relative movements detected in the motion estimation

step are distance changes in the x and y directions. These

relative changes are also accumulated to provide an abso-

lute measurement from a starting position.

In the current implementation, TinyMotion generates 12

movement estimations per second, and takes 19 – 22 ms to

process each image frame on a Motorola v710 phone. The

memory needed is around 300KB.

IMPLEMENTATION

Our primary implementation platform is the Motorola v710

(a CDMA Phone from Verizon Wireless), a common off-

the-shelf camera phone at the time our implementation. The

v710 has an ARM9 processor, 4M RAM, 176x220 pixel

color display. Our application is written in C++ for BREW

(the Binary Runtime Environment for Wireless,

http://brew.qualcomm.com) 2.11. We use Realview ARM

Compiler 1.2 for BREW to cross-compile the target appli-

cation. BREW is an efficient binary format that can be

downloaded over the air, so there is a rapid distribution

path for commercial applications built using TinyMotion.

We believe TinyMotion can also be ported easily to other

platforms such as Windows Mobile and Symbian.

To test the efficacy of TinyMotion as an input control sen-

sor, we wrote four applications (Motion Menu, Vision

TiltText, Image/Map Viewer, Mobile Gesture) and three

games (Camera Tetris, Camera Snake and Camera Break-

Out). All these prototypes can be operated by moving and

tilting the camera phone. Figure 2 shows some screen shots

of the TinyMotion-enabled prototype applications. Not in-

cluding the recognizer used in Mobile Gesture, the current

TinyMotion package includes a total of 23,271 lines of

source code in C++. We now discuss the Mobile Gesture

and Vision TiltText applications in greater detail.

Mobile Gesture

The Mobile Gesture application was inspired by the idea of

using the camera sensor on the cell phone as a stylus for

handwriting recognition and gesture based command and

control. In the current implementation of Mobile Gesture,

the user presses the “OK” button on the phone to trigger

the “pen down” operation on the phone. Instead of restrict-

ing gesture/handwriting to be single stroke or setting a

timeout threshold to start the recognition, the user presses

the POUND (“#”) key to signal the end of a character.

Figure 2: Sample TinyMotion applications and
games. From left to right, top to bottom – Motion
Menu, Image/Map Viewer, Mobile Gesture, Camera
Tetris, Camera Snake and Camera BreakOut

The recognizer used by the Mobile Gesture application is a

commercial product designed by one of the authors. The

original recognizer was designed for handheld devices run-

ning Palm Pilot, Windows CE or Linux etc. It supports

multilingual input of western character and East Asian dou-

ble byte characters (e.g. Chinese, Japanese characters). By

default, we use a recognition library which supports all the

English characters, punctuation symbols and around 8000

Chinese and Japanese characters (6763 simplified Chinese

characters defined by the GB2312 national standard and

around 1300 Hiragana, Katakana and Kanji characters in

Japanese). The size of the recognizer is around 800KB

including both the code and the recognition library. If we

remove the support for Asian double byte characters, the

size of the recognizer and related library can be reduced to

around 350kb. On the Motorola v710 phone, it takes 15-

20ms to recognize a handwritten Roman character, and 35-

40ms to recognize one of the 8000 supported double byte

characters. As a reference, it takes the same recognizer

around 700ms to recognize the same double byte character

on a Palm V PDA with 2 Mb memories, which implies an

off-the-shelf cell phone in year 2005 is about 20 times

faster than a common PDA in the year 1999 for this spe-

cific recognition task. We made one modification on the

recognizer after porting it to BREW by adding a four-pixel

wide smoothing window filter on the handwriting traces

before starting the actual recognition process. This is de-

signed to reduce the hand shaking noise captured by Tiny-

Motion. The handwriting traces displayed on the user’

screen are not smoothed.

Vision TiltText

We use the following configuration in our Vision TiltText

text input method, which is a remake of the accelerometer

based mobile input method by Wigdor and colleagues [24].

To input character A, a user need to press keypad button

“2”, hold it, tilt or move the phone to the left, release but-

ton “2”. To input character B, press and release button “2”

without movement, to input character C, press button “2”,

hold it and tilt or move the phone to the right, then release

the button. This definition is based on the convention that

the alphabet characters displayed on telephone button “2”

is ordered as ‘A’,’B’,’C’ from left to right respectively. To

input numeric characters, one presses the corresponding

numeric key, move the phone up, then release it. To input

the fourth character ‘S’ or ‘Z’ on button ‘7’ and ‘9’, the

user can press the related button, move down, then release.

To avoid noisy movement generated by hand shaking, we

set a movement threshold for all the characters that need

tilting to enter. When the movement in one direction ex-

ceeds the corresponding threshold, the phone will vibrate

for 70ms to signal that the input state had changed so the

button can be safely released.

FIRST INFORMAL EVALUATION

We evaluated the reliability of TinyMotion by two meth-

ods. First, we benchmarked the detection rate of camera

movements in four typical conditions and four different

directions. To measure each direction 50 shift action and

50 tilt actions were performed. In total, 1600 actions were

recorded. A shift action required at least a half inch of

movement, while a tilt action had to exceed 15 degrees. If

the accumulated movements value in a certain direction

exceeded the threshold value 5, our system will output that

direction as the detected movement direction.

The summarized detection rates in each condition are listed

in table 1. Most of the errors in the outdoor direct sunshine

condition were caused by unexpected objects (mostly vehi-

cles or people) moving into/out of the camera view during

the testing process.

 Left Right Up Down

Outdoor direct sunshine 97% 100% 96% 97%

Outdoor in the shadow 100% 99% 99% 100%

In-door ambient light 100% 100% 100% 100%

In-door fluorescent lamp 100% 100% 99% 100%

Table 1: Movement benchmarking results in four
typical environments (shifting and tilting movements
in the same direction are not differentiated)

We also conducted an informal usability test by distribut-

ing camera phones installed with TinyMotion-enabled ap-

plications/games to 13 users, most of them students or fac-

ulty members in a local university. We asked them to play

with the Motion Menu application, the Camera Tetris game

and the Camera Snake game (Some applications such as

Mobile Gesture and Camera BreakOut were not ready at

the time of the informal evaluation) and encouraged them

to challenge TinyMotion in any background and illumina-

tion conditions that they could think of or had access to.

Figure 3: Environment/Backgrounds in which Tiny-
Motion work properly

All of the users reported success against backgrounds such

as an outdoor building, piles of garbage, different types of

floors indoor and outdoor, grass in a garden, cloth, and a

bus stop at night, areas with low illumination or colored

illumination, different areas in pubs, etc. Most were sur-

prised to learn that the motion sensing was based on cam-

era input. One participant was shocked when he found that

TinyMotion still worked when he pointed the camera at a

blue sky and moved the phone (even motion of smooth

gradient images can be detected). Figure 3 shows some

difficult situations where traditional edge detection based

methods may fail but TinyMotion can still work.

The environments in which TinyMotion won’t work in-

clude completely dark rooms, extremely uniform back-

ground without any pattern (e.g. the glass surface when an

LCD monitor is turned off) and pointing the camera to the

outside of a window in a moving vehicle.

The participants in our informal study were clearly amazed

with TinyMotion and interested in its use. Comments in-

clude “Cool, I didn’t expect the tracking can work that

well.” “Using this (motion menu) makes [operating] cell

phones a lot more fun” “it will be an ideal method to play

the monkey ball game on a cell phone”

One user quickly realized that instead of moving the cam-

era phone directly, he can put his other hand in front of the

camera lens and control the TinyMotion games by moving

that hand. Another user initially felt TinyMotion was not

very sensitive, only to find that his extended index finger

covered the camera lens.

FORMAL EVALUATION

Although the results of the first informal user study were

very encouraging, a formal study was necessary for under-

standing the capabilities and limitations of TinyMotion as

an input sensing mechanism. We had two basic goals for

the formal study. One was to quantify human performance

using TinyMotion as a basic input control sensor. In par-

ticular we measured the performance of pointing, menu

selection, and text entry by tap-tilt action. The second goal

was to evaluate the scope of applications that can be built

on the TinyMotion sensor, for example using TinyMotion to

play games and do handwriting / gesture recognition.

Experimental Design

The experiment consisted of six parts:

Figure 4: From left to right, screen shots of the target ac-
quisition task, menu selection task and text input task.

Overview. In this session we gave a brief overview of the

TinyMotion project, and demonstrated some of the TinyMo-

tion applications to the participant. We also answered their

questions and let them play with TinyMotion applications

freely.

Target Acquisition/Pointing.This session was designed to

quantify the human performance of the TinyMotion based

pointing tasks. The section started with a warm up practice

session to allow the participants to become familiar with

the pointing task. Pressing UP button started a trial from an

information screen indicating the number of trials left to be

completed. Each trial involved moving the cell phone UP,

DOWN, LEFT or RIGHT to drive the on screen cursor (a

slim line) from an initial position to the target and then

pressing OK button (Figure 4, left). If the user hit the target,

the target acquisition screen disappeared and the informa-

tion screen returned. If the user missed the target, the cur-

sor returned to the initial position and the trial repeated

until the user successfully hit the target. The users were

encouraged to hit the target as fast as possible and as accu-

rately as possible during the target acquisition stage, but

could rest as long as needed when the information screen

was displayed. We encouraged the users to practice as long

as they wanted before the actual test, most of the users

practiced for 3 to 5 minutes.

There were 4 different target sizes (20, 30, 40, 50 pixels), 4

different distances (30, 50, 70, 90 pixels) and 4 different

movement directions (left, right, up, down) in this task.

Each participant completed 160 randomized trials.

Menu Selection. In each trial of this task, a participant was

required to select a target name from a contact list. After

reading the target name from an information screen, the

participant could press the STAR (“*”) button to switch to

the contact list and start the actual trial. The contact list

included 30 alphabetically sorted names and the cell phone

could display 6 names per screen. After highlighting the

intended name, the user can press the “OK” button to com-

plete the trial and switch back to the information screen

(Figure 4, middle).

There were three conditions in this task: cursor button

based selection, TinyMotion based selection, and TinyMo-

tion based selection with tactile feedback. In the tactile

feedback condition every time when the highlighted menu

item changed as a result of moving the phone, the phone

vibrated for around 100ms, providing a non-visual cue to

the user about her progress on the menu item movements.

We added this condition to check the potential influences

of tactile feedback on menu selection.

Each participant was asked to complete 16 selections in

each condition. The order of the three conditions was ran-

domized to counter balance the learning effects.

Text Input. In this task, we compared the performance of

the most popular mobile text entry method – MultiTap with

our Vision TiltText input method. We followed configura-

tions similar to those used in Wigdor et al’s original Tilt-

Text study [24]. The short phrases of text were selected

from MacKenzie’s text entry test phrase set

(www.yorku.ca/mack/phrases2.txt). The timeout for the

MultiTap method was 2 seconds. Due to time constraint of

our study, each participant entered only 8 sentences with

each input method. Note that in studies like [24], each par-

ticipant entered at least 320 sentences for each input

method tested. As a result, our study was not intended to

reveal the learning curve and eventual performance of the

input methods tested. Instead, we only measured users’

initial performance without much practice.

This task started with a warm up practice session, the users

could practice with the two methods tested as long as they

wanted. Most of them choose to practice for 2-5 minutes

before the actual test. The order of the two methods tested

was randomized.

More Complex Applications. After completing the three

basic quantitative performance tasks described above, we

asked the participants to play with the games we created

(Camera Tetris, Camera BreakOut, and Camera Snake) and

the handwriting recognition application (Mobile Gesture).

Figure 5: Some sample pictures taken from our user
study

After demonstrating the games and the handwriting recog-

nition application to the users, we let the users play with

these applications by themselves. They were encouraged to

play the games as long as they wanted and enter at least 3

different characters/gestures in our handwriting recognition

application.

Collecting qualitative feedback. We conducted a final sur-

vey immediately after a user completed all the tasks. In the

survey the user completed a questionnaire and commented

on the applications they tested and on the idea of TinyMo-

tion in general.

To simulate the real world situations of cell phone usage,

we did not control the environment used for the study. The

participants were encouraged to choose their desired loca-

tions to complete the study. Most of the studies were com-

pleted in the participants’ own chair or at a public discus-

sion area in a lab. Figure 5 shows some of the actual envi-

ronments used during the study.

Test Participants

17 people participated in our study. 15 of them were un-

dergraduate or graduate students in a university, the other

two were staff members of the university. 6 of the partici-

pants were female and 11 male. Five of them owned a PDA

and all of them owned a cell phone at the time of the study.

12 of the 17 cell phones were camera phones. Four of the

participants sent text messages daily, six weekly, three

monthly and four never sent text messages. Interestingly,

no user in our study use the camera function of their cell

phone on a daily basis, three of them use the camera func-

tion weekly, four monthly, four yearly and one of them

never uses the camera function.

Two participants didn’t complete the menu selection task

and one participant didn’t complete the text input task due

to time constraints. One of the studies was interrupted by a

false fire alarm for around 25 minutes. All of the partici-

pants completed the target acquisition task, played with all

the applications we created and completed our survey and

questionnaire.

EVALUATION RESULTS

Target Acquisition/Pointing

2842 target acquisition trials were recorded. Despite the

low sampling rate of TinyMotion and the novel experience

of using it, 2720 of the pointing trials were successful, re-

sulting in an error rate of 4.3%, which is common in Fitts’

law studies. This means that it is safe to say that it is al-

ready possible to use TinyMotion as a pointing control sen-

sor.

While there is a vast literature showing hand movements

involving various joints and muscle groups follow Fitts’

law[4], it is still informative to test whether Fitts’ law holds

given the particular way a TinyMotion instrumented cell

phone is held and operated, and the current sampling rate

limitation of the cameras in phones.

Figure 6: Scatter-plot of the Movement Time (MT)
vs. the Fitts’ Law Index of Difficulty (ID) for the
overall target acquisition task.

Linear regression between movement time (MT) and Fitts’

index of difficulty (ID) shows (Figure 6):

)1(log1117.14583.0 2 ++=
W

A
MT (sec) (5)

In equation 5, A is the target distance and W is the target

size. While the empirical relationship between movement

time (MT) and index of difficulty (ID = log (A/W + 1))

followed Fitts’ law quite well (with r2 = 0.94, see Figure 6),

both of the two Fitts’ law parameters (time constant a =

0.458 sec and information transmission rate 1/b = 1/1.1117

= 0.9 bits/sec) indicated relatively low performance of

pointing. This is not surprising given the low sampling rate

of the camera (12 frames per second as opposed to 40+

frames per second in a typical computer mouse). However

since we now know TinyMotion based pointing follows

Fitts’ law, these parameters can serve as an informative

benchmark for future improvement in hardware (e.g. image

frame rate, image capturing quality) or the software (detec-

tion algorithms and related parameters).

An interesting finding is the difference in manipulation

direction of TinyMotion instrumented mobile phones. The

error rates for four different moving directions (left, right,

down, up) were 3.3%, 2.6%, 5.4% and 5.9% respectively.

Analysis of variance showed that there was a significant

main effect (F(1, 32)= 4.15, p<0.05) between horizontal

movements and vertical movements in error rate. There

was no significant main effect (F(1,32)= 1.15, p=0.29)

between horizontal and vertical movements in movement

time, although on average it took longer to accomplish ver-

tical target acquisitions than horizontal acquisitions under

the same ID value, particularly when ID was high (Figure

7). Participants also subjectively felt that it was more diffi-

cult to acquire vertical targets. This result could have im-

plications to TinyMotion application design.

Figure 7: Scatter-plot of the Movement Time (MT)
vs. the Fitts’ Law Index of Difficulty (ID), separately
grouped by horizontal and vertical directions.

Menu Selection

The menu selection results show that it is also possible to

use TinyMotion as a menu selection mechanism. Of the 755

menu selection actions recorded in our study, 720 of them

were successful selections. The overall error rate was 4.6%.

The error rates for the three experimental conditions - cur-

sor key selection, TinyMotion selection and TinyMotion

selection with tactile feedback (referred as TinyForce later)

were 3.2%, 4.8%, and 5.9% respectively. Analysis of vari-

ance did not show a significant difference among these

error rates. As shown in Figure 8, the average menu selec-

tion time was 3.57s, 5.92s, 4.97s for the Cursor Key, Ti-

nyMotion and TinyForce condition respectively. Analysis

of variance results showed that there was a significant dif-

ference (F(2, 42) = 8.44, p<0.001) in completion time.

Pair-wise mean comparison (t-tests) showed that comple-

tion time between the cursor key and TinyMotion methods,

and the cursor key and TinyForce methods were signifi-

cantly different from each other (p<0.01), but not between

the TinyMotion and TinyForce conditions. While on aver-

age the tactile feedback did reduce menu selection time, the

difference was not significant due to the large performance

variance.

0

2

4

6

8

10

 CursorKey TinyMotion TinyForce

C
o
m
p
l
e
t
i
o
n

T
i
m
e

(
s
)

Figure 8: Menu selection time from the experiment

There were several factors that lead to the low observed

performance of TinyMotion-based menu selection tech-

niques. First, the contact list used in our study was rela-

tively long (30 names or 5 screens). Although the names

were sorted alphabetically, it was still hard for the partici-

pants to estimate the approximate location of the name in

the contact list given that the name distribution was

unlikely to be uniform. As a result, if the desired item was

not on the first screen, the participants had to scroll down

the contact list slowly to locate the name, which proved to

be a difficult task based on our observation. Second, our

current Motion Menu was based on the menu behavior

provided by the BREW platform, when the highlighted

item reached the bottom (the sixth) row and a move down

command was received, all the currently on-screen items

would move up one row and a new item appeared on the

sixth row and was highlighted. This feature was not a prob-

lem for cursor key based selection, because the user can

simply pay only attention to the sixth row, while holding

the phone steadily. However, this feature became trouble-

some when the users use camera movement for menu se-

lection, most users felt it was difficult to keep track of the

last row while keep the phone moving.

Text Input

In total 6150 characters were entered (including editing

characters) in this experiment.

Consistent with Wigdor et al’s finding [24], the overall

speed of Vision TiltText was higher than that of MultiTap

(Figure 9) and the error rate of Vision TiltText (13.7%)

was much higher than for MultiTap (4.0%) (Figure 10).

The difference in error rate was statistically significant

(F(1, 30) = 44.36, p < 0.001), but the difference in input

speed was not. Overall, the results of vision based TiltText

were similar to or slightly better than the accelerometer

based TiltText reported by Wigdor et al [24] at the same

(initial) learning stage. This shows that as an input sensor

TinyMotion is at least as effective as an accelerometer for

tap-tilt action based text input.

Figure 9: Entry speed (wpm) by technique and sen-
tence for the entire experiment.

Figure 10: Error rate (%) by technique and sentence
for the entire experiment.

Nearly all the users believed that Vision TiltText is an effi-

cient text entry method (average rating 4.2, SD=0.8, 1-5

scale, 5 means most efficient, 3 means neutral, 1 means

least efficient, no one rated Vision TiltText “less efficient”

or “least efficient”) and is easy to learn (average rating 4.3,

SD = 0.7, 1-5 scale, 5 means extremely easy to learn, 3

means neutral, 1 means extremely difficult to learn, no one

rated Vision TiltText difficult or extremely difficult to

learn). 13 users commented explicitly that they would like

to use Vision TiltText in their daily life immediately.

Subjectively, participants liked the vision based tilt-text

over multi-tap. “[For Vision TiltText,] doing a gesture can

really speed things up, it was very intuitive.” “[Vision]

TiltText [is] faster once you learn it, fewer clicks.” “[Vi-

sion TiltText based] text entry is truly useful because the

multitap for names is annoying, the T9 helps with words,

but not names.”

More Complex Applications

The participants were excited about their experience of

using camera phone movement for gaming. They played

the provided games for around 5 – 12 minutes. One user

rated use of motion sensing for games as “extremely use-

ful”, 10 rated “useful”, 6 rated “neutral”. No one rated

these games “not useful” or “extremely not useful”. As a

comparison, 9 participants reported that they never played

games on their cell phones before, 4 played games yearly

and 4 played monthly. In the closing questions, 7 users

commented explicitly that these TinyMotion games were

very fun and they would like to play these games on their

own phones frequently.

The user study also revealed several usability problems

related with gaming. A lot of participants pointed out that

the “conceptual model” or “control” is inconsistent across

the current games. e.g. in the Camera Tetris game, when a

user moves the cell phone to the left, the block under con-

trol will move to the right and vice versa (assuming we are

moving the frame, or the background of the game, the

block is still). On the other hand, in the Camera BreakOut

game, moving the camera phone to the left will move the

paddle to the left (assuming we are moving the paddle, the

background is still). Around two third of the users believe

the “moving background” model is more intuitive while the

other one third of users believe the “moving foreground

object” model is more intuitive. All of them agree that such

game settings should be consistent across all games and it

is better to let the user decide which control model to use.

Figure 11: Some handwriting samples col-
lected by mobile gesture that had been suc-
cessfully recognized. The last row is a list of
four Chinese words (with two Chinese char-
acters in each word) meaning telephone, de-
sign, science, and foundation respectively.
No smoothing operation was applied on any
of the handwriting samples.

The users also had diverse opinions on the sensitivity of the

game control; three users felt the games control should be

more sensitive than the current setting while other two us-

ers want the game control to be less sensitive, which seem

to suggest games controlled by arm/wrist movements

should provide adjustable sensitivity setting for each game

(the current game control sensitivity was decided by the

authors subjectively).

Most of the users were surprised by the ability of using

camera phones to do handwriting and receiving recognition

results in real time. After a brief demonstration on how to

use the mobile gesture application, all the participants suc-

cessfully entered some alphabetical characters/numeric

characters after 1-2 minutes of practice (some handwriting

samples shown in Figure 11). One of the test users, whose

native language is Chinese, even tested for more than ten

Chinese characters after knowing that the recognizer also

supports Chinese and Japanese characters. Based on our

observation, it took a participant around 5 – 15 seconds to

write an alphabet character and around 15 – 30 seconds to

write a Chinese character by using the mobile gesture ap-

plication. Although from text input speed point of view,

Mobile Gesture was obviously slower than most of the

keypad input method, most of the users felt really excited

when their handwritings (sometimes distorted) got recog-

nized by the cell phone correctly. Indeed most of the users

did not believe Mobile Gesture was an efficient text input

method (average rating 3.2, SD = 1.3, 1-5 scale, 5 means

most efficient, 3 means neutral, 1 means least efficient).

But they also thought Mobile Gesture was intuitive to use

(average rating 4.0, SD = 1.0). 4 users suggested the ideas

of using Mobile Gesture for sentence level input rather

than character level input, i.e. predefine some frequent sen-

tences by arm gestures and use Mobile Gesture to trigger

those sentences by directly writing the corresponding ges-

ture.

One participant suggested the idea of using Mobile Gesture

for authentication tasks. i.e. distinguishing whether a user

using the phone is the actual owner by measuring the

movement characteristics of predefined trajectories.

DISCUSSIONS AND FUTURE WORK

Battery Life

One major concern related with the popularization of Ti-

nyMotion could be the battery life. We measured the bat-

tery life of TinyMotion in two conditions: a power saving

situation and an exhaustive usage situation. For the power

saving condition, we tested TinyMotion by continuously

running the Camera Tetris game with the backlight and the

vibration function turned off. Our Motorola v710 cell

phone ran 8 hours and 7 minutes after a full charge.

For the exhaustive usage situation, we measured battery

life while TinyMotion was constantly running in the back-

ground, with the backlight of the camera phone always on,

and the vibration function activated around 40% of the

total time, and keypad frequently used. In these conditions

the same cell phone lasted around 3 hours and 20 minutes

to 3 hours and 50 minutes. In more moderate use (less than

5% continuous use each time) the phone battery should last

for several days. On most modern phones, the biggest

power drain results from screen backlight, and radio use.

TinyMotion vs. Accelerometer

The most relevant movement sensing technology for mo-

bile devices might be accelerometers. Much mobile device

related research [12, 17, 23, 24] uses one or more acceler-

ometers to sense device movements, for fall protection,

user context detection [12], UI navigation and text input

[17, 23, 24]. Due to its small size and relatively low manu-

facturing cost, we feel accelerometers also have the poten-

tial to become pervasive on mobile devices. Hence we feel

a fair comparison of TinyMotion and accelerometer will be

helpful to mobile interface designers.

Accelerometers do not require the computing power of host

mobile devices in the sensing process and do not depend on

illumination condition or view background. In contrast,

TinyMotion requires certain amount of computing power

from the device to generate movement estimates and may

not work well in extreme illumination and background con-

ditions.

The working mechanisms in accelerometers and TinyMo-

tion are very different. The piezoelectric or MEMS sensors

in accelerometers are actually sensing movement accelera-

tions and the magnitude of gravitational field. In contrast,

TinyMotion is detecting deviation/shifting of backgrounds.

Double integral operations are needed to estimate position

from the raw output of acceleration sensors, which cause

accumulate drift errors and make distance estimation less

reliable than acceleration. Similarly, acceleration estima-

tions from TinyMotion, derived by differential operations,

are less reliable than the original deviation estimations.

Future Work

There are many interesting questions worth exploring in

the near future. For one example, we feel it might be im-

portant to carefully consider the use a “clutch” that can

engage and disengage motion sensing from screen action.

For another example, the traditional one dimensional linear

menu is obviously not the most effective method for cam-

era movement based navigation. We are exploring the pos-

sibility of applying a marking menu [15] approach using

gesture angles rather than movement distance for menu

selection. We feel that the Vision TiltText input method is

quite promising and can be further improved, for example,

by adding visual feedback to guide the user and speed up

the error correction process. Many more applications, such

as those involving panning and zooming, should also be

explored, particularly in the context of domain specific

applications.

CONCLUSION

In this paper, we proposed a method called TinyMotion that

measures cell phone movements in real time by analyzing

images captured by the built-in camera. Through an infor-

mal evaluation and a formal 17-participant user study we

found that 1. TinyMotion can detect camera movement re-

liably under most background and illumination conditions.

2. Task acquisition tasks based on TinyMotion follows

Fitts’ law and the Fitts’ law parameters can be used to

benchmark TinyMotion based pointing tasks. 3. The users

can use Vision TiltText, a TinyMotion enabled input

method, to input sentences faster than MultiTap with a few

minutes of practice. 4. Using camera phone as a handwrit-

ing capture device and performing large vocabulary, multi-

lingual real time handwriting recognition on the cell phone

are feasible. 5. TinyMotion based gaming is fun and imme-

diately available for the current generation camera phones.

Overall, we conclude that by adding software the use of the

built-in camera in phones can go beyond taking pictures

into the interaction domain. It is already possible to use the

motion sensing result for basic input actions such as point-

ing, menu selection and text input, and the performance of

these tasks can be further improved as hardware perform-

ance (in particular the camera frame rate) in phones ad-

vances. We showed that it is also possible to build higher

level interactive applications, such as gaming and gesture

recognition, based on our sensing method and we expect

broader and more creative use of camera motion in the fu-

ture.

TinyMotion is a pure software project. We choose not to

make any hardware changes to the standard phone so re-

sults of our research are immediately available for

download and use. TinyMotion is open source software

released under BSD license. The current implementation

can be downloaded freely from URL

http://guir.berkeley.edu/tinymotion.

 ACKNOWLEDGEMENTS

The authors would like to acknowledge Jeff Heer, Jonathan

Chung, Ryan Aipperspach, Tye Rattenbury, Ana Chang,

Tom Duan, Jono Hey, David Nyguen, Kelly Li, John

Suarez, Matthew Kam and Irene Chien for their contribu-

tions to this work. We also thank Qualcomm Corp. for

their support in funding and equipment.

REFERENCES
1. Ballagas, R., Rohs, M. el al, Sweep and Point & Shoot:

Phonecam-Based Interactions for Large Public Displays. In

Ext. Abstracts of CHI '05, April 2005

2. Drab, S., Artner, N., Motion Detection as Interaction Tech-

nique for Games & Applications on Mobile Devices, In Ext.

Abstracts of PERVASIVE '05: (PERMID), Munich, Germany.

3. EyeMobile, http://www.eyemobile.com

4. Fitts, P.M. The information capacity of the human motor sys-

tem in controlling the amplitude of movement. Journal of Ex-

perimental Psychology, 47, 381-391, 1954.

5. Fitzmaurice, G. W, Zhai, S., Chignell, M., Virtual Reality for

Palmtop Computers. In ACM TOIS, pp. 197–218. July 1993.

6. Forsyth, D., and Ponce, J. Computer Vision: A Modern Ap-

proach. Prentice Hall, Upper Saddle River, NJ, 2003.

7. Freeman, W.T., et. al., Computer Vision for Interactive Com-

puter Graphics. In IEEE Computer Graphics and Applications,

May-June, pp. 42-53, 1998,

8. Furht, B., Greenberg, J., Westwater, R., Motion Estimation

Algorithm for Video Compression, Kluwer Academic Pub-

lishers, Boston/Dordrecht/London, 1997

9. Hannuksela, J., Sangi, P., and Heikkila J., A Vision-Based

Approach for Controlling User Interfaces of Mobile Devices,

In Proc. of IEEE Workshop on Vision for Human-Computer

Interaction (V4HCI), 2005

10. Hansen, T., et al., Mixed Interaction Space - Designing for

Camera Based Interaction with Mobile Devices, In Ext. Ab-

stracts of CHI '05, April 2005

11. Harrison, B. L., Fishkin, K., A. et al, Squeeze me, hold me,

tilt me! An exploration of manipulative user interfaces. In

Proc. of CHI’98, pp. 17–24, April 1998.

12. Hinckley, K., Pierce, J., Sinclair, M., Horvitz, E., Sensing

Techniques for Mobile Interaction. In Proc. of UIST 2000, pp.

91–100.

13. Horn, B., and Schunck, B.. Determining optical flow. AI

Memo 572. Massachusetts Institue of Technology, 1980.

14. Kuhn, P., Algorithms, Complexity Analysis and VLSI Archi-

tectures for MPEG-4 Motion Estimation, Kluwer Academic

Publishers.

15. Kurtenbach, G., and Buxton, W. User learning and perform-

ance with marking menus. In Proc. of CHI’94, pp. 258-264,

April 1994

16. Moehring, M., Lessig C., and Bimber O. Optical tracking and

video see-through AR on consumer cell phones. In Proc. of

Workshop on Virtual and Augmented Reality of the GI-

Fachgruppe AR/VR, pp. 193-204. 2004

17. Moeslund, T.B., and Granum, E. A survey of computer vi-

sion-based human motion capture. Computer Vision and Im-

age Understanding 18, pp. 231–268, 2001.

18. Rekimoto, J., Tilting Operations for Small Screen Interfaces.

In Proceedings of. UIST 1996, pp. 167–168.

19. Rekimoto, J., Ayatsuka, Y., CyberCode: designing augmented

reality environments with visual tags, In Proc. of DARE 2000,

pp. 1-10.

20. Rohs, M., Zweifel, P., A Conceptual Framework for Camera

Phone-based Interaction Techniques, In Proc. of PERVASIVE

2005, Munich, Germany, May 2005

21. The Development of Camera Phone Module Industry, 2005-

2006, http://www.okokok.com.cn/Abroad/

Abroad_show.asp?ArticleID=1034

22. Wang, L., Hu, W., and Tan, T., Recent developments in hu-

man motion analysis, Pattern. Recognition, 36 pp. 585-601,

2003

23. Want, R. TiltType: Accelerometer-Supported Text Entry for

Very Small Devices, In Proc. of UIST 2002.

24. Wigdor, D., Balakrishnan, R., TiltText: Using tilt for text

input to mobile phones. In Proc. of UIST 2003.

25. Yee, K. P., Peephole Displays: Pen Interaction on Spatially

Aware Handheld Computers. In Proc. of CHI 2003, pp. 1-8,

2003.

