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Camera Scheduling and Energy Allocation
for Lifetime Maximization in User-Centric

Visual Sensor Networks
Chao Yu, Student Member, IEEE, and Gaurav Sharma, Senior Member, IEEE

Abstract—We explore camera scheduling and energy allocation
strategies for lifetime optimization in image sensor networks. For
the application scenarios that we consider, visual coverage over a
monitored region is obtained by deploying wireless, battery-pow-
ered image sensors. Each sensor camera provides coverage over
a part of the monitored region and a central processor coordi-
nates the sensors in order to gather required visual data. For the
purpose of maximizing the network operational lifetime, we con-
sider two problems in this setting: a) camera scheduling, i.e., the
selection, among available possibilities, of a set of cameras pro-
viding the desired coverage at each time instance, and b) energy al-
location, i.e., the distribution of total available energy between the
camera sensor nodes. We model the network lifetime as a stochastic
random variable that depends upon the coverage geometry for the
sensors and the distribution of data requests over the monitored
region, two key characteristics that distinguish our problem from
other wireless sensor network applications. By suitably abstracting
this model of network lifetime and utilizing asymptotic analysis, we
propose lifetime-maximizing camera scheduling and energy allo-
cation strategies. The effectiveness of the proposed camera sched-
uling and energy allocation strategies is validated by simulations.

Index Terms—Camera scheduling, energy allocation, image
sensor networks, network lifetime, visual coverage.

I. INTRODUCTION

W
IRELESS visual/image sensor networks (VSN) have

recently evoked intense research interest due to the in-

creasing demand for applications such as security surveillance,

smart home care, and environment monitoring [3]–[6]. These

sensor networks provide visual coverage over a monitored

region by deploying portable wireless sensors with imaging,

signal processing, and communication capabilities. Because

the sensors are usually battery powered, power consumption
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imposes a critical constraint on the network lifetime of a VSN,

which is defined as the duration of effective visual coverage

over the monitored region. In this paper, we consider user-cen-

tric application scenarios where only part of the visual data,

defined as the user’s “desired view,” is of interest at a given time

instant, though the desired view varies with time and thereby

involves the entire VSN. An example of such an application

scenario is a visual surveillance network [7], [8] deployed

for tracking and recording imagery of moving objects in a

monitored region [9], [10]. In this scenario, the series of image

requests arising from the object tracking can be modeled as a

series of virtual “user” requests. Another sample application

is a VSN deployed for tele-presence applications, where the

desired view corresponds directly to the users’ requested view

[11]. In these user-centric VSNs, the visual data of interest at

a given time instant overlaps the fields of view (FoVs) of a

number of cameras (sensors) and one may select among the

cameras providing the requested coverage. We refer to this

selection as the camera scheduling problem and investigate

camera scheduling strategies with a view to maximizing the

lifetime of the network. In some scenarios, the deployment

of the cameras is constrained, and the allocation of available

energy among these cameras can have a significant impact

on the network lifetime. We therefore also investigate energy

allocation to distribute the total available energy among the

sensor nodes. Our abstraction of the user-centric VSN setting

in terms of a time varying “desired view” allows us to focus on

the camera scheduling and energy allocation problems without

bringing in other application specific aspects of these VSNs,

which have a limited impact on these specific problems.

Camera scheduling and energy allocation in user-centric

VSNs are challenging because of two reasons. On the one

hand, meaningful definitions of lifetime for a VSN must take

into account the visual coverage provided by the network. On

the other hand, the stochastic nature of data requests needs to

be suitably addressed. The main contribution of this paper is a

stochastic formulation for the expected value for the network

lifetime addressing both of these aspects. Visual coverage

information of the network is incorporated into the formulation

of network lifetime, wherein the data requests are addition-

ally modeled as a random variable (r.v.) with a distribution

that is either known a priori or estimated from the record

of prior requests. Using an abstraction for this formulation,

we obtain expressions for the expected network lifetime and

develop computationally efficient approximations and suitable

lifetime-maximizing sensor scheduling strategies. Using the

1057-7149/$26.00 © 2010 IEEE
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Fig. 1. Target plane� is monitored by a VSN consists of cameras �� � . �
covers a subregion � of the target plane. A central processor (CP) keeps record
of the energy distribution, coverage geometry of the network, and receives the
user requests. For each user’s desired view� , the CP selects a subset of cameras
to provide data and synthesizes the desired view �� . No direct communication
is feasible between the cameras. The intensity of subregions indicates coverage
information: regions covered by more cameras appear darker.

same analysis, the energy allocation problem is formulated as

a max-min optimization problem that aims to maximize the

duration of coverage for the most critical part of the monitored

region for which the available energy is the least. By trans-

forming the min-max optimization into an equivalent linear

programming (LP) problem, we present a computationally

efficient solution for the energy allocation problem.

Strategies for optimizing network lifetime in generic wireless

sensor networks (WSNs) have been previously considered in the

literature [12]–[15]. The coverage model for VSNs, however, is

drastically different from the common WSN model of circular

coverage centered at the sensor. For instance, physically adja-

cent cameras in a VSN may have completely nonoverlapping

FoVs. Second, in typical uses of VSNs, only a subset of the data

is of interest, e.g., in a surveillance network, coverage may only

be desired for the moving objects. The analysis of lifetime in

user centric VSNs must therefore consider stochastic data re-

quests, which are typically absent in conventional WSNs. In the

context of a VSN, [16] addresses the problem of optimal assign-

ment of cameras to monitor subregions of a monitored area in

order to maximize the lifetime of the camera network. However,

user interactions are not considered. To account for user inter-

actions, [17] proposes a heuristic approach for camera sched-

uling by defining a cost function associated with each camera

depending upon the remaining energy of the camera and the cov-

erage geometry. In this paper, we extend and complement this

prior work by developing a mathematical model that leads to

analysis and simulation results which provide additional insight.

Though our formulation is valid for several classes of VSNs,

for concrete discussion, here we consider an application sce-

nario illustrated in Fig. 1, where image sensors are deployed to

provide visual coverage over a monitored region. The network

allows users to navigate around the monitored region by spec-

TABLE I
LIST OF SYMBOLS

ifying a desired viewpoint (position and direction) that varies

over time. The user’s viewpoint determines the part of the scene

that should be captured and transmitted to the user. The desired

view at the viewpoint is synthesized at a central processor (CP)

by combining parts of the image sent from selected cameras.

This paper is organized as follows. Section II presents a

stochastic formulation for the expected network lifetime in a

user-centric VSN and formulates the optimal camera sched-

uling strategy to maximize network lifetime. In Section III, we

provide an abstraction of the problem, and present exact, ap-

proximate, and asymptotic analysis for estimating the network

lifetime. A lifetime-maximizing camera selection strategy is

developed in Section IV. We next propose our energy alloca-

tion strategy in Section V for maximizing the approximated

lifetime. Detailed implementation of the application scenario

is described in Section VI. Finally, we describe simulation

setup and results in Section VII and conclude the paper in

Section VIII. For readers’ convenience, a list of symbols is

included as Table I.

II. PROBLEM FORMULATION

We consider the network as illustrated in Fig. 1. For sim-

plicity, the monitored region is assumed to be a planar surface,

a situation that may occur for aerial surveillance where the

scene can be well approximated by a 2-D plane when viewed

at a large distance. The target plane is monitored by cam-

eras . Each camera has a battery with energy and

covers a subregion of denoted by . We uniformly divide

into blocks, represented by where rep-

resents the set . We represent the coverage

geometry of these cameras in terms of this discretized represen-

tation, and define a coverage matrix as

(1)

where subscripts respectively denotes the row and column

index of the matrix and indicates region(set) lies

within region(set) , we also use to represent the indicator

function

if is true

otherwise.
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Fig. 2. Discretization of the target plane � and desired view � . Camera views
�� � are similarly discretized. The texture image on � is used in our
simulations.

The subset of cameras that cover block is represented by

(2)

The user specifies a desired viewpoint and accordingly a de-

sired view on the target plane . This desired view is

also uniformly divided into blocks, represented by

. The discretization of and is illustrated in Fig. 2. The

coverage geometry of is similarly defined as (1) by a coverage

matrix , where

(3)

and the subset of cameras that cover the block is denoted by

(4)

The discretization of , yields suboptimality, finer dis-

cretization results in better performance at the expense of

higher computational load. Also note that we consider uniform

discretization for ease of description. Alternatively, , can be

divided according to different levels of intersections between ,

and . We assume the coverage geometry represented

by is known.1

The network provides the user-desired view in a block-by-

block manner. For each block in the desired view,

the CP selects a camera satisfying the coverage requirement,

i.e., having , to transmit relevant data to the CP where

an synthesized view is generated. We assume the energy re-

quired in order to transmit each block to the CP is equal for

all .

We assume each block , on the monitored plane

is requested by the user independently throughout the operation

of the network and the probability that the block is requested

is given by , where . Let denote the energy

of camera at time . The remaining lifetime of the network,

denoted by , at time is a r.v. with a probability mass function

(p.m.f) determined by (note we consider as a

discrete r.v. in this paper), where

1Section VI describes a practical approach to determine� �� in the VSN
we consider.

represents the probability distribution (p.m.f.) of users’ requests

and

denotes the energy distribution, i.e., is the energy at the th

camera node at time . We denote by the expec-

tation of , where denotes the expectation operator. At time

, if camera is selected to record and transmit data, is up-

dated to . The optimal camera selection strategy at time

is defined as the strategy that maximizes the expected remaining

lifetime of the network with respect to the updated energy, i.e.,

.

We next map the energies of the cameras onto the monitored

region and define the coverage energy of a block as the sum

of the energies of all the cameras that cover . To this end, we

define

(5)

thus, and the th entry represents the cov-

erage energy of at time . Specifically, the coverage

energy of becomes zero when for all cameras

. We refer to the coverage energy of a block as

the energy of the block for brevity.

In order to obtain a useful and tractable formulation of our

problem, we approximate the remaining lifetime as a function

of . Note that in this process, we have collapsed the

dependency of on the two parameters i.e., the updated camera

energies at time and the coverage matrix into the

single parameter . In this process, we are neglecting the

fact that the change in the energy of the selected camera will

in fact change the energy distribution not only over the block

being requested, which we shall account for, but also over the

other blocks for which provides coverage. Since the param-

eters are updated afresh at each time step by utilizing

(5), scheduling based upon this approximation does not cause a

serious compromise in optimality. Now if block is requested

at time , the optimal camera selection strategy is to select a

camera from so that the network has maximum expected

lifetime with the updated energy allocation. Mathematically, the

optimal camera index is given by

(6)

In order to obtain a solution for (6), we proceed by analyzing

the expected network lifetime in(6).

III. EXPECTED NETWORK LIFETIME

Fig. 3 illustrates an abstraction of the sensor scheduling

problem: Consider boxes respectively

containing balls. At each (discrete) time

instant, a ball is requested from one of these boxes where the

probability of the request from is for some

and . We are concerned with the number of

requests after which one of these boxes first becomes empty.

This abstraction models our scheduling problem of (6) where

corresponds to the number of blocks in the monitored

region, represents the updated
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Fig. 3. Abstracted representation of the network lifetime. � boxes � �� �
�� �� contains � balls respectively. At each request, a ball is taken from �

with probability � . After � requests, one of these boxes first become empty.
��� corresponds to the expected network lifetime.

block-wise coverage energy when camera is selected,

represent the probabilities with

which the blocks are requested (as before) and denotes the

remaining lifetime. For the camera scheduling problem, may

also be dynamically estimated during the network operation.

For notational simplicity, we drop the superscript in our

discussion, and write the expectation as .

For a simplistic scenario where , the distribution for

and the expectation are obtained analytically in Propo-

sition 1. In the general case that , we present a recursive

approach to exactly evaluate in Proposition 2. The com-

putational load of this recursive approach is prohibitive as

increases, motivating us to investigate efficient approximations

of in Proposition 3 and its asymptotic behavior in Proposi-

tion 4. Based upon the asymptotic analysis of , we develop

our camera scheduling and energy allocation strategies which

maximizes the expected network lifetime. The proofs for Propo-

sitions 1–4 can be found in Appendices I–IV, respectively.

Let denote the p.m.f of a negative binomial distri-

bution [18] which characterizes the number of failed Bernoulli

trails prior to successful trails. Specifically, repre-

sents the probability that in Bernoulli trials, are failures

and the other , including the last trial, are successful, where the

probability of each trial being successful is . Using this nota-

tion, we obtain the following proposition.

Proposition 1: For , the p.m.f of can be written as

(7), shown at the bottom of the page, where and denote

the probabilities and , respectively. The expectation of

can be obtained as

(8)

where

for (9)

(10)

(11)

where represents the corresponding cumulative dis-

tribution function (c.d.f) of the negative binomial distribution.

Also note is characterized as a regularized incom-

plete beta function [19], which along with the p.m.f ,

is available in standard scientific software packages. Thus,

can be directly evaluated using (8).

We next consider the case where and obtain a re-

cursion for the p.m.f of proceeding as follows. We consider

a sequence of experiments, where in the th experiment

only the first boxes are utilized in

the experiment, with a ball requested from the th box with nor-

malized probability . In the th experiment,

let denote the number of requests after which one of the

boxes first becomes empty, then immediately we see

. The following proposition allows us to recursively

calculate the p.m.f of from the p.m.f of .

Proposition 2: See equation (12) at the bottom of the page.

where denotes the vector , and

(13)

represents the maximum possible value of .

By observing that , it can be veri-

fied that (7) is a special case of (12). The expected network life-

time can be directly calculated

using the p.m.f of . However, in order to obtain the p.m.f of

(7)

(12)
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, the p.m.f of has to be recursively cal-

culated, therefore, the computational load becomes prohibitive

as increases, especially when the values in the vector are

large.

In order to obtain an efficient approximation of for the

general case , we present an alternative representation

of in terms of the c.d.f of a multinomial distribution. Let

denotes the c.d.f of a multinomial distribution, and

denotes the p.m.f. of this multinomial distribution

for non-negative integer-valued vector which satisfies

, where represents number of different pos-

sible results of a trail, is the total number of trails, and

represents probabilities of each pos-

sible result, and denotes the total number of the th result

out of trials.

Proposition 3: The expectation of can be represented as

(14)

where is defined in (13), denotes an vector, each

of whose entries is unity.

Equation (14) allows direct evaluation of without recur-

sively calculating the p.m.f of . Furthermore, has

an accurate approximation which can be relatively efficiently

evaluated using the method in [20]. We thus obtain an approx-

imation of as

(15)

where denotes approximation of as described in [20].

The accuracy of the approximation based upon (15) is consid-

ered in Table II, where the results indicate that the proposed ap-

proximation of (15) is accurate. The computational advantage

of the approximation can be seen via an example for ,

for all , and uniformly generated

, normalized to have unit sum. In this case, calculating the

approximate network lifetime using (15) takes 1.4 s, while ob-

taining the exact value using the recursion (12) requires 107.7 s.2

2Both simulations are implemented in Matlab™, and executed on a work-
station with an Intel Pentium(R) IV 3.0 GHz CPU and 1 GB memory, other
simulations are run on the same platform.

TABLE II
EXPERIMENTAL EVALUATION OF THE APPROXIMATION FOR (14) USING

[20]. THREE BOXES CONTAIN ����� ��� BALLS RESPECTIVELY. THE

PROBABILITIES THAT A BALL BEING REQUESTED FROM ONE OF THESE

BOXES ARE CORRESPONDINGLY ������ ���������. EXACT: THE EXACT

LIFETIME CALCULATED BY EXHAUSTIVELY CALCULATING THE C.D.F
OF THE MULTINOMIAL DISTRIBUTION IN (14). APPROX: APPROXIMATE

LIFETIME USING (15). SIMULATION: THE AVERAGE LIFETIME

RESULTING FROM 200 MONTE CARLO SIMULATIONS

However, (15) still requires considerable computation, and

it is not immediately clear how to develop a camera selection

strategy based upon(15). To this end, we proceed to investigate

the asymptotic behavior of when is sufficiently large.

Proposition 4: For and sufficiently large,

(16) holds (see bottom of the page), where denotes the

probability density function (p.d.f) of a Gaussian distribution,

i.e.,

We experimentally evaluate the accuracy of (16) and illustrate

the results in Fig. 4. The result is measured by the relative error,

which is defined as

where is the (approximate) exact value obtained from (15)

and is the asymptotic approximation using (16). We ob-

serve from Fig. 4 that (16) achieves high accuracy, the rela-

tive error converges to 0 at an exponential rate as the number

of balls increases. In particular, we observe from Fig. 4(b) that

in the case , the refined approximation in

(16) achieves high accuracy, however, the simple approxima-

tion , represented by the curve labeled

by in Fig. 4(a), also achieves satisfactory accuracy (1%

relative error) for this case where . This

observation leads us to propose the following approximation for

the general cases where

(17)

Following analysis similar to Appendix IV, it can be seen that

approximation using (17) is close and the relative error

reduces at an exponential rate as increase, provided is

sufficiently large and the difference between the two smallest

values in is not negligible. We proceed to

propose and experimentally evaluate camera selection strategies

based upon this approximation.

if

if
(16)
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Fig. 4. Experimental evaluation of the approximation for ���� using (16). Two boxes � � � contain the same number of balls � � � , each experiment
takes a ball from � � � with probability � and ��� ��, respectively. Abscissa represents the value of � � � , ordinate represents the relative error. (a) Simple
approximation using ��	�� ���� ���� ���. (b) Refined approximation for the case � �� � � ���� �� using the second expression on the right hand side
of (16).

IV. CAMERA SELECTION STRATEGY

Given the approximation of expected network lifetime

(17), the optimal camera selection strategy when block

is requested by the user, as previously defined in (6), can be

rewritten as

(18)

where for notational simplicity, we drop the superscript , and

denotes the updated coverage energy at block when

camera is selected. Equation (18) can be intuitively inter-

preted as maximizing the normalized energy of the hot-spot

block in the monitored plane. The hot-spot block refers to the

block on the target plane , the energy of which divided by the

probability that this block is requested, has the minimum value

in the (subregion of) monitored area.

In practice, the hot-spot block may not belong to any of the

cameras that cover , the optimal strategy is consequently mod-

ified as follows:

(19)

where denotes the set of blocks in the monitored region

covered by camera , i.e., . Equation

(19) indicates that when block is requested, we maximize

the energy of the hot-spot block in the subregion covered by the

set of cameras that covers . We refer to the camera selection

strategy described previously as OptCOV. When the probabil-

ities are equal, i.e., the monitored region is uniformly

requested, OptCOV reduces to the heuristic previously proposed

in [17]. Our mathematical framework for analysis of the ex-

pected network lifetime, thus, analytically justifies and gener-

alizes the heuristic of [17].

OptCOV exhibits several advantages: 1) OptCOV represents

an optimal strategy based upon a stochastic formulation of the

network lifetime, thus, it is expected to sustain a longer lifetime

compared to alternative heuristics. 2) Scheduling based upon

(19) only requires an ordering operation which imposes minimal

load on the CP and enables real-time applications. 3) User inter-

actions are explicitly addressed in the model, thus, the network

can schedule sensors based upon information about the distribu-

tion of user requests, which can be estimated if not known as a

priori. The performance of OptCOV is compared against other

alternatives in Section VII.

V. ENERGY ALLOCATION: A MIN-MAX FORMULATION

The formulation of expected network lifetime also naturally

leads to an energy allocation strategy in situations where the

total available energy can be dynamically allocated among

the camera sensors at fixed locations at the time of deployment.

The optimal energy allocation maximizes the expected net-

work lifetime given by (17), and is therefore obtained as the

solution of the following max-min optimization problem

(20)

where for and

, is the diagonal matrix formed by the

vector .

It can be seen that (20) corresponds to maximization of a

concave function. Although numerical routines are available to

directly address the optimization problem (20), it is not well-

behaved, partly because the objective function in (20) is not

differentiable everywhere. To address this, we next transform

the optimization in (20) into a LP problem, for which efficient

algorithms can achieve accurate solution in polynomial time
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Fig. 5. Visual sensor network operation.

[21]. Introducing a new variable , we rewrite the max-min opti-

mization problem of (20) as the equivalent linear programming

problem

(21)

The LP (21) can be rewritten in standard LP form by defining

, thus, the objective function can be written as

where and denotes a vector with

value 0. The constraints in (21) can also be rewritten in terms of

. The optimal values of are obtained simultaneously by

solving the LP problem for .

VI. SYSTEM SCENARIO

To evaluate our algorithms, we simulate the network scenario

illustrated in Fig. 1. The operation of this network is illustrated

in Fig. 5. In the initialization stage, the coverage information for

the image sensors is obtained, which enables computation of the

coverage matrices and defined in Section II. In the func-

tional stage, for each desired view requested by users, the net-

work selects a subset of the cameras to provide the visual data.

The synthesized view is generated at the CP using received

data.

A. Initialization Phase

1) Coverage Estimation: The coverage information can be

obtained after estimating the intrinsic parameters (such as focal

length) and extrinsic parameters (orientation and location) of the

cameras. We use the plane-based camera calibration methods

described in [22], [23] to estimate these parameters. Given the

calibrated camera geometry, the pixel coordinate on the image

focal plane can be obtained for a world point . A world point

is covered by a camera if the image coordinate of this point lies

within the FoV of the camera. In our implementation, a square

block on the target plane (and similarly ) is

covered by a camera if the four corners of this block are cov-

ered by the camera. The estimated coverage information are rep-

resented by the coverage matrices , which are used for

camera scheduling and energy allocation.

2) Discretization Parameters: The parameter deter-

mines the number of blocks into which the desired view is

discretized. Since a block of the desired view is considered

covered by a camera if the camera provides coverage for the

entire block, a fine discretization (large ) ensures that the

Fig. 6. Coordinates � and � in first and second camera views, respectively,
correspond to a common point � in the scene. The point � can be obtained
from � through the homography.

coverage estimation is accurate and adequate flexibility is

available in scheduling. should therefore be chosen so

that with high probability each of discretized blocks in the

desired view lies within at least a single camera field of view.

An increase in , however, also comes with an increased

computational cost so the choice of represents a tradeoff

between accuracy/flexibility and computational complexity.

Once is determined, the parameter that determines

the discretization of the coverage region can be selected such

that the size of a block on the coverage region is close to

the projection of a block on the desired view. This ensures

accuracy for the proposed abstraction of Section III where each

transmission of a desired view block consumes a similar amount

of energy, equivalent to one ball in the abstraction. While a

larger value of may be chosen, this levies a computational

penalty while offering little benefit.

3) Energy Allocation: Given the estimated coverage matrix

, the distribution of user requests , and the total available

energy, the optimized energy allocation strategy is obtained by

solving the LP problem (21).

B. Functional Phase

1) Camera Scheduling: Given the desired viewpoint, the de-

sired view is first discretized into blocks . For

each block , the CP selects a camera using a camera sched-

uling strategy to capture and transmit relevant data as described

next.

2) Image Mosaicking: Only relevant data in the selected

camera is transmitted to the CP, which is then mosaicked to

synthesize the desired view. The selection of relevant data and

mosaicking can be described by a homography [24] for the

texture image of a planar surface (our case). We denote by

the homogeneous representation of a world point on a plane.

The image coordinate can be written as: , where

indicates equality up to a scale factor and is a matrix

denoting the homography between the camera plane and the

target plane. can be calculated from the parameters of cali-

brated cameras. As illustrated in Fig. 6, two projections

of world point are connected as ,

thus, can be obtained from as . This re-

lation allows the user’s view to be rendered from corresponding

regions in the selected camera as illustrated in Fig. 6.
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Fig. 7. Average percentage of initial coverage on the target plane vs. the
number of cameras for focal lengths ����� �� ���� .

VII. SIMULATIONS

We perform simulations to validate the proposed camera

scheduling and energy allocation schemes. In our simulations,

the target plane is of size (typical size of a wall) and

cameras are placed randomly within a field located

from the target plane, and the cameras are pointed toward

the target plane with a random rotation within

along each of the three axes to simulate practical variability in

camera placement. Users’ viewpoints are generated according

to a separable Gaussian distribution with its maxima at the

center of the wall on which the cameras are mounted, with a

standard deviation of along the two dimensions. The

probabilistic distribution of each block on the monitored plane

being requested, i.e., , is obtained by a Monte-Carlo simula-

tion. All cameras (including the user’s viewpoints) are assumed

to have images of 200 200 (in pixel units), with a focal length

.3 The simulated camera images are

rendered according to the homography. In order to simulate

the image capture process in a physical camera, where optical

blurring eliminates potential aliasing during sampling, we

first generate an upsampled image at this camera according to

the scene geometry, blur the image by a Gaussian filter, then

downsample to obtain the “camera” image.4

We first conduct a Monte Carlo simulation in order to deter-

mine the number of cameras required in order to provide ade-

quate coverage of the target plane [25]. Fig. 7 shows the average

(over 100 simulations) coverage percentage achieved over the

target plane upon initial deployment of the cameras as a function

of the number of cameras for different focal lengths. From the

figure it can be seen that for the focal length , a minimum of 50

cameras are necessary in order to ensure that, on average, 99%

of the target plane is covered in the beginning. In order to pro-

vide enough coverage redundancy, we therefore use

cameras for our simulations. We set and

in our simulations based upon the guidelines in Section VI and

justified by simulations that are presented subsequently.

3For an image sensor with size �� mm� �� mm, this would corresponds to
a focal length of � � �� mm

4Based upon empirical evaluation, we select an upsampling/downsampling
factor of 4 and the size of the Gaussian filter as 21� 21 in the upsampled grid.

A. Camera Scheduling

We simulate a scenario where all cameras start with of

energy, which correspond to each camera being able to transmit

2 full frames of images. We generate 200 user viewpoints in

each simulation and present averages over 100 simulations.

We consider another two alternative camera scheduling

strategies, and compare the three options:

1) OptCOV: the proposed lifetime-maximizing strategy.

2) View Angle Cost (MinANG): From among the cameras pro-

viding coverage of a desired block, the camera that is closest

in angle to the user-desired viewpoint is selected [25]. This

heuristic is intended to approximate camera selection based

upon optimizing the image quality since all cameras are

at (almost) the same distance from the target plane, image

quality is affected primarily by the viewing direction.

3) Random Selection (RAND): One camera is randomly se-

lected from the subset of cameras providing coverage for

the requested block.

Fig. 8(a) compares the percentage coverage on the target plane

over time for the different camera selectionmethods.The average

coverage percentage, across the multiple simulation runs, is

plotted in the figures against the network operating time.5 We

observe that the OptCOV camera scheduling strategy maintains

a higher percentage of coverage over the monitored region for

a longer time duration than alternative scheduling strategies. If

the network lifetime is defined as the duration during which 95%

of the monitored area is covered, OptCOV prolongs the network

lifetime by a factor of 1.5 compared to RAND and by a factor

of 2 compared to MinANG. An interesting observation is the

sharp drop of coverage at for OptCOV. The proposed

OptCOV strategy prolongs the network lifetime by allocating the

energy consumption evenly (normalized by the requesting prob-

ability) across the network. However, OptCOV does not reduce

the energy consumption. The total available energy in the camera

network is the same for all scheduling strategies. When OptCOV

is used, multiple cameras run out of energy around the same time

[ in the simulation of Fig. 8(a)], resulting in a sharp

drop of coverage beyond this time. In contrast, MinANG and

RAND behave in a more random fashion with respect to energy

initialization and therefore fall off more slowly in the coverage.

Fig. 8(b) compares the PSNR of the mosaicked image.

Initially, the image quality is similar for the different strategies,

and MinANG offers minor improvement because of the selec-

tion of the camera with closest viewing direction. By preserving

more cameras based upon the anticipated coverage require-

ment, OptCOV provides high image quality over a longer

duration. Fig. 8(a) and (b) clearly demonstrate the advantage of

using OptCOV in an energy-constrained scheduling scenario.

The tradeoff between the network lifetime and the quality of

reconstructed images is investigated further in [25].

Comparing Fig. 8(a) and (b), an interesting observation is that

between and , OptCOV still provides higher

image quality. In this duration, although MinANG and RAND

provide higher visual coverage, this visual coverage is not opti-

mally distributed according to the distribution of user’s requests,

and therefore these strategies still offer a lower image quality.

5The error bars in these and subsequent figures indicate one standard devia-
tion limits.
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Fig. 8. Comparison of the proposed scheduling method (OptCOV) against random scheduling (RAND) and view angle based scheduling (MinANG) (a) Coverage
percentage and (b) Distortion, as functions of time.

Fig. 9. Snapshots of mosaicked images in one simulation at the moment of
���� , where � denotes the network lifetime using OptCOV scheduling.
(a) OptCOV. (b) RAND. (c) MinANG. Black regions in (b) and (c) correspond
to blocks for which coverage is lost.

Fig. 10. Comparison of lifetime with different scheduling strategies for
different camera focal lengths.

Fig. 9 shows snapshots of the mosaicked output using dif-

ferent camera scheduling strategies for one simulation at a time

instant corresponding to 90% of the lifetime for the OptCOV

strategy. The snapshots provide visual validation of the results

of Fig. 8(a) and (b)—the black regions in Fig. 9(b) and (c) arise

from loss of coverage for the RAND and MinANG schemes.

Fig. 10 examines the network lifetime when the focal

lengths of the cameras are varied. We consider three focal

Fig. 11. Comparison of visual coverage for different scheduling strategies
when users’ viewpoints are generated as a random walk on the camera plane.

Fig. 12. Comparison of lifetime with different discretization levels �� � for
different camera focal lengths.

lengths , and . We observe from Fig. 10 that the

network lifetime for all scheduling strategies decreases as the

focal length increases, which is expected since larger focal
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Fig. 13. (a) Comparison of coverage with different energy allocation schemes. (b) Comparison of network lifetime with different energy allocation schemes for
three different camera focal length settings.

lengths result in smaller FoV. It can be seen that in two ex-

treme cases: a) where each camera covers the whole monitored

area, and b) where the FoVs of the cameras don’t overlap at

all, all camera scheduling strategies result in the same network

lifetime.

We also consider a simulation scenario where the users’

viewpoints are generated by a random walk on a 16 16 grid

in the plane of the cameras starting at a random grid node.

Subsequent viewpoints are chosen from the neighboring 8 grid

points and the current position (9 choices in total) with equal

probability. This is intended to approximate the process of

tracking a moving object in the covered region. The stationary

distribution for this random walk [26] provides the probabilities

for visiting each node. These are uniform over the internal

nodes and lower for the peripheral nodes. The conclusions

based upon Fig. 11 remain similar to those for Fig. 8, the

previous simulation.

We next consider the impact of the discretization by exam-

ining how the choice of impacts the lifetime. In Fig. 12,

we compare the network lifetime when three different values of

: 25, 100 and 400. Results show that small causes loss

of performance due to coarser approximation of the visual cov-

erage region, and values of over 100 provides only marginal

improvement. Therefore we use and a corresponding

value of which approximately ensures the size of a

block on the coverage region is close to the projection of

a block on the desired view.

B. Energy Allocation

In this simulation, we apply the OptCOV camera scheduling

strategy and compare two energy allocation schemes:

• Optimized allocation by solving (21) using LP (LinOpt).

• Uniform distribution of the total available energy

among all the cameras (UniForm).

Fig. 13(a) compares the percentage coverage on the target

plane over time for the energy allocation schemes mentioned

previously. The figure clearly illustrates the benefit of the pro-

posed optimized energy allocation. LinOpt prolongs the net-

work lifetime by almost 50% compared to the unoptimized Uni-

Form scheme. Direct solution of the max-min problem (20)

yields performance very close to LinOpt (as expected) but re-

quire much more computation (2.3 s v.s. 157 s for Matlab™

based implementations).

For both energy allocation schemes, Fig. 13(b) examines the

effect of focal length on the network lifetime. We observe from

Fig. 13(b) that energy allocation using LinOpt is more effective

as the focal length increases. When the focal length is small,

LinOpt and UniForm have similar performance. This behavior

can be anticipated because as the focal length decreases, the

fields of view of the cameras become enlarged resulting in

greater overlap and consequently less benefit is obtained from

the optimal allocation. In the extreme case, when each camera

covers the entire target area, the lifetime is independent of energy

allocation.

Recalling Fig. 10, we observe the following duality between

camera scheduling and energy allocation. When the focal length

is relatively small, i.e., , optimized camera scheduling is

more effective in prolonging the network lifetime, however, as

the focal length increases, optimized energy allocation prolongs

network lifetime more significantly. When the cameras have no

overlap, only energy allocation is effective in prolonging net-

work lifetime.

VIII. CONCLUSION AND DISCUSSION

We provide a stochastic model for the operational lifetime of

a visual sensor network (VSN) and obtain exact and approxi-

mate expressions for the expected network lifetime via a suit-

able abstraction. Computationally efficient sensor scheduling

and energy allocation strategies targeted toward maximizing the

expected lifetime can be developed using the analysis. These

strategies account for the visual coverage geometry and the sto-

chastic nature of data requests, and thereby offer significant im-

provements in lifetime compared with alternative schemes.

We conclude this paper with several remarks. First, although

we describe a simple application scenario, the analysis can be

extended to other VSN applications, e.g., a surveillance system

designed to capture moving objects. In this scenario, the cov-
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erage information can be estimated by suitably dis-

cretizing the monitored area (e.g., 3-D space can be divided into

small cubes). The rest of the analysis is identical with that pre-

sented in this paper.

Second, our optimal scheduling and energy allocation strate-

gies are based upon an approximate analysis, where we ignored

the fact that the image blocks are not being requested indepen-

dently due to the overlap of camera FoVs and the user’s be-

haviors, however, the compromise of optimality is not severe

in practice. The camera scheduling strategy we propose is per-

formed at each time instant with fresh parameters, thereby pre-

venting the propagation of suboptimality. For the energy alloca-

tion, the suboptimality is also mitigated when the focal length

is reasonably large as demonstrated by simulations.

We consider strategies to prolong the visual coverage of

VSNs in this paper. However, image quality is another aspect

of the usability of VSNs that merits further study in follow-on

work. For our simulations, we consider scenarios where the

focal lengths of the cameras are the same. This ensures that all

cameras provide similar visual quality and therefore scheduling

may be performed purely based upon coverage lifetime con-

siderations. If the cameras have heterogeneous focal lengths,

further modeling of the image quality is required in order

to design scheduling and energy allocation strategies, which

considers the communication constraints and the geometric

transformations required for the image data.

In the present paper, we do not address the problem of camera

placement, assuming instead that the cameras are placed ran-

domly and are not manipulable. Situations where the placement

is manipulable have been previously considered in the context

of generic WSNs [27] and VSNs [28], [29]. Due to the large

number of degrees of freedom for camera placement, i.e., loca-

tion and orientation, various restrictions are applied to make the

problem tractable. In [28], the cameras are aligned horizontally

and in [29], the cameras are in the same plane and all other pa-

rameters are discrete. The stochastic lifetime model that we pro-

pose in this paper may also be extended to incorporate camera

placement and the joint optimization of placement and energy

allocation. This, however, is quite challenging (particularly be-

cause many local optima can be expected in camera placement

parameters) and is beyond the scope of this paper.

APPENDIX I

PROOF OF PROPOSITION 1

For , we can write

(22)

where represents the index of box from which the th ball

is selected, thus, represents the probability

that becomes empty at the th request. Therefore, in the first

requests, balls have been taken from and

taken from , we obtain (23), shown at the bottom of

the page, where (23) follows from the definition of in (9).

We can similarly represent and obtain (7).

Let , we can write

(24)

Recalling , we next rewrite

(25)

Denoting, in short, , from (9) we can obtain

, which yields

(26)

Replacing by for , we obtain in

the same form as (26). Stacking together these equations and

reorganizing the resulting terms, we obtain the expression for

and

(27)

which completes the proof.

APPENDIX II

PROOF OF PROPOSITION 2

We first write

(28)

the first term on the RHS can be written as (29)–(32), shown at

the bottom of the next page, where denotes the number of

(23)
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balls taken from the th box in the first requests. Equation (31)

is obtained from the Bayes rule, (32) is obtained by observing

that the conditional probability in (31) conforms to a negative

binomial distribution. Similarly, we obtain (33) and (34), shown

at the bottom of the page.

The proof is completed by substituting (32) and (34) into (28),

and incorporating the range of valid values of . The term

is defined in (13), and denotes the maximum possible lifetime

for the th experiment, which occurs when all boxes

have one ball remaining before the th request.

APPENDIX III

PROOF OF PROPOSITION 3

We first observe the following property for a r.v. that takes
on non-negative integer values in the closed interval :

(35)

Equation (35) can be obtained by using the expansion

for each , and
reorganizing the resulting terms in (35). Using (35) for our r.v.

, we obtain

(36)

We next note can be alternatively represented as
, indicating that after

requests, there is at least one ball left in each box. We can write

(37)

Substituting (37) into (36), we obtain (14).

APPENDIX IV

PROOF OF PROPOSITION 4

It is well known that a negative binomial distributed r.v. can

be viewed as the sum of a sequence of i.i.d geometrically dis-

tributed r.v.s, i.e., , where has a p.m.f

and each is geometric with a p.m.f

for . The term de-

notes the probability that failures happen before one success

in Bernoulli trials where is the probability of success

in each trial. The mean and variance of are and

, respectively. According to the central limit theorem

[30], the summation of i.i.d (geometrically in our case) dis-

tributed r.v.s conforms to the Gaussian distribution when is

sufficiently large we, thus, obtain

(38)

(29)

(30)

(31)

(32)

(33)

(34)

(40)
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Fig. 14. (a) ���� � �� � ����� � �� is approximated by the area of the shaded region, where ����� � �� is approximated by the integral from
� to � � �. (b) ���� � 	� is similarly approximated.

(45)

Equation (38) can be alternatively represented in the standard

form . We next write

as

(39)

where indicates the index of the box from which the last

ball is taken. It can be shown that (40) holds (see bottom of the

previous page). We next represent by an integral of

the Gaussian p.d.f using the approximation (38) as illustrated

in Fig. 14.

In the case where , we obtain

(41)

(42)

(43)

(44)

where (42) is obtained by using the -function

, (43) uses the property ,

and (44) is obtained by utilizing the up-bound of -function

that for . We observe from (44)

that provided are sufficiently large

and as we consider. As a result, (39)

can be simplified as . Recall that

, thus, has

a negative binomial distribution with expectation ,

and it follows that . Considering the

symmetric case , we obtain in general

when .

In the case that , we rewrite

, where

is defined in (27). Next consider (45), shown at the top of

the page, we observe

when and are sufficiently large,

therefore

. Following similar

analysis for , we obtain (16).
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