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ABSTRACT

Aerial image change detection is highly dependent on the accuracy

of camera pose and may be subject to false alarms caused by mis-

registrations. In this paper, we present a novel pose estimation ap-

proach based on Visual Servoing that combines aerial videos with

3D models.

Firstly, we introduce a formulation that relates image registra-

tion with the poses of a moving camera observing a 3D plane. Then,

we combine this formulation with Newton’s algorithm in order to

estimate camera poses in a given aerial video. Finally, we present

and discuss experimental results which demonstrate the robustness

and the accuracy of our method.

Index Terms— Aerial video, visual servoing, pose estimation,

3D appearance modeling.

1. INTRODUCTION

Aerial video monitoring platforms are currently receiving a growing

interest as they enable fast and effective ways to analyze vast regions.

However, their high frame rates result in huge amounts of data which

are difficult to process manually. Hence, designing automatic video

processing methods, for different tasks, is crucial in order to alleviate

the load of human operators.

In this paper, we focus on the specific task of change detection

in aerial videos, as a way to filter out uninteresting data. Change

detection [1] refers to the problem of detecting significant and pos-

sibly subtle changes between reference and test data (e.g. appearing

or disappearing buildings or vehicles), while ignoring insignificant

ones. General change detection is particularly challenging due to

environmental changes (illumination, weather, ...) and parallax ef-

fects (trees, buildings, relief ...) caused by camera motion. Current

approaches designed to correctly handle parallax effects either use

the epipolar geometry or exploit 3D models. This second category

of approaches is particularly interesting as it is more precise when

details in scenes are modeled accurately. This modeling is time de-

manding and usually achieved offline as a pre-processing step. An-

other pre-processing step is camera pose estimation, performed in

order to align test data with respect to 3D reference models prior to

achieving comparison and change detection.

In this work, we introduce a method for accurate camera pose es-

timation based on 3D reference models and Visual Servoing. More

precisely, we use a Newton optimization strategy guided by a spe-

cific Jacobian matrix in order to actively adjust the parameters of the

pose. These parameters are updated until the rendered 3D model and

the acquired test images are aligned precisely. Our algorithm follows

two steps: the first one predicts coarse pose parameters while the

second step refines these parameters using the 3D reference model.

Our experiments clearly show that this scheme is effective in order

to estimate the pose parameters accurately.

The remainder of this paper is organized as follows. Section 2

introduces our change detection framework based on 3D appearance

modeling. Section 3 describes details about our camera pose estima-

tion algorithm while Section 4 presents experimental results.

2. 3D APPEARANCE MODELING

3D appearance modeling is an extension of the Foreground / Back-

ground segmentation framework introduced in [2], which may be ap-

plied to change detection in videos acquired by mobile cameras. The

main idea is to learn variations of scene appearances (e.g. shadows,

illumination, noise ...) from a set of reference data, and organizing

these appearance models in the 3D model of the scene. Changes

(which may be viewed as Foreground in segmentation terms) may

then be detected as observations which deviate from the learned ref-

erence model. Following this idea, [3] used a voxel-based approach

including Gaussian Mixture Models for appearance modeling. [4]

extended this method with a continuous volumetric scene model im-

plemented using an efficient Octree structure. Such models use a

full 3D modeling of scenes, which enable accurate reconstructions

but may raise convergence issues during reconstruction.

However, in the context of aerial videos, such 3D models put

unnecessary effort in modeling scenes as volumetric objects, even

though scenes are generally observed from a certain distance and

therefore may be more effectively modeled as surfaces with variable

heights. This is why, in this work, we used a 3D appearance model

based on a Height Map organized in a Quad-Tree structure instead.

Each cell of this Quad-Tree includes both height and appearance in-

formation.

Given a set of reference videos, the underlying 3D appearance

model is generated offline. Heights are initially set using DTM or

DEM data and refined using the videos. Given two video frames In
and In+w (where w is the size of a temporal window), we estimate

parallax using optical flow constrained with epipolar geometry [5].

Height is then inferred from parallax disparity using the equations

described in [6]. Figure 1 presents visualizations of a 3D appearance

model obtained from three aerial videos acquired along different tra-

jectories.

3. CAMERA POSE ESTIMATION

One of the important aspects in change detection is to ensure that

reference and test data are well aligned before achieving comparison.



Fig. 1. Left: Visualization of the heights in the 3D appearance model, where the lowest regions are shown in blue and the highest ones in red.

Middle: Visualization of the appearance information contained in the model. Right: Model rendering generated from a given viewpoint.

In this section, we present our camera pose estimation approach that

allows us to recover the pose parameters accurately.

3.1. Problem Statement

Let C be a moving camera in a given scene and let {In}n∈N be

frames acquired by C at different instants. Consider {Xn}n∈N,

{Kn}n∈N as their actual unknown camera poses (i.e. 3D position

and 3D orientation) and calibration parameters respectively. In the

following, we denote the focal ratios by (fxn, fyn), the principal

point coordinates by (oxn, oyn) and their ratios as rxn = oxn

fxn

,

ryn = oyn
fyn

.

Starting from inaccurate pose parameters1 (denoted {X̃n}n∈N)

and the frames {In}n∈N, we are interested in obtaining accurate es-

timates of these poses (denoted {X̂n}). The proposed algorithm

proceeds in two steps described in sections 3.2 and 3.3. Prior to in-

troducing these steps, we revisit the preliminary background below.

We consider two camera sensors C1 and C2, with acquisition

parameters (X1,K1), (X2,K2), both observing a plane Π (with a

normal vector nπ and a shift to the origin −d0). It was shown in

[7] that the projective matrix FH , registering two images acquired

by C1, C2, may be analytically expressed using the extrinsic and

intrinsic parameters of the sensors C1, C2 as:

p2 = FH(X1,K1,X2,K2,Π) · p1, (1)

where p1 and p2 are points in each image, expressed in homoge-

neous coordinates. Under a small variation of the pose between C1,

C2, one may approach the underlying rigid transformation (rotation

and translation) using the following first order approximations:
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where V t stands for the transpose of a matrix V and dφ, dθ, dψ,

dX , dY , dZ are the unknown parameters of the rigid transformation

between C1, C2. In the above equation, c1, Vx1, Vy1, Vz1 (resp.

c2, Vx2, Vy2, Vz2) correspond to the optical center and the three

principal axes of C1 (resp. C2) in world coordinates. Considering

1In the context of aerial monitoring, pose parameters are usually available

with the current camera devices, but are inaccurate due to sensor inaccuracies

and possible synchronization issues.

these definitions, FH may be linearized as follows:

FH(X1,K1,X2,K2,Π) ≈ (3)

HId(K1,K2) + J(X1,K1,K2,Π) ·
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The Jacobian matrix J(X1,K1,K2,Π) is defined in table 1, and

d1 = nπ
tc1 − d0 represents the orthogonal distance of C1 from

plane Π. Equation 3 may be used in order to infer the projective

registration matrix corresponding to a slight variation in the camera

pose parameters. Conversely, knowing the observed plane Π, the

pose parameters X1, K1 of the first camera and the projective regis-

tration matrix FH , one may infer the extrinsic parameters X2 of the

second camera. This result is used by the two steps described below.

3.2. Step 1: Coarse Pose Prediction

The prediction algorithm makes it possible to estimate the current

camera pose X̂n using the previous pose X̂n−1, the current and pre-

vious images In and In−1, as well as the parameters of the domi-

nant plane Π of the observed scene. Let Hn←n−1 be the homog-

raphy registering In−1 with respect to In. Hn←n−1 may be esti-

mated using any registration algorithm (see [8] for a survey of these

algorithms). Our approach aims to find the shift in camera pose

∆X̂n = X̂n−X̂n−1 which best explains the measured homography

Hn←n−1. This is equivalent to finding a camera pose vector X̂n for

which the function x 7→ FH(X̂n−1,Kn−1, x,Kn,Π) −Hn←n−1

is equal to zero. This problem is solved using Newton’s method for

non-linear functions of several variables, leading to Algorithm 1.

This algorithm is very fast, but the accuracy of the estimated

pose parameters X̂n is directly related to the accuracy of the previ-
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Table 1. Expression of the Jacobian matrix used in the camera pose estimation algorithms.

Algorithm 1 Coarse Pose Prediction Algorithm

Inputs: Previous and current images In−1 and In with calibra-

tion parameters Kn−1 and Kn, previous estimated pose X̂n−1,

current noisy pose X̃n, and parameters of the plane Π
Output: Current estimated pose X̂n

Find Hn←n−1 registering In−1 with In

x← X̃n

Do

Compute FH(X̂n−1,Kn−1, x,Kn,Π)

Solve following equation w.r.t dx: J(X̂n−1,Kn−1,Kn,Π) ·

dx = Hn←n−1 − FH(X̂n−1,Kn−1, x,Kn,Π)
x← x+ dx

Until convergence (dx close to zero)

X̂n ← x

ous estimate X̂n−1. Assuming the camera pose of the first frame of a

video is known, the following camera poses may be estimated, with

a possible accumulation of errors. In order to prevent possible drift

in pose estimation, we introduce in the following section an extra

correction step based on Visual Servoing, which performs alignment

with respect to a 3D reference model.

3.3. Step 2: Fine Pose Correction

This step enables the refinement of the current camera pose X̂n

based on the knowledge of the current image In, the coarse esti-

mate of the current pose X̃n and a 3D model of the scene. Let Ir(x)
be the image obtained by rendering the 3D model from the camera

pose x, and let Hn←r(x) be the homography registering Ir(x) with

respect to In. Again, this homography may be estimated using any

registration algorithm (see [8]).

The goal of this refinement step is to find the camera pose X̂n

for which Hn←r(X̂n) equals the identity matrix and this translates

into finding X̂n which makes the function x 7→ HId(Kn,Kn) −
FH(x,Kn,Xn,Kn,Π) equal to zero. However, as the pose Xn

is unknown, we replace the analytical homography expression

FH(x,Kn,Xn,Kn,Π) by the empirical homography Hn←r(x),
assuming that the parameters of the plane Π describe the dominant

plane in the observed scene. As earlier, this problem may also be

solved using Newton’s method for non-linear functions of several

variables, leading to Algorithm 2.

Notice that Algorithm 2 is slower than the previous one, as it re-

quires rendering the 3D model at each iteration. Notice also that its

Algorithm 2 Fine Pose Correction Algorithm

Inputs: Current image In, current (possibly corrupted) pose X̃n

, calibration parameters Kn, and 3D model of the scene

Output: Current estimated pose X̂n

Compute Π by least square fitting using the 3D model

x← X̃n

Do

Render image Ir(x) using 3D model

Compute Hn←r , registering Ir(x) with In

Solve following equation w.r.t dx: J(x,Kn,Kn,Π) · dx =
Hn←r −HId(Kn,Kn)

x← x+ dx

Until convergence (dx close to zero)

X̂n ← x

precision depends on the registration step (between the acquired im-

age and the rendered model) which succeeds only if the initial pose

is close to the actual one. In practice, this initial pose is taken from

the output of Algorithm 1, which is more precise than the original

(corrupted) pose. Finally as shown in section 4, there is no accu-

mulation of errors, as Algorithm 2 uses the 3D reference model at

each iteration in order to refine the outputs of Algorithm 1, hence

providing more accurate estimates of the pose parameters.

4. EVALUATION

Estimation performances. Previous related work [4] uses Visual

Servoing in order to estimate camera poses by employing a 3D

model. However, it requires accurate initialization (within 1 degree

of the actual pose, and initial mean reprojection error of less than 50

pixels). In contrast, our two-step approach is able to recover from

severe perturbations of camera poses (up to 45 degrees of the actual

pose and an initial mean reprojection error up to 1000 pixels, in our

experiments).

In order to evaluate our algorithm, we used the reference 3D

model shown in Fig. 1 obtained from three different aerial videos of

750 frames and ran our algorithm on a fourth video with 350 frames

for which ground truth camera poses were known. We generated

random camera pose perturbations for each frame of the test video,

consisting of severe translations (magnitude up to 50 meters) and

rotations (up to 45 degrees around each 3D axis). In our proposed

scheme, only the camera pose of the first frame is assumed to be

known and poses are estimated for the subsequent frames using our

two-step approach.
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gles, and initial perturbations are shown in

black.

Fig. 2 shows the average reprojection errors of control points

in image coordinates, before and after refinement of the pose. We

clearly see that average reprojection errors after refinement are sys-

tematically below 2 pixels, independent from the input reprojection

error. Fig. 3 and 4 show the estimation errors related to camera po-

sition and orientation. We see that there is no drift, even though the

estimation of late frame poses is based on possibly corrupted poses

in the early frames. The method is clearly accurate, as it estimates

the camera position within 3 meters and its orientation within 0.5

degrees.

Convergence and runtime. When run on a 2.4 Ghz PC, our pre-

diction algorithm takes, on average, 5.6s and 78 iterations before

convergence. This processing time is dominated by the registration

step, which consists of extracting SURF features [9] from two given

images and computing a homography using RANSAC. On the other

hand, the correction algorithm requires, on average, 6 iterations be-

fore convergence and 13s per iteration. This increased complexity is

due to model rendering and image registration, which are performed

at each iteration. Fig. 5 shows the reprojection error as a function

of algorithm iterations. In the case of the prediction algorithm, re-

projection error reaches its minimum in approximately 30 iterations.

The refinement algorithm further decreases error slightly, but more

importantly it eliminates drift in pose estimation, resulting in a great

reduction of the reprojection error for all frames.
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