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Abstract: This paper deals with a fundamental problem in motion and stereo analysis, namely
that of determining the camera intrinsic calibration parameters. A novel method is proposed that
follows the autocalibration paradigm, according to which calibration is achieved not with the aid of
a calibration pattern but by observing a number of image features in a set of successive images. The
proposed method relies upon the Singular Value Decomposition of the fundamental matrix, which
leads to a particularly simple form of the Kruppa equations. In contrast to the classical formula-
tion that yields an over-determined system of constraints, the derivation proposed here provides a
straightforward answer to the problem of determining which constraints to employ among the set of
available ones. Moreover, the derivation is a purely algebraic one, without a need for resorting to the
somewhat non-intuitive geometric concept of the absolute conic. Apart from the fundamental matrix
itself, no other quantities that can be extracted from it (e.g. the epipoles) are needed for the deriva-
tion. Experimental results from extensive simulations and several image sequences demonstrate the
effectiveness of the proposed method in accurately estimating the intrinsic calibration matrices. It is
also shown that the computed intrinsic calibration matrices are sufficient for recovering 3D motion
and performing metric measurements from uncalibrated images.

Key-words: Self-Calibration, Kruppa Equations, 3D Measurements, Motion Analysis, Stereo,
Structure from Motion.
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Auto-Calibration par Décomposition en Valeurs
Singulières de la Matrice Fondamentale:

De l’Appariement de Points aux Mesures 3D

Résumé : Ce rapport traite du problème fondamental de l’auto-calibration d’une caméra à partir
d’un ensemble de points appariés entre différentes images. Une méthode basée sur les équations
de Kruppa, bien connues dans le cadre de cette application, est développée. On fait usage de la
décomposition en valeurs singulières de la matrice fondamentale pour dériver de manière purement
algébrique des équations de Kruppa remarquablement simplifiées. Ceci permet en particulier de
resoudre le problème du choix des deux équations de Kruppa à utiliser parmi l’ensemble plus grand
des équations dérivées par la méthode classique. Dans cette méthode, les équations sont dérivées très
simplement, on ne fait nullement usage de l’interprétation géometrique à base de la conique absolue,
ni de celle liée au plan à l’infini, et on n’utilise pas explicitement les épipoles, dont l’estimation est
connue pour être instable. Enfin et surtout, cette méthode est mise en oeuvre, comparée et testée
avec succès pour retrouver les paramètres intrinsèques de différentes caméras à partir de données
synthétiques bruitées et de plusieures images réelles. On montre aussi que la qualité des résultats
obtenus permet de valider remarquablement l’approche jusqu’à l’obtention de mesures 3D fiables à
partir d’images.

Mots-clés : Auto-Calibration, Equations de Kruppa, Mesures 3D, Analyse du mouvement, Stéréo-
vision, Structure à partir du mouvement.
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1 Introduction

It is well-known that a pinhole camera acts like a projective transformation device [15, 14]. This
means that from a sequence of images, 3D structure can be recovered modulo a projectivity of 3D
space [15, 22]. Numerous vision tasks, however, ranging from visual navigation and 3D reconstruc-
tion to novel view synthesis and augmented reality, require that this ambiguity is raised so that metric
(i.e. Euclidean) quantities can be computed from images. In order to facilitate this, the problem of
determining the intrinsic calibration parameters of the camera needs to be solved [16]. Early ap-
proaches for coping with this problem rely upon the presence of an artificial calibration object in the
set of captured images [48, 49]. Knowledge of the 3D shape of the calibration object supplies the
3D coordinates of a set of reference points in a coordinate system attached to the calibration object.
Thus, the transformation relating the 3D coordinates to their associated image projections can be
recovered through an optimization process. Despite that intrinsic calibration can be accurately com-
puted with such approaches, their major drawback is that they are suitable for off-line calibration
only. In other words, they are inapplicable in cases where the intrinsic parameters undergo constant
changes due to focusing, zooming or mechanical and thermal variations. This is particularly true
in the context of active vision, where the camera optical parameters undergo continuous, purposive
changes [1].

In a seminal paper, Maybank and Faugeras [35] have shown that the calibration problem can
be solved without resorting to a calibration object. By tracking a set of points among images of
a rigid scene, captured while the camera is pursuing unknown, unrestricted motion with constant
intrinsic calibration parameters, the latter can be estimated by determining the image of the absolute
conic. The absolute conic is a special conic lying at the plane at infinity, having the property that
its image projection depends on the intrinsic parameters only. This fact is expressed mathematically
by the so-called Kruppa equations [31]. In following years, several researchers have investigated
the application of the Kruppa equations for solving the calibration problem. This paradigm, has
become known under the names of self or auto calibration. For example, Zeller [51, 52] and Heyden
and Åström [23] propose variants of the basic approach. Pollefeys and Van Gool [41, 39] describe
a stratified approach to self-calibration, which starts from projective calibration, augments it with
the homography of the plane at infinity to yield affine calibration and finally upgrades to Euclidean
calibration. Luong and Faugeras [33] use the Kruppa equations to derive systems of polynomial
equations, which are of degree four in five unknowns (i.e. the camera intrinsic parameters). These
systems are solved with the use of numerical continuation methods. The main disadvantage of
this approach is that it involves high computational costs. In addition, it is difficult to take into
account the uncertainty associated with the estimates of the epipolar geometry and any a priori
knowledge regarding the intrinsic parameters that might be available. All the methods mentioned
above have demonstrated that intrinsic calibration can be recovered fairly accurately, provided that
image features can be well localized and reliably tracked among images. In the opposite case,
however, these methods can easily run into difficulties due to the nonlinearity of the equations and
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4 Manolis I.A. LOURAKIS and Rachid DERICHE

the large number of unknowns involved. To improve the stability of self-calibration, Sturm [44]
proposes a scheme that captures the interdependence of the intrinsic parameters in an off-line pre-
calibration process. By assuming a moving camera equipped with a zoom lens, he models all but
one intrinsic parameters as a function of the remaining one. Thus, self-calibration is reduced to
estimating only one parameter, something that can be done by finding the closest common root of
several low degree polynomials. At this point, it should be mentioned that most self-calibration
methods implicitly assume that the camera undergoes a general rigid motion, i.e. a combination of
general translation and rotation. This is because an inherent problem in self-calibration is the fact
that sequences of critical camera motions lead to ambiguities in the recovered calibration parameters.
Classes of such motion sequences are studied by Sturm [43], Zisserman et al [56] and Demirdjian
et al [11]. However, it is interesting to note that Hartley [21] has shown that in the case of purely
rotating cameras, the self-calibration problem can be solved by a linear algorithm. A special case is
also considered by Armstrong et al [3]. They show that using three images, the intrinsic calibration
of a camera undergoing planar motion can be recovered up to a two fold ambiguity.

Due to the widespread use of binocular heads in robotics, the problem of autocalibrating a stereo
rig from a sequence of images has also received considerable attention [55, 26, 6, 27, 25]. Owing
to the redundancy of the information contained in a sequence of stereo images, such methods have
the potential of being considerably more robust compared to self-calibration methods employing
monocular image sequences.

Recently, attempts to solve the self-calibration problem in the case of varying camera intrinsic
parameters have started to appear. Heyden and Åström [24], for example, have shown that self-
calibration in the case of continuously focusing/zooming cameras is possible when the aspect ratio
is known and no skew is present. Extending their work, Pollefeys et al [40] proved that the absence
of skew in the image plane is sufficient to allow for self-calibration. They also proposed a framework
based on the concept of the absolute quadric [46] for recovering the intrinsic parameters. Techniques
for achieving self-calibration assuming restricted types of camera motion and non constant intrinsic
parameters have also appeared [10, 9].

In this work, we propose a simplification of the Kruppa equations and show how it can be em-
ployed for self-calibration. The simplification is derived in a purely algebraic manner and is based
solely on the fundamental matrix. Estimates of the epipoles, which are known to be difficult to
compute accurately�, are not needed. Therefore, compared to existing self-calibration methods, the
proposed one has the potential of being more stable and robust with respect to measurement noise.

The rest of the paper is organized as follows. Section 2 reviews some background material and
introduces the notation that is used in the remainder of the paper. Section 3 gives an overview
of constraints on the intrinsic parameters that historically preceded the development of the Kruppa
equations. The potential advantages and disadvantages of each approach are also discussed. Using a
purely algebraic scheme, the classical Kruppa equations are derived in section 4 and a geometric in-

�This is particularly true in the case that the epipoles lie at infinity.
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terpetation is supplied. The simplified Kruppa equations are derived in section 5. Section 6 describes
in detail the proposed self-calibration method and discusses some implementation issues. Experi-
mental results from a prototype implementation are presented in section 7. The paper concludes with
a brief discussion in section 8.

2 Notation and Background

The projection model assumed for the camera is the projective one. The formalism capturing the
details of the projection of 3D points on a planar retina is based on projective geometry. This section
gives a brief review of some basic projective geometry concepts. For more detailed treatments
regarding the application of projective geometry to computer vision, the reader is referred to the
tutorial by Mohr and Triggs [36] or the relevant chapters of the books by Faugeras [14], Kanatani
[30] or Mundy and Zisserman [37].

A 3D point M � �x� y� z�t projects to a 2D image point m � �u� v�t through a �� � projection
matrix P, as follows:

s �m � P �M� (1)

where s is a nonzero scale factor and the notation �p is such that if p � �x� y� � � � �t then �p �

�x� y� � � � � ��t�

In the case of a binocular stereo system, every physical point M in space yields a pair of 2D
projectionsm� andm� on the two images. Those projections are defined by the following relations:

s� �m� � P� �M

(2)

s� �m� � P� �M

Assuming that the two cameras are identical and that the world coordinate system is associated
with the first camera, the two projection matrices are given by:

P� � �Aj�� (3)

P� � �ARjAt�� (4)

where R and t represent respectively the rotation matrix and the translation vector defining the rigid
displacement between the two cameras. Note that the same relations still hold when considering a
single moving camera instead of a binocular rig. Matrix A is the �� � intrinsic parameters matrix,
having the following well-known form [16]:

A �

�
� �u ��u cot � u�

� �v� sin � v�
� � �

�
�
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6 Manolis I.A. LOURAKIS and Rachid DERICHE

The parameters �u and �v correspond to the focal distances in pixels along the axes of the image,
� is the angle between the two image axes and 	u�� v�
 are the coordinates of the image principal
point. The ratio �v

�u
is known as the aspect ratio. In practice, � is very close to �

� for real cameras
[14]. Additionally, modern cameras have almost rectangular pixels, therefore in this case the aspect
ratio is very close to being 1. At this point, it should be mentioned that given the intrinsic calibration
parameters matrix A, 3D angles and length ratios of 3D line segments can be directly computed from
images. Further details on achieving this are given in appendix A.

In the sequel, K will denote the symmetric matrix AA t. By eliminating the scalars s� and s�
associated with the projection equations (2) as well as the point M, the following equation relating
the pair of projections of the same 3D point is obtained:

�m�

t
F �m� � � (5)

In this equation, matrix F is the fundamental matrix, given by

F � A��t��RA
�� (6)

whereA� � 	A��
t is the adjoint matrix ofA and �x�� denotes the antisymmetric matrix of vector
x that is associated with the cross product. This matrix has the property �x��y � x � y for each
vector y and has the following analytic form:

�x�� �

�
� � �x� x�

x� � �x�
�x� x� �

�
�

The fundamental matrix F describes the epipolar geometry between the pair of views considered.
It is the equivalent to the essential matrix E � �t��R in the uncalibrated case, as dictated by (see
also Eq.(6))

F � A�EA�� (7)

Due to the above relation, E can be written as a function of F as follows:

E � AtFA (8)

As pointed out by Trivedi [47], the symmetric matrix EE t is independent of the rotation R since

EEt � �t��RR
t	�t��


t � �t��	�t��

t (9)

Substitution of Eq.(8) into the above equation yields

FKFt � A��t��	�t��

tA�� (10)

This last equation will be employed in subsequent sections for algebraically deriving the Kruppa
equations.

INRIA
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3 The Constraints of Huang-Faugeras and of Trivedi

Before presenting the simplified version of the Kruppa equations, this section briefly presents the
constraints of Huang-Faugeras [28] as well as those of Trivedi [47]. These constraints, known since
the late eighties, preceded the appearance of autocalibration methods based on the Kruppa equations.
Apart from making this paper more self-contained, the recall of those previous works enable us to
raise some questions of particular importance to the problem of autocalibration.

3.1 The constraints of Huang-Faugeras

Based on the constraints that an essential matrix must satisfy, equations that are equivalent to those
of Kruppa but having a higher degree, can be derived. It is straightforward to note that since the
essential matrix is the product of an antisymmetric matrix by a rotation matrix, its rank always equals
two. Indeed, according to Huang and Faugeras [28], in order for a � � � matrix to be an essential
one, a sufficient and necessary condition is that it is of rank two and its two nonzero singular values
are equal. This last constraint is equal to

trace�	EEt
� � trace		EEt
�
 � � (11)

By employing Eq. (8), the following constraint which involves only the fundamental matrix F and
the unknown intrinsic calibration matrix A is obtained:

trace�	AtFAAFtA
� � trace		AtFAAFtA
�
 � � (12)

Owing to the fact that the fundamental matrix is such that det	F
 � �, the rank constraint for E is
always verified. On the other hand, Eq. (12) is a polynomial constraint of order eight in the elements
of matrix A, i.e. the intrinsic parameters. Thus, this constraint can be exploited for autocalibra-
tion: Assuming a mobile camera observing a certain number of characteristic points, each camera
motion yields a fundamental matrix which gives rise to a polynomial constraint in the elements of
A. Therefore, it is theoretically possible to recover the intrinsic parameters of the camera with a
sufficient number of camera movements.

3.2 The Constraints of Trivedi

Another way to establish a constraint between matrices F and A is to proceed in the manner proposed
by Trivedi [47]. Specifically, he exploited the particular form of the symmetric matrix EE t, which
depends only on the translation vector t, to derive the following set of independent polynomial
equations:

EEt � �t��RR
t	�t��


t � �t��	�t��

t (13)

RR n° 3748



8 Manolis I.A. LOURAKIS and Rachid DERICHE

After some algebraic manipulation, the matrix S � EE
t is shown to have the following form:

S �

�
� t�� � t�� �t�t� �t�t�

�t�t� t�� � t�� �t�t�
�t�t� �t�t� t�� � t��

�
�

Since the symmetric matrix S depends only on the three parameters of the translation vector t, its
six elements must be constrained by the following equations:

�S�
ij � 	trace	S
 � �Sii
 � 	trace	S
� �Sjj
 � �� � � i � j � � (14)

The above three constraints are polynomial and of degree four in the elements of E and thus of
degree eight in the elements of A. Only two out of the three constraints are linearly independent.
Those two constraints can be employed within an autocalibration framework, following a scenario
similar to that delineated previously for the case of the Huang-Faugeras constraints. However, it is
important to notice that in this case there are two equations for each camera movement, instead of a
single one that was available in the previous case.

3.3 Discussion

Luong [34, 33] has demonstrated that the polynomial constraint expressed by Eq. (12) can be decom-
posed in two independent polynomial relations that are equivalent to the two equations of Trivedi
given by Eq. (14). It can be argued that both the Huang-Faugeras and the Trivedi constraints share
the disadvantage of being of degree eight in the elements of the intrinsic parameters matrix A. This
is in contrast to the Kruppa equations, which as will become clear in section 4, are of degree two in
the elements of matrix K � AAt, and therefore of degree four in the elements of the intrinsic pa-
rameters matrix A. Relying on numerical considerations associated with the practical difficulties of
solving high order polynomial equations, researchers have invariably preferred the Kruppa equations
for autocalibration.

There is, however, a very important reason for favoring the Huang-Faugeras and Trivedi con-
straints over the Kruppa equations. More specifically, the latter involve the fundamental matrix
F which encodes the epipolar geometry between the two views considered as well as the epipole
in the second image. It is well-known that the determination of the epipoles is very sensitive to
measurement noise. Therefore, poorly estimated epipoles might significantly affect the accuracy
of subsequent computations based on the Kruppa equations. On the other hand, the constraints of
Eqs. (12) and (14) employ just the fundamental matrix F and not any other entities extracted from
it, such as the epipoles. Thus, it may be advantageous in terms of numerical stability and robustness
to noise to use them for autocalibration. It is the belief of the authors that these questions are worth
posing and detailed experiments should be carried out to reach a definite conclusion.

INRIA
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Figure 1: Geometric interpretation of the Kruppa equations; see text for details.

4 Deriving the Classical Kruppa Equations

In this section, the well-known Kruppa equations are presented. Although not needed in the remain-
der of the paper, we start by providing a geometric interpretation of the Kruppa equations for the
sake of completeness. Then, the Kruppa equations are re-derived in a simple and purely algebraic
manner, i.e. without making use of the absolute conic [17, 35] or the plane at infinity [51, 39]. Part of
this derivation will be later employed for obtaining the simplified equations proposed in this paper.

4.1 Geometric Interpretation of the Kruppa Equations

Let  be the absolute conic, i.e. the virtual conic lying on the plane at infinity �� and having
equation x� � y� � z� � � [16]. It is easy to see that each point p belonging to the projection � of
 in the second image satisfies ptA�tA��p � �. Since  is invariant to rigid transformations, its
image � remains unchanged after a rigid motion of the camera, provided that the intrinsic calibration
parameters do not change. As can be seen in Fig.1, there exist two planes � � and �� tangent to 

and containing the baseline OO �. Thus, those two planes intersect the image planes at two pairs
of corresponding epipolar lines which are tangent to �. This fact is best expressed with the aid of
duality: Conics are self-dual objects, i.e. the envelope of lines tangent to a conic is also a conic,
known as the dual conic. In the case of the dual of the image of absolute conic � �, its equation is
ltAAtl � �, where l is a line tangent to �. This implies that for a point q on any of the tangents to
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10 Manolis I.A. LOURAKIS and Rachid DERICHE

� in the second image, the following holds:

	e� � q
tAAt	e� � q
 � �

The epipolar line Ftq corresponding to q in the first image is also tangent to �. Therefore, the
invariance of � under rigid transformations yields:

	Ftq
tAAt	Ftq
 � �

The above two equations are thus equivalent to

FAAtFt � 	 	�e���

tAAt	�e���
� (15)

where 	 is an arbitrary, nonzero scale factor. In other words, the Kruppa equations express the
constraint that epipolar lines in the second image that correspond to epipolar lines of the first image
that are tangent to �, are also tangent to � and vice versa.

4.2 An Algebraic Derivation

We start by using Eq.(6) to compute the epipole e
�

in the second image. Given that Fte
�

� �, e
�

must satisfy

A�tRt	�t��

tA��e

�

� � (16)

Owing to the fact that 	�t��
tt � �, the following solution for e
�

is obtained:

e
�

� 
At� (17)

where 
 is a nonzero scalar. This equation also supplies the following expression for t:

t � 
�A��e
�

� (18)

where 
� � ��
� Equation (18) leads to the following relation for the matrix �t��
�:

�t�� � 
� det	A��
At�e
�

��A (19)

Substitution of this last relation into Eq.(10), yields directly the Kruppa equations:

FKFt � ��e
�

��K	�e
�

��

t� (20)

�By making use of the equation �Mu�� � det�M�M��u��M��, where M is a nonsingular matrix.

INRIA
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where � is an unknown, nonzero scalar. Note that Eq.(20) is identical to Eq.(15) which was de-
rived using a geometric argument. Since FKF t is a symmetric matrix, Eq.(20) corresponds to the
following equations obtained by eliminating �:

FKFt
��

	�e� ��K	�e� ��
t
��
�

FKFt
��

	�e� ��K	�e� ��
t
��
�

FKFt
��

	�e� ��K	�e� ��
t
��
�

(21)

�
FKFt

��

	�e� ��K	�e� ��
t
��
�

FKFt
��

	�e� ��K	�e� ��
t
��
�

FKFt
��

	�e� ��K	�e� ��
t
��

These equations, however, are linearly dependent since

	FKFt � ��e
�

��K	�e
�

��

t
e

�

� � (22)

As shown in [51], there are only two independent equations among the set of the six equations
given by Eq.(21). These equations are second order polynomials in the elements of K, and therefore
of order four in the elements of A. This is a significant order reduction compared to the Huang-
Faugeras [28] or Trivedi [47] constraints which, as already mentioned, are of degree eight in the
elements of A. When using the Kruppa equations for self-calibration, it is common to start by esti-
mating K and then using Cholesky decomposition� [18] to obtain A.

At this point, it should be noted that the question of deciding which two equations out of the
total six to use, remains open. Up to now, this problem has been resolved either by employing
a specific parameterization of the epipolar geometry as in [17, 35, 33], or by randomly selecting
one equation for estimating the scale factor and then substituting the result into two others that are
arbitrarily chosen among the remaining five ones [52, 4]. The alternative of taking into account
all equations simultaneously can also be considered, although numerical methods usually fail to
produce a solution in the case of high order, over-determined polynomial systems such as this. In
section 5, a simple answer to the above question is provided by an approach which directly leads to
three linearly dependent equations, out of which two are linearly independent.

5 The Simplified Kruppa Equations

This section develops a simpler variant of the Kruppa equations. The principal motivation is twofold:
First, to directly derive less equations than the six of the original formulation, so that the task of
choosing the ones to employ for self-calibration becomes simpler. Second, to avoid employing the
epipole e

�

, since its accurate estimation is difficult in the presence of noise and/or degenerate mo-
tions. Towards this end, the Singular Value Decomposition (SVD) [18] of the matrix F is employed:

F � UDVt (23)

�The Cholesky decomposition of a positive definite matrix B, is a matrix C s.t. B � CtC.

RR n° 3748



12 Manolis I.A. LOURAKIS and Rachid DERICHE

Recalling that F is of rank 2, the diagonal matrix D has the following form:

D �

�
� r � �

� s �

� � �

�
�

where r and s are the eigenvalues of the matrix FF t, whereasU andV are two orthogonal matrices.
By making use of this relation, the epipole in the second image e

�

can be deduced very simply.
Specifically,

Fte
�

� VDtUte
�

� � (24)

Since D is a diagonal matrix with a last element equal to zero, the following direct solution for e
�

is
obtained:

e
�

� �Um� � �� � (25)

with m � ��� �� ��t. Therefore, the matrix �e
�

�� is equal to

�e
�

�� � UMUt� (26)

where  is a nonzero scale factor and M = �m�� is given by:

M �

�
� � �� �

� � �

� � �

�
�

By substituting Eq.(26) into Eq.(10), a new expression for the Kruppa equations is obtained:

FKFt � UMUtKUMtUt (27)

Since U is an orthogonal matrix, left and right multiplication of Eq.(27) by U t and U respectively,
yields the following notably simple expression for the Kruppa equations:

DVtKVDt � MUtKUMt (28)

Because of the simple forms of the matrices D and M, relation (28) corresponds to three linearly
dependent equations. Indeed, denoting by u�, u�, u� the column vectors of U and by v�, v�, v�
the column vectors of V, the matrix equation (28) is equivalent to

DVtKVDt �

�
� r�v�

tKv� rsv�
tKv� �

srv�
tKv� s�v�

tKv� �

� � �

�
�

INRIA
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MUtKUMt �

�
� u�

tKu� �u�
tKu� �

�u�
tKu� u�

tKu� �

� � �

�
�

The above expressions finally yield the following three linearly dependent equations for the matrix
K:

r�v�
tKv�

u�tKu�
�

rsv�
tKv�

�u�tKu�
�

s�v�
tKv�

u�tKu�
(29)

Only two of these three equations are linearly independent. They are the simplified Kruppa equa-
tions, derived in a particularly straightforward manner. Moreover, the use of the SVD has enabled
us to deduce automatically which three out of the six equations present in the original formulation
should be taken into account. Notice that in the case of a calibrated camera, the intrinsic calibration
matrix can be assumed to be equal to the �� � identity matrix. Therefore, considering the essential
matrix E instead of the fundamental matrix F, it is straightforward to show that Eqs.(29) reduce to

r� �
�

�
� s��

which implies that r � s, as shown by Huang and Faugeras [28]; and mentioned already in section
3.

It is worth noting that equations (29) are closely related to the generalization of the Kruppa
equations that has been proposed by Luong [34]. Luong has used these equations for demonstrating
the equivalence between the constraints of Trivedi [47] and those of Huang and Faugeras [28]. The
same ideas can also be found at the origin of the recent article by Hartley [20], who directly derives
the Kruppa equations from the fundamental matrix. Both Luong and Hartley base their developments
on changes of rather astute reference points, which amount to generalizing the Kruppa equations by
considering that the absolute conic can have two different images in each retina. In this work,
a different approach is taken which remarkably simplifies the task of self-calibration. Using an
algebraic method, a simpler variant of the Kruppa equations is derived without making use of the
absolute conic. Subsequent sections describe experimental results from the calibration of synthetic
as well as real image sequences with the aid the proposed method. To the best of our knowledge,
this is the first time that detailed experimental results obtained from the application of the simplified
Kruppa equations to imagery are being reported.

6 Self-Calibration Using the Simplified Kruppa Equations

In this section, an algorithm applying the simplified Kruppa equations to the problem of self-
calibration is presented and related implementation issues are clarified. Following the approach
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of Zeller [51, 52], the equations derived in section 5 are embedded in a non-linear optimization
framework and solved iteratively. We begin with a discussion regarding the choice of an appropri-
ate initial solution that forms the starting point for the optimization stage. We then formulate the
optimization problem and explain how it is solved to obtain the intrinsic calibration parameters.

6.1 Finding an Initial Solution

Let SF � �r� s�u�
t�u�

t�u�
t�v�

t�v�
t�v�

t�t be the �� � � vector formed by the parameters of the
SVD of F. Let also �i�SF�K�

�i�SF�K� � i � � � � � � be the three ratios defined by Eq.(29). Each pair of
images defines a fundamental matrix, which in turn yields the following two polynomial equations
regarding the elements of K:

��	SF�K
��	SF�K
� ��	SF�K
��	SF�K
 � �

(30)

��	SF�K
��	SF�K
� ��	SF�K
��	SF�K
 � �

The above system of equations is of degree two in five unknowns defining the K matrix. A good
initial approximation regarding the position of the principal point in the image, is to assume that
it coincides with the image center. Additionally, if the skew angle � is assumed to be equal to �

� ,
the number of unknowns in Eq.(30) is reduced to two, namely elements K �� and K�� of the K
matrix which are related to the two focal lengths �u and �v. Therefore, the system of equations
(30) becomes of degree two in two unknowns and thus it can be solved analytically. The system
can have at most �� � � solutions, some of which might be meaningless. More specifically, every
solution for K�� and K�� which is such that the associatedKmatrix is not real and positive definite,
is discarded. Solutions are also discarded in the case that the related aspect ratio is very far from
unity. Assuming the availability of M images that have been acquired with constant camera intrinsic
parameters, a total of N � M�M���

� fundamental matrices can be defined. These matrices give rise
to N second order systems of the form of Eqs.(30) that have at most �N solutions for the two focal
lengths �u and �v. The following strategies for choosing among the available initial solutions have
been examined:

• Use one of the solutions in random.

• Use the average of the available solutions.

• Use the median of the available solutions.

Although these strategies can produce considerably different starting points, our experiments
have indicated that the choice of an initialization strategy from the above set is not crucial for the
convergence of the non-linear optimization algorithm. In other words, the latter has generated very
similar final results, starting from different starting points.

INRIA



Camera Self-Calibration Using the Singular Value
Decomposition of the Fundamental Matrix:

From Point Correspondences to 3D Measurements
15

6.2 Non-Linear Optimization

Let �ij	SF�K
 denote the difference of ratios �i�SF�K�
�i�SF�K� �

�j�SF�K�
�j�SF�K� and let ���ij 	SF� K
 be its

variance. This variance is approximated by�

���ij 	SF� K
 �
��ij	SF�K


�SF
�SF

��ij	SF�K


�SF

t

� (31)

where �SF is the ��� �� covariance matrix associated with SF and ��ij�SF�K�
�SF

is the derivative of
�ij	SF�K
 at SF. Since SF is a function of F, its covariance matrix �SF is in turn computed from

�SF �
�SF
�F

�F
�SF
�F

t

� (32)

where �F is the � � � covariance matrix of the fundamental matrix � and �SF
�F

is the value of the
jacobian of SF atF. This last step, i.e. the computation of the derivatives of the SVD components of
a matrix with respect to that matrix, is explained in more detail in Appendix B. As will soon be clear,
the variances ���ij 	SF� K
 are used to automatically weight the residuals �ij	SF�K
 according to
their uncertainty. It should be noted, however, that the computation of these variances is achieved by
two successive first order approximations, i.e. Eqs.(31) and (32). Therefore, this two step process
might be more noise sensitive compared to a more direct computation of the variances. Alternative
ways of computing better estimates of ��

�ij
	SF� K
 are currently under consideration.

Matrix K is computed as the solution of a non-linear least squares problem, namely

K � argmin�K

NX
i	�

����	SFi
� �K


�����	SFi
� �K


�
����	SFi

� �K


�����	SFi
� �K


�
����	SFi

� �K


�����	SFi
� �K


(33)

Recalling that each fundamental matrix yields two independent equations and K consists of five
unknowns, the minimum number of required view pairs (i.e. N ) is in the general case equal to three.
Additional constraints provided by more than three fundamental matrices can improve the accuracy
of the solution. The reason for minimizing the sum of the squared ratio differences � ij	SF�K
 in
Eq.(33) instead of the sum of the squared polynomials of Eqs.(30), is that the former formulation
has proved to produce more accurate results. Slightly better quality results is also the reason for
including the third simplified Kruppa equation (i.e. ���	SF�K
) in Eq.(33), although it is dependent
on the other two [33]. The minimization of Eq.(33) is done using a classical Levenberg-Marquardt
algorithm [2], using the starting solution computed in the initialization stage. Apart from K itself,
the minimization in Eq.(33) can also provide its associated covariance matrix [2]. In the case that
a priori information in the form of angles or ratios of line segments in the scene is available, it can

�Assuming that x is a random vector with mean x� and covariance �x, the covariance of vector y � f�x� up to first

order is equal to �y � �f�x��
�x�

�x
�f�x��
�x�

t

; see [14] for details and proof.
�This covariance matrix is supplied as a by-product of the procedure for estimating F [7].
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be incorporated in Eq.(33) as described in [51]. The matrix A is extracted from K in three steps.
First,A�t is computed by employing the Cholesky decomposition ofK��, then it is transposed and
finally inverted to yield A.

7 Experimental Results

The proposed calibration method has been extensively validated with the aid of both synthetic and
real image sequences. Representative results from several of these experiments are given in this sec-
tion. To demonstrate the accuracy of the recovered calibration, the estimated A matrices have been
employed to measure 3D angles and 3D length ratios from corresponding image line segments (see
also appendix A). This computation, in addition to the calibration matrix A, requires the homogra-
phy of the plane at infinityH� to be known. To calculateH�, the essential matrix is first computed
from the fundamental matrix using Eq.(8). Then, the essential matrix is decomposed using a linear
method into a rotation matrix R and a translation vector t, such that E � �t��R. More details con-
cerning this decomposition can be found for example in [50, 19]. Finally, H� is computed from R
using Eq.(36). More details are available in appendix A.

7.1 Synthetic Experiments

To quantitatively study the effects of increasing amounts of noise on the recovered intrinsic calibra-
tion parameters as well as the Euclidean entities measured using them, a set of experiments using
simulated data has been carried out. More specifically, a simulator has been constructed, which
given appropriate values for the camera intrinsic parameters and the camera translational and rota-
tional motion, simulates a series of rigid displacements of the camera and projects a set of randomly
chosen 3D points on the simulated retina. Zero mean Gaussian noise is then added to the resulting
retinal points, to account for the fact that in practice, feature extraction algorithms introduce some
error when locating image interest points (i.e. corners). The experimental procedure and the related
parameter values for the particular experiments reported here are as follows: The simulated retina
is ���� ��� pixels, the principal point is located at pixel (310, 270), the angle between the retinal
axes is ��� and the focal lengths are 840 and 770 in horizontal and vertical pixel units respectively.
This implies that the field of view of the simulated camera roughly subtends 42 and 34 degrees in
the horizontal and vertical directions respectively. After simulating a series of rigid displacements
of the camera, a number of random 3D points are projected on the simulated retina. A non-linear
method [54] is then employed to estimate from the noisy retinal points the fundamental matrices
corresponding to the simulated displacements. The estimates of the fundamental matrices serve as
the input to self-calibration. Subsequent subsections describe in detail the types of the experiments
performed.
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translation rotation rotation angle (deg) epipole in the second view (e �)
320 -215 170 0.554 -0.832 0.028 8.0 1891.18 -703.824
550 755 125 0.707 0.707 0.035 9.0 4006 4920.8
650 655 150 -0.667 -0.333 -0.667 7.5 3950 3632.33

Table 1: The simulated 3D rigid motions and the retinal locations of their corresponding epipoles.

In the sequel, ZF will denote the self-calibration algorithm proposed by Zeller and Faugeras in
[52], while SVD will refer to the algorithm proposed in this paper. The ZF algorithm is similar in
spirit with SVD , with the major difference being that it employs the classical Kruppa equations (20)
instead of the simplified ones. More specifically, in ZF two of the constraints (21) are arbitrarily
chosen for each available pair of views and then the intrinsic parameters are estimated with the aid
of a non-linear bundle adjustment algorithm. The covariances of the fundamental matrix estimates
are used to compute weights for each constraint, in a manner similar to Eq.(33). The starting point
for the bundle adjustment is found by assuming that the skew angle is equal to ��� and the principal
point is roughly at the image center and then analytically solving Eqs.(21) for the two focal lengths.

7.1.1 Recovering Intrinsic Calibration Under Varying Noise Levels

In this section, the behavior of the SVD algorithm in the case that its input is contaminated by
different amounts of noise is studied. Moreover, the results produced by SVD are compared with
these recovered by the ZF algorithm. In the series of experiments reported here, three camera
motions and 300 random 3D points have been simulated. The exact motion parameters are shown in
table 1. Notice that the simulated motions constitute a challenging sequence, since the translational
components of motion along the optical (i.e. OZ) axis are much smaller compared to the components
that are parallel to the retinal plane. This implies that the epipoles are outside the images, making
their accurate computation very difficult [42]. The depths of the 3D points were uniformly distributed
in the range [20, 100], measured in focal length units. The standard deviation of the Gaussian noise
added to the retinal projections of the simulated 3D points ranged from 0 to 4.0 pixels. To ensure
that the recovered intrinsic calibration parameters are independent of the exact location of the 3D
points used to form 2D correspondences, each experiment was run 100 times, each time using a
different random set of 3D points drawn from the uniform distribution described above. Each time,
all six fundamental matrices defined by the three displacements were estimated. Then, the SVD
and ZF algorithms were applied to recover the intrinsic calibration. Both algorithms were applied
first by assuming an unknown skew angle (i.e. 5 intrinsic parameters) and then by assuming a skew
angle equal to ��� (i.e. 4 intrinsic parameters). The results of these experiments are shown in the
graphs labeled “SVD with 5p” and “SVD with 4p” respectively for the SVD algorithm and “ZF with
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5p” and “ZF with 4p” for the ZF algorithm. Both algorithms were also applied with and without
considering the covariances for weighting each constraint. When the covariances are not employed,
the weights ��ij 	SF� K
 in Eq.(33) are all assumed to be equal to one. Figures 2 and 3 illustrate
for all noise levels considered, the mean and standard deviation of the relative error in the recovered
intrinsic parameters. Each point in the plots summarizes the error statistics computed from 100 runs.
In the case that the covariances are taken into consideration, the results are shown in Figures 4 and
5 using labels following the naming conventions of Figs. 2 and 3.

As can be seen from Figs. 2, 3, 4 and 5, both methods perform roughly the same when the noise
added to corresponding image points is small, i.e. its standard deviation is less than 1.5 pixels. For
larger amounts of noise, however, it is evident that the SVD algorithm performs better than ZF ,
in both 5 and 4 intrinsic parameter experiments. Note that points corresponding to very large error
values are not shown in the graphs. It is important to mention that almost always, both algorithms
managed to converge to a solution. As expected, the difference in the accuracy of the two methods
is larger in the case of minimizing over 5 instead of 4 parameters. Even in cases when the two
methods yield similar mean errors, the error standard deviations are typically smaller for the SVD
algorithm. Thus, the SVD algorithm is more stable with respect to noise, and therefore should be
preferred over ZF since in practice there is no a priori information available regarding the amount
of noise contaminating the employed image points. As already observed in other works, i.e. [52, 4],
the focal lengths �u� �v are recovered more accurately than the principal point u �� v�. It is also
known, however, that the latter does not have to be accurately estimated in order to reconstruct metric
information of satisfactory quality [45, 4].

Figures 4 and 5 give a quantitative assessment of the benefits gained by employing the covariance
of the estimated fundamental matrices for computing the weights for the constraints considered.
Clearly, using the covariances generally reduces the error in the computed estimates, although in the
case of large amounts of noise, the inclusion of covariances can cause the ZF algorithm to oscillate
wildly among large error values that are excluded from the plots. On the other hand, in simpler
simulation scenarios (when, for example, the epipoles are within the simulated images), that are
not reported here due to space considerations, it has been observed that the accuracy improvements
gained by employing the covariance in the case of the ZF algorithm are larger compared to those for
the SVD algorithm. This might be an indication that the method currently employed for estimating
the constraint weights in the case of SVD is not accurate enough (see also section 6.2). Hence, the
question regarding which is the best method for estimating these weights remains open and further
investigation is needed in this direction.

7.1.2 3D Motion Recovery Using Noisy Intrinsic Calibration Parameters

The current section examines the error induced to the 3D motion estimates that are computed using
the intrinsic calibration matrices recovered in subsection 7.1.1. Towards this, the recovered intrinsic
calibration matrices are first combined with Eq.(8) to compute estimates of the essential matrix. 3D
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Figure 2: The error in the recovered focal lengths in the presence of noise, without employing the
covariance. The first row corresponds to �u, the second to �v . Mean values are shown in the left
column, standard deviations in the right.
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Figure 3: The error in the recovered principal points and skew angles in the presence of noise, when
the covariance is not employed. The top row corresponds to u �, the middle one to v� and the bottom
one to the skew angle �. Mean values are shown in the left column, standard deviations in the right.
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Figure 4: The error in the recovered focal lengths in the presence of noise when employing the
covariance. The first row corresponds to �u, the second to �v . Mean values are shown in the left
column, standard deviations in the right.
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Figure 5: The error in the recovered principal points and skew angles in the presence of noise when
employing the covariance. The top row corresponds to u �, the middle one to v� and the bottom one
to the skew angle �. Mean values are shown in the left column, standard deviations in the right.
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motion estimation using the essential matrix is a classical problem in computer vision. A detailed
review of available methods is beyond the scope of this paper; the interested reader is referred to
[29] and the references therein. In this work, the 3D motion is extracted from the estimates of
the essential matrix using the technique proposed by Zhang [53]. The main idea behind this work
is to estimate the 3D motion by gradually projecting the essential matrix parameters from a high
dimensional space to lower dimensional ones. More specifically, the method starts by estimating
an eight parameter essential matrix using a classical linear algorithm [32], then enforcing the rank-2
constraint on the resulting matrix for reducing the number of parameters to be estimated to seven and
finally estimating the five motion parameters corresponding to the essential matrix which minimizes
the reprojection error in the images. Due to the depth/scale ambiguity, translation can be estimated
up to an unknown scale factor, i.e. only its direction can be recovered [14].

In the set of experiments described here, we attempted to recover the motion shown in the first
row of table 1 with the aid of the estimated intrinsic calibration matrices. Figure 6 shows the mean
and standard deviation of the error in the recovered direction of translation, the error in the direction
of the recovered axis of rotation and the relative error in the recovered rotation angle. First, 3D mo-
tion was estimated by using the intrinsic calibration matrices computed in the experiments outlined
in Figures 2 and 3, i.e. without employing the covariance of the estimated fundamental matrices.
More specifically, the graphs labeled “SVD with 5p” and “SVD with 4p”, correspond to the error in
the 3D motion that is estimated using the intrinsic parameter matrices (i.e. A) computed by the SVD
algorithm. Similarly, when A is computed by the ZF algorithm, the graphs are labeled “ZF with
5p” and “ZF with 4p”. The graph labeled “True A” in Figure 6 also illustrates the mean and standard
deviation of the error in the estimated 3D motion when the latter is recovered using the ground truth
values for the intrinsic calibration. Analogous error statistics in the case that 3D motion is estimated
using the intrinsic calibration parameters that result when covariances are taken into account, are
shown in Figure 7. The naming conventions for the graph labels are as in Fig. 6. As before, very
large error values are not included in the plots.

It is clear from Figs. 6 and 7 that the estimates of the translational component are highly er-
roneous. This, however, is an inherent difficulty associated with the simulated motion, since its
direction is mainly parallel to the retinal plane. It is well known that this situation is very challeng-
ing for accurate motion recovery [8, 38]. That the main source of error in the translation estimates
is not the error in the estimated intrinsic calibration, is evident from the fact that the translation esti-
mates computed using the correct intrinsic parameters (plots labeled “True A”) are also very wrong
and not much better that those computed with the estimated intrinsic calibration parameters. The
rotation direction, on the other hand, is recovered pretty accurately, provided that the estimate of the
A matrix used to recover it is of acceptable quality. The rotation angle estimates are less accurate,
especially if they have been recovered using A matrices parameterized with 5 unknowns. At this
point, however, it should be mentioned that in the case of less difficult simulated motions that are
not shown here, the 3D motion parameters have been recovered with very good accuracy.
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As expected, the use of A matrices estimated when employing the covariance leads to slightly
better 3D motion estimates, since the former are more accurate. Nevertheless, the 3D motion es-
timates recovered are very similar, even when employing estimates of the A matrix computed by
ZF which in certain cases are considerably worse than those computed by SVD . This is in agree-
ment with the findings of previous works, e.g. [33, 45], which have concluded that even rough
estimates of the intrinsic calibration parameters are sufficient for acceptable 3D motion estimation.
This is because the primary source of error in 3D motion estimation is not the inaccuracy of intrinsic
calibration but rather the error in the employed retinal displacements [8].

7.1.3 When is SVD Definitely Preferable Than ZF : A Case Study

This subsection is devoted to the study of a particular sequence of 3D motions which corresponds
to a singular case for ZF , i.e. the latter fails to produce a solution. More specifically, three motions
have been simulated with the third being the composition of the first two ones. The exact values
used for translation and rotation can be found in table 2. Note that motions 1 and 2 have only one
nonzero translational component, i.e. along the OX axis. The intrinsic calibration parameters were
again �u � ���� �v � ���� u� � ���� v� � ���� � � ���. No noise was added to the simulated
2D points. The SVD algorithm recovered the intrinsic calibration shown in the bottom part of table
2. On the contrary, ZF did not produce a solution. The reason for this failure is explained in the next
paragraph.

As can be verified from the analytic expression for the fundamental matrix (i.e. Eq.(6)), a 3D
translation of the form t � �tx� �� ��

t yields a fundamental matrix with a zero first row. This is
indeed the case for the fundamental matrices that were estimated for motions 1 and 2 and are shown
in table 2. Moreover, it is straightforward to prove that in the case of a translation t � �t x� �� ��

t, the
antisymmetric matrix of the epipole �e

�

�� also has a zero first row. This implies that both FKF and
�e

�

��K	�e
�

��

t matrices in the classical Kruppa equations formulation (i.e. Eq.(20)) also have a zero

first row. The particular implementation of the ZF algorithm that we employed in our experiments,
arbitrarily chooses the two constraints that are given by the top row of Eq.(21), i.e.

FKFt
��

	�e� ��K	�e� ��
t
��
�

FKFt
��

	�e� ��K	�e� ��
t
��
� �

FKFt
��

	�e� ��K	�e� ��
t
��
�

FKFt
��

	�e� ��K	�e� ��
t
��
� �

In the case of motions 1 and 2, however, those two constrains are meaningless. This is due to
the fact that the first rows of the matrices involved are zero, which makes the coefficients of the
unknown elements of matrix K zero as well. On the contrary, the SVD algorithm does not run into
any difficulties arising from the equations derived from motions 1 and 2. As can be easily checked,
for both motions the singular values r and s as well as the vectors u� and u� computed from the
Singular Value Decomposition of the corresponding fundamental matrices, are nonzero. Thus, the
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Figure 6: The error in the recovered 3D motion in the presence of noise, when the covariance is
not employed. The top row shows the error in the recovered translation direction, the middle row
corresponds to the error in the recovered rotation axis and the bottom row shows the error in the
estimated rotation angle. Mean values are shown in the left column, standard deviations in the right.
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Figure 7: The error in the recovered 3D motion in the presence of noise when employing the covari-
ance. The top row shows the error in the recovered translation direction, the middle row corresponds
to the error in the recovered rotation axis and the bottom row shows the error in the estimated rotation
angle. Mean values are shown in the left column, standard deviations in the right.
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translation rotation rotation F matrix
axis angle (deg)

motion1 600 0 0 .409 .818 .409 7.0
0.0 0.0 0.0

-2.465e-06 1.431e-06 0.021
-0.0003 -0.021 0.999

motion2 700 0 0 .802 .267 .534 6.0
0.0 0.0 0.0

-3.567e-07 1.288e-06 0.011
-0.0005 -0.012 0.999

motion3 motion1 followed by motion2
1.441e-08 -1.370e-07 -0.0001
-9.629e-07 1.337e-06 0.007

-0.0004 -0.008 0.999

Estimated A matrix using SVD
839.911 0.00559322 309.987

0 770.001 270
0 0 1

Table 2: A sequence of motions that is singular for ZF . The simulated 3D motions along with the
corresponding fundamental matrices are shown in the top part of the table. The intrinsic parameters
recovered using the SVD algorithm are shown in the bottom part of the table.

equations derived from (29) do not correspond to tautologies. This example clearly demonstrates
one of the advantages of using the SVD method instead of ZF which arbitrarily selects two out of
the six available constraints. It should be stressed at this point that even if the implementation of the
ZF algorithm employed here selected a different pair of constraints, an appropriate 3D motion could
be found that would make the selected constraints unsolvable for the elements of matrix K.

7.1.4 Metric Measurements

This subsection examines the noise sensitivity of angles and length ratios computed with the aid of
the recovered intrinsic calibration; appendix A should be consulted for more details regarding this
computation. Three rigid displacements of the camera have been simulated and 300 random 3D
points have been projected to the corresponding four positions of the simulated retina. The standard
deviation of the Gaussian noise added to retinal points was increased from 0 to 1.5 pixels. After
estimating the six fundamental matrices defined by the three displacements, the SVD algorithm
was applied to these estimates for recovering the intrinsic calibration matrix. The minimization
of Eq.(33) has been performed using four unknowns, i.e. the skew angle has been assumed to be
known and equal to ���. The obtained estimates are shown in table 3. The leftmost column of
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this table indicates the standard deviation of the Gaussian noise added to retinal points, while the
second left column consists of the estimated calibration matrices. To give an indication regarding
the suitability of the recovered calibration matrices for metric measurements, they have been used
to recover from the retinal projections a set of angles and length ratios formed by line segments
defined by the simulated 3D points. Using the simulated 3D points, 100 random angles and 100
random segment pairs were formed. The corresponding angles and length ratios were then measured
using the known 3D coordinates of the points defining the selected line segments. Subsequently, the
recovered calibration matrices were combined with the 2D projections of the points defining the line
segments to reestimate angles and length ratios using Eq.(34). The mean and standard deviation of
the relative error between the actual values and the estimated ones are summarized in table 3. More
specifically, the third column of this table refers to angle measurements while the fourth column
to measurements of length ratios. The values in the parentheses are the error statistics computed
when angles and length ratios were estimated using the true (i.e. not the estimated) calibration and
fundamental matrices. These values represent lower bounds for the error in metric measurements
from images, since in this case the A and F matrices are known with perfect accuracy and the
only source of error is the noise corrupting the retinal projections. As can be verified from table
3, the introduction of the estimated matrices in the measurement process increases the error only
slightly. This implies that both the calibration and the fundamental matrices have been obtained
with satisfactory accuracy.

7.2 Experiments with Real Images

Three experiments performed with real images are reported in this section. In all of these experi-
ments, point matches and the associated fundamental matrices have been computed with the aid of
[5]. The line segments employed for 3D angle measurements have been recovered automatically
with the aid of a line extractor; the endpoints of the line segments used for measuring 3D length
ratios have been defined manually by clicking on the images with a mouse. Finally, throughout all
experiments, the skew angle � has been assumed known and equal to ���; matrix K in Eq.(33) is
thus parameterized using four unknowns.

The first experiment is performed using five ��� � ��� images of the church of the village of
Valbonne. Images 0 and 2 of this sequence are shown in Figs. 8(a) and (b). Self-calibration has been
performed using the ten fundamental matrices defined by all possible image pairs. The estimated
intrinsic calibration matrix is shown in the top row of table 4. Figures 9(a) and (b) illustrate the line
segments used along with the recovered calibration to compute the angles reported in the left part of
table 4. More specifically, the leftmost column of this table indicates the pairs of image line segments
defining the angles, the second column from the left corresponds to the ground truth angle values,
the third column from the left supplies the cosine of the angles as computed from the images using
Eq. (34) and, finally, the fourth column shows the angles corresponding to the estimated cosines. In
addition to estimating angles, the recovered intrinsic parameters have also been used for estimating
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True A matrix
840 0 310
0 770 270
0 0 1

Noise Estimated A matrix Angles rel. error Length ratios rel. error
std dev mean std dev mean std dev

840.732 -1.44521e-14 310.058 0.0038 0.0064 0.0192 0.0705
0.0 0 770.606 270.606 (4.95e-06) (7.95e-06) (1.94e-05) (6.32e-05)

0 0 1
840.216 0 310.905 0.0076 0.0130 0.0190 0.0438

0.1 0 770.008 267.742 (0.0059) (0.0099) (0.0200) (0.0505)
0 0 1

828.684 1.39949e-14 320.451 0.0466 0.0726 0.0972 0.1748
0.5 0 769.914 262.45 (0.0449) (0.0776) (0.0924) (0.1921)

0 0 1
836.937 0 329.008 0.0971 0.2534 0.1290 0.2738

1.0 0 752.633 289.929 (0.0999) (0.3480) (0.1336) (0.2864)
0 0 1

830.949 2.81749e-14 327.062 0.1220 0.2895 0.1657 0.2789
1.5 0 770.784 261.244 (0.1034) (0.2397) (0.1716) (0.3125)

0 0 1

Table 3: Synthetic experiments results. The left column shows the standard deviation (in pixels)
of the noise added to image points, the second column shows the estimated A matrices, the third
column contains the error statistics for the measured 3D angles and the fourth column illustrates the
error statistics for the measured 3D segment length ratios. The true values for the A matrix are given
in the top row of the table.

RR n° 3748



30 Manolis I.A. LOURAKIS and Rachid DERICHE

3D length ratios using the line segments shown in Figures 9(c) and (d). The computed length ratios
are shown in the right part of table 4. The left column of this table indicates the pairs of image line
segments defining the ratios, the middle column corresponds to the ground truth ratio values and the
third column contains the ratios as computed from the images using Eq. (37).

(a) (b)

Figure 8: Frames 0 and 2 of the Valbonne church sequence.

The second experiment refers to images 11 up to 15 of a long sequence depicting one of the
INRIA buildings in Sophia-Antipolis. Images 11 and 12 of this sequence are shown in Figs. 10(a)
and (b). Images are of dimension ��� � ��� pixels. Self-calibration has been performed using all
ten fundamental matrices defined by images 11 to 15. The estimated intrinsic calibration matrix
is shown in table 5. This table also illustrates the angles and the length ratios computed using the
recovered intrinsic calibration and the line segments in Figs. 11(a)-(b) and (c)-(d) respectively.

The third experiment is based on a sequence depicting the Arcades Square in Valbonne. Images
are of dimension ��� � ��� pixels; frames 3 and 4 of this sequence are shown in Figs. 12(a) and
(b). Self-calibration has employed all ten fundamental matrices defined by the first five frames of the
sequence. The estimated intrinsic calibration matrix is shown in table 6. This table also illustrates the
angles and the length ratios computed using the recovered intrinsic calibration and the line segments
in Figs. 12(a)-(b) and (c)-(d) respectively.
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Figure 9: Line segments of the Valbonne church sequence: (a)-(b) the line segments that are used
for measuring 3D angles, (c)-(d) the line segments that are used for measuring 3D length ratios.
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Estimated intrinsic calibration matrix
682.84 1.68554e-14 255.999

0 682.843 383.999
0 0 1

Line segments from Figs.9 (a)-(b)
Angle Actual Estimated Estimated

segments angle (deg) cosine angle (deg)

0 - 1 90 0.0020432 89.882933
2 - 3 90 0.0207585 88.810540
4 - 5 90 0.0293123 88.320287
6 - 7 90 0.0287784 88.350891
8 - 9 0 0.999115 2.411304

7 - 10 0 0.999947 0.588870
11 - 12 0 0.995942 5.163766
13 -14 0 0.99997 0.446021
15 - 16 0 0.999766 1.238219
17 - 18 ? 0.733482 42.820857

Line segments from Figs.9 (c)-(d)
Line Actual Estimated

segments length ratio length ratio

0-1 1.0 0.977341
2-3 1.0 0.833801
4-5 1.0 0.851116
4-6 1.0 1.04367
7-8 1.0 0.949896
9-10 2.0 1.9691
5-11 1.0 1.02813

12-13 1.0 1.04544
14-10 3.0 3.07484

Table 4: Valbonne church sequence: estimated intrinsic calibration matrix (top), ground truth and
estimated angle values (left), ground truth and estimated length ratios (right).

(a) (b)

Figure 10: Frames 11 and 12 of the INRIA building sequence.
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Figure 11: Line segments of the INRIA building sequence: (a)-(b) the line segments that are used
for measuring 3D angles, (c)-(d) the line segments that are used for measuring 3D length ratios.

(a) (b)

Figure 12: Frames 3 and 4 of the Arcades Square sequence.
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Estimated intrinsic calibration matrix
578.351 -2.07997e-14 372.788

0 587.305 265.442
0 0 1

Line segments from Figs.11 (a)-(b)
Angle Actual Estimated Estimated

segments angle (deg) cosine angle (deg)

0 - 1 0 0.999988 0.279051
0 - 2 0 0.999943 0.609908
3 - 4 0 0.999972 0.427985
5 - 6 90 0.110625 83.648654
7 - 8 0 0.99956 1.699553

9 - 10 90 0.157303 80.949621
11 - 12 0 0.998336 3.305772
13 - 6 90 0.106399 83.892238
14 - 15 90 0.0171276 89.018615

Line segments from Figs.11 (c)-(d)
Line Actual Estimated

segments length ratio length ratio

0-1 1.0 1.00816
2-3 1.0 0.978988
4-5 1.0 0.999802
6-7 1.0 1.04928
8-9 1.0 1.02679

10-11 1.0 0.976233
12-13 1.0 0.960852

Table 5: INRIA building sequence: estimated intrinsic calibration matrix (top), ground truth and
estimated angle values (left), ground truth and estimated length ratios (right).
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Figure 13: Line segments of the Arcades Square sequence: (a)-(b) the line segments that are used
for measuring 3D angles, (c)-(d) the line segments that are used for measuring 3D length ratios.
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Estimated intrinsic calibration matrix
699.995 0 384

0 700.003 255.993
0 0 1

Line segments from Figs.13 (a)-(b)
Angle Actual Estimated Estimated

segments angle (deg) cosine angle (deg)

0 - 1 90 0.0498395 87.143221
2 - 3 90 0.0585627 86.642683
4 - 5 0 0.999654 1.507388
6 - 7 0 0.998966 2.606207
8 - 9 90 0.00810136 89.535821

10 - 11 0 0.99679 4.591879
12 - 13 0 0.983164 10.528644
14 - 15 ? 0.808495 36.050881
16 - 17 0 0.999652 1.510980
18 - 19 0 0.999962 0.497828

Line segments from Figs.13 (c)-(d)
Line Actual Estimated

segments length ratio length ratio

0-1 1.0 0.99806
2-3 1.0 1.09528
4-5 1.0 0.947202
6-7 1.0 1.00159
8-9 1.0 0.984137

10-11 1.0 0.981422
12-13 1.0 0.978607

Table 6: Arcades Square sequence: estimated intrinsic calibration matrix (top), ground truth and
estimated angle values (left), ground truth and estimated length ratios (right).
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8 Conclusions

Camera calibration is a prerequisite to a wide variety of vision tasks. In this paper, a novel method
for self-calibration has been proposed. The method employs a simplification of the Kruppa equa-
tions which relies solely on the SVD of the fundamental matrix and avoids recovering noise-sensitive
quantities such as the epipoles. The simplified Kruppa equations form the basis for a non-linear min-
imization scheme that yields the intrinsic calibration parameters. A detailed performance evaluation
of the proposed method has also been carried out and experimental results using synthetic data as
well as real image sequences were reported. Additionally, the proposed method has been compared
with a state of the art self-calibration method [52] and superior results have been obtained. As
demonstrated by the Euclidean measurements performed with the aid of the recovered calibration
matrices, the estimates of the latter are of acceptable accuracy for the purpose of metric reconstruc-
tion. Future work will investigate alternative ways for estimating the covariance of the SVD, so as
to obtain better estimates of uncertainty that will lead to better weights for the constraints in the
nonlinear minimization step, i.e. Eq.(33). Another possible direction for future study concerns the
application of sparse elimination methods [13, 12] to systems of polynomial equations defined by
Eqs. (30) (see also section 6.1). In this fashion, better initial solutions for the nonlinear minimization
algorithm might be obtained.
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A Direct Computation of Angles and Length Ratios from Im-
ages

Knowledge of the calibration matrix A enables certain 3D Euclidean measurements to be made
directly from the images. More specifically, the angle between two 3D line segments L � and L� can
be computed as follows [51, 52]: Let l�, l

�

�
and l�, l

�

�
be the projections of L� and L� in the two

images. By employing Laguerre’s formula, the angle between L � and L� is shown to be given by

cos	L�� L�
 �
jS	v��v�
jp

S	v��v�
S	v��v�

� (34)

where v� and v� are the projections in the first image of the intersections of L� and L� with the
plane at infinity and

S	m�n
 �mtA�tA��n (35)

Points v� and v� are determined by

v� � l� �H�

tl
�

�

v� � l� �H�

tl
�

�
�

where H� is the homography of the plane at infinity, corresponding to the uncalibrated rotational
component of motion and being defined by

H� � ARA�� (36)

In addition to angle measurements, the intrinsic calibration parameters also permit line segment
ratios to be directly calculated from pairs of images. Specifically, let A� B� C and D be four 3D
points giving rise to the following corresponding projections in the two images: 	a� a �
� 	b� b�
� 	c� c�

and 	d� d�
. It can be shown [51] that the ratio of the 3D segments AB and CD is given by

AB

CD
� (37)s

S	vab�vab


S	vcd�vcd

�
S	vac�vac
S	vbc�vbc
� S�	vac�vbc


S	vab�vab
S	vac�vac
� S�	vab�vac

�
S	vbd�vbd
S	vcd�vcd
� S�	vbd�vcd


S	vbc�vbc
S	vbd�vbd
� S�	vbc�vbd

�

where

vij � lij �H
t
�
l�ij � ij � fab� ac� bc� bd� cdg

is the projection in the first image of the point of intersection of the line defined by the 3D points
I and J and the plane at infinity, while lij is the line defined by image points i and j, given by the
cross product i� j. Function S	� � �
 is defined by Eq.(35).
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B SVD Differentiation

This appendix shows how can the derivatives of the SVD decomposition of a matrix with respect to
that matrix be computed. The derivation presented below is due to Théo Papadopoulo.

Let A be a M �N matrix and let U�D and V be its SVD components, i.e. A � UDV t with
U�V being orthogonal (UUt � VVt � I) andD being diagonal. In the following, we will use the
notation mij to refer to the (i, j) element of matrix M. With the above definitions, we are interested
in computing �

�aij
U, �

�aij
V and �

�aij
D for every element aij of A.

Taking the derivative of A with respect to aij yields the following equation

�

�aij
A � 	

�

�aij
U
DVt �U	

�

�aij
D
Vt �UD	

�

�aij
Vt
 (38)

Clearly, �akl
�aij

� �� �k �� i and l �� j. By multiplying Eq. (38) by U t and V from the left and
right respectively, the following equation is obtained

Ut	
�

�aij
A
V � �UD� 	

�

�aij
D
 �D�V� (39)

where �U and �V are defined as

�U � Ut	
�

�aij
U


�V � Vt	
�

�aij
V


Matrices �U and �V are antisymmetric, since, for example, for U the following holds:

UtU � I �	 	
�

�aij
U
tU�Ut � 	

�

�aij
U
 � �U

t ��U � � (40)

This implies that all the diagonal elements of �U and �V are zero, and therefore, recalling that D
is diagonal, the same is true for the diagonal elements of �UD and D�V. Thus, Eq.(39) gives that

�skk
�aij

� uik vjk (41)

The elements of the matrices �U and �V can be computed by solving a set of �� � linear systems:

sll �Ukl � skk �Vkl � uik vjl

skk �Ukl � sll �Vkl � �uil vjk
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where the range indices are � � � � min(M�N )�� for k and i�� � � � min(M�N ) for l. After computing
�U and �V, �

�aij
U and �

�aij
V follow as

�

�aij
U � U�U

(42)
�

�aij
Vt � �VV

t

In summary, the desired derivatives are supplied by Eqs. (41) and (42).
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