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Abstract—In the present paper, we will propose a new and 
robust method of camera self-calibration having varying intrinsic 
parameters from a sequence of images of an unknown 3D object. 
The projection of two points of the 3D scene in the image planes 
is used to determine the projection matrices. The present method 
is based on the formulation of a non linear cost function from the 
determination of a relationship between two points of the scene 
with their opposite relative to the axis of abscise and their 
projections in the image planes. The resolution of this function 
with genetic algorithm enables us to estimate the intrinsic 
parameters of different cameras. The important of our approach 
reside in the use of a single pair of images which provides fewer 
equations, simplifies the mathematical complexities and 
minimizes the execution time of the application, the use of the 
data of the first image only without the use of the data of the 
second image, the use of any camera which makes the intrinsic 
parameters variable not constant and the use of a 3D scene 
reduces the planarity constraints. The experimental results on 
synthetic and real data prove the performance and robustness of 
our approach. 

Keywords—Self-calibration; varying intrinsic parameters; non 
linear optimization; Interests points; Matching; Fundamental 
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I. INTRODUCTION 
Computer vision is the science of vision machines. It is a 

scientist discipline who is interested in building artificial 
systems that obtain information from images. The input data 
can take many forms: photographs, video footage, multiple 
camera images or multidimensional data medical scanner.  
Subdomains of computer vision are for example the 
Reconstruction of scenes, detection of events, object 
recognition, learning and image restoration. 

The Reconstruction of 3D scenes is a research path which 
became very important and active with the advent of 
visualization by computer. As a matter of fact this technique 
will be found in various fields almost all of them situated on 
the crossroads of IT(data processing), mathematics and some 
of robotics related disciplines. The major objectif is always to 
extract information on the three-dimensional scene from a set 
of images gathered by numerical cameras with or without a 
priori knowledge of the scene. Therefore it will become clear 

and necessary to begin by modeling the camera. The 
parameters of the cameras can be estimated by two major 
methods: calibration [1, 2, 3, 4] and self-calibration. In this 
paper, we are interested in the self-calibration methods that 
can calibrate the cameras without any prior knowledge about 
the scene. The standard process of most of these methods is to 
search for equations according to intrinsic parameters and the 
invariants in the images, whose aim generally is to solve a 
nonlinear equation system. The algorithm used to solve this 
system requires two steps, initialization and optimization of a 
cost function. Self-calibration of the cameras is the main step 
to obtain three-dimensional coordinates of points from 
matches between pairs of images. Several methods of camera 
self-calibration with constant intrinsic parameters [5–14] and 
those with varying intrinsic parameters [15–25] are treated in 
this area. 

Our approach is a new and robust method for camera self-
calibration having the varying intrinsic parameters by the use 
of an unknown three-dimensional scene. After the detection of 
interests points in the images by the Harris method [26] and 
the matching of these points in each pair of images by the 
correlation measure ZNCC [27], the fundamental matrix can 
be estimated from eight matches by the RANSAC algorithm 
[28]. This matrix is used with the projection of four points of 
the 3D scene in images taken by different views in order to 
formulate linear equations. Solving these equations allows the 
estimation of the projection matrices. The determination of a 
relationship between the four points of the 3D scene and their 
projections in the planes of the images g and d and the 
relationships between the images of the absolute conic allow 
the formulation of a nonlinear cost function. The minimization 
of this function by the genetic algorithms [29]allows the 
estimation of the intrinsic parameters of the cameras used. 

Our method presents a novelty: two images only are 
sufficient to estimate the cameras’ intrinsic parameters, the 
use of the data of the first image only, the use of any camera 
(with varying intrinsic parameters) and the use of an unknown 
3D scene. These advantages allow us, on the one hand, to 
solve some problems related to the self-calibration system 
and, on the other hand, to work freely in the domain of self-
calibration with fewer constraints. 
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Our work is organized as follows: In the third part, we 
present the camera model and matching containing three 
subparts: The first subpart comprises the camera model, the 
second is the Interest points‘detection. It is a preliminary step 
in many computer vision processes; many methods have been 
advanced to extract points of interest. In this paper, we used 
Harris interest point detector. The third is the Matching: 
Finding in two images of the same scene, taken at different 
positions, pairs of pixels which are the projections of the same 
point of the scene. In this phase, the detected interest points 
are matched by ZNCC (Zero mean Normalized Cross 
Correlation) correlation measure. The most important section 
is related to the estimation of the projection matrices and self-
calibration equations in section four and five. The experiment 
results are discussed in the Seven part, and finally, in section 
ten we will proceed to make a general conclusion. 

II. SURVEY OF THE PREVIOUS WORKS 
In order to make the self-calibration with the intrinsic 

constant parameters some of the concepts are based on 
simplified models which are designed to make the equations 
less complex which often allows them to converge into good 
results [30,31] Others are based on particular movements of 
the camera [32,33]. In there is also the category of the 
concepts which exploit general movements of constant 
intrinsic parameters [7] that takes into account cyclical points 
within a key view, in a flat scene and homographies. Other 
authors have shown various studies based on the Kruppa 
equations [34, 35] which on the one hand simplify the self-
calibration process by a direct estimation without making a 
projective reconstruction and on the other one by eliminating 
the infinite plane (the projection matrices have disappeared 
and only the fundamental matrices and the epipoles are 
present). In the same context other practical methods are 
proposed: [36] a method which presents an analytical 
reduction of the Kruppa equations. [37] This article presents a 
framework for random sampling nonlinear optimization for 
the self-calibration with modeling intrinsic parameters space 
of the camera, the focal length is modeled by using a Gaussian 
distribution originated by the Kruppa equations while the 
optical center is close to the center of the picture, this model 
allows the cost of the calculations. 

[38] This article deals with the problem of self- calibrating 
a moving camera with constant parameters. This method 
proposes a new set of quartic trivariate polynomial equations 
within the unknown coordinates of the indefinite plane derived 
from the hypothesis of no-skew, these new equations allow to 
better respect the constant of the principal point in all the 
images when recuperating the infinite plan. [39] In the present 
article a new method that combines the parallelism plane and 
the self-calibrating constraints of Mendonça/Cipolla. In this 
technique each pair of images is used independently and 
therefore presents a pair of different parallel planes not 
necessarily visible in the other images. 

In order to solve the problem of the self-calibration of the 
cameras our interest nowadays goes to the category of 
concepts that exploit the varying intrinsic parameters. 
Amongst them we recognize various approaches. One of them 
[40] consists of the determination of the dual absolute quadric 

of which the image is the dual absolute conic. The idea is then 
to transfer these constraints to the dual absolute quadric; once 
this matrices is known it suffices to determine the 
transformation that will replace the dual absolute in its 
canonical position. [41] A recent analogue method consists in 
the use of the dual absolute line (ALQ) instead of the absolute 
conic. [42, 43] They have solved the problem of the self-
calibration through the use of Kruppa equations with the study 
of the varying intrinsic parameters case. 

[44] A new method of self-calibration and stratified metric 
reconstruction for zooming/refocusing cameras is proposed 
sticking to the circular movement and its constraints: the 
ambiguity is then solved with the hypothesis of the square 
pixel of the camera and this flexibility allows the focal length 
and the principal point to vary. [45] This article details a 
method of self-calibration of the varying internal parameters 
of the camera that is based on a dual absolute quadric 
transformation of the image. This method may lead to a 
considerable improvement of the stability and robustness of 
the results. [46] This article describes a new method for the 
self-calibration of a sequence of images with the varying 
intrinsic parameters of the camera. This article is based on the 
Kruppa equations. This technique is based on the Kruppa 
equations with two upper triangular matrixes with which a 
relational matrix should be in place. Utilizing this way the 
epipolar geometry relationship of absolute conic to obtain the 
intrinsic parameters of the camera. [47] This article proposes a 
new method of initialization using a minimum of two images. 
The basic idea is that the minimum deviation of the intrinsic 
parameter will result in a more stable result. [48] This article 
presents an algorithm of sequential filtering to reach a 
simulated estimation of the 3D scenes. The auto calibration in 
this article uses the standard projective parameters of the focal 
distance and the principal point with two coefficients of the 
radial distortion. [49] A solid linear method for the self-
calibration of a moving camera starting from a sequence of 
images is presented. The proposed approach uses known  
linear equations which are weighted by variable factors. The 
experiments show that this modification reduces the problems 
with the critical motion sequences. 

III. CAMERA MODEL AND MATCHING 

A. Pinhole Camera Model 
The pinhole model (Figure 1) projects the scene in the 

image planes, for the camera g, it is defined by Kg(Rg tg ) with 
a matrix (Rg tg)containing extrinsic parameters Rg the rotation 
matrix, and tg the translation vector of camera in space, K gis a 
matrix containing the intrinsic parameters and is expressed as 
follows: 


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


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 =
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gf
is the focal length 

gε is the scale factor 
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τ is the skew factor ( )gg vu 00  
represent the coordinates of the principal point 

in the images. 

 
Fig. 1. Pinhole camera model 

B. Interests points 
Interest points are characteristic points of the image that 

are particularly holders of information. The detection of these 
points in stereoscopic images is an essential step in the field of 
Computer Vision and especially in the Three-dimensional 
Reconstruction. It is to match the projections of the same 
entity in the scene. The pairing of the corners points is based 
on the calculation and evaluation of degree of similarity of 
two pixel areas. For a pixel and its vicinity in the left image, 
we look at the other image pixel and its neighborhood that 
suits them the most. This step requires robust algorithms vis-a-
vis different geometrical transformations and changes in 
illuminance disturbances. 

We begin by extracting the corners points with the Harris 
detector that exists in the literature: 

1) Detection Of Interest Points 
The detectors of interests points found in the literature are: 

Moravec detector [27], Harris detector, Susan detector [28],… 
Harris [23],[26] developed the method Moravec for 
calculating local maxima in the images used by a matrix N 
related to the autocorrelation function which takes into 
account the first derivatives of the values of the signal I on a 
window in image space. N matrix is calculated by the 
following formula: 

N    =      

2

2

I I I
u u v

I I I
u v v

 ∂ ∂ ∂    
     ∂ ∂ ∂     
 ∂ ∂ ∂          ∂ ∂ ∂                               (2)

 

In order not to extract the values of this matrix, Harris uses 
a variable r whish is greater than zero in the case of a 
corner(interest point), its value is given by: 

r= 2)]([)det( NtraceN γ−                  (3) 
with 

0.04γ = (Value fixed by Harris) 
The detected primitive type is given by the values of r, 

three cases: 

r< 0: in the vicinity of an edge 

r = 0: in a homogeneous region 

r > threshold: near a point of corners 

2) Correlation Measure 
Corresponding points between two images of the sequence 

are the points of Harris previously detected in each image and 
matched by the correlation measure ZNCC(Zero mean 
Normalized Cross Correlation) [24], [25] which is invariant to 
local linear change luminance .m and m’ are two interest 
points detected in the left and right image respectively. 
Measurement correlation ZNCC(m, m ') is given by the 
formula follows: 

ZNCC (m , m’) =
2 2

(( ( ) ( ))( '( ' ) '( ')))

( ( ) ( )) ( '( ' ) '( '))
i

i i

I m i I m I m i I m

I m i I m I m i I m

+ − + −

+ − + −

∑
∑ ∑

  (4) 
With I (m) and I’(m’) the average luminance of pixels in a 

window of size 11×11 respectively in m and m' and i varies 
from 1to n. 

IV. ESTIMATION OF THE PROJECTION MATRICES 
Considering two points A1, A2 and their opposite A3, A4 

relative to the axis of abscise on the 3D scene. Let π a plane that 
contains these four points, we consider R an euclidean 
reference (O X Y Z) such as O is the midpoint of the chord 
[A1A2], and Z is perpendicular on the plan of the scene
( )π⊥Z . The homogeneous coordinates of the four points 
A1, A2, A3 and A4 (Figure 2) in the reference R (O X Y)are 
given as follows: 
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Where d=A1A2/2 and ϕ is the angle between the chord 
[A1A2] and the x-axis. Considering two homographies Hg and 
Hd that can project the plane π in images g and d, therefore, 
the projection of the four points A1, A2, A3 and A4can be given 
by the following expressions: 

kggk AHa =
                                         (5) 

Where k = 1, 2, 3, 4 and agk represent the points in the 
images g that are the projections of the four vertices A1, A2, 
A3 and A4of the 3D scene, and Hg represent the homography 
matrices that are expressed as follows: 
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Expressions (5) can be written as follows: 

              (7) 
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We can represent the projection matrices by: 

MPg gH~
                   (8)

 

Where Pg represent the projection matrices of the four 
points A’1, A’2, A’3, A’4in images (Figure 2). 

Formula (8) give: 

                           (9) 

 
Fig. 2. The projection of the two points A1, A2in the planes of images g and d 

Expression (9) gives: 

'
4g4

'
3g3

'
2g2

'
1g1

P~

P~

P~

P~

Aa

Aa

Aa

Aa

g

g

g

g

                                     

(10) 

The latter four relations give eight equations with eight 
unknowns, which are the Pg elements. 

So, the Pg parameters can be estimated from these eight 
equations with eight unknowns. 

V. SELF-CALIBRATION EQUATIONS 
A nonlinear cost function will be defined in the main part 

of this work from the determination of the relationships 
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between the images of the absolute conic ( gω ) and from the 
relationships between two points (A1, A2) and his oppositely 
relative to the X axis(A3, A4) of the3D scene and their 
projections ),,,( 4321 gggg AAAA and in the planes of the 
images g, respectively. The different relationships are based 
on some techniques of projective geometry. The defined cost 
function will be minimized by the genetic algorithms to 
estimate the gω elements and, finally, by the intrinsic 
parameters of the cameras used. 

Expression (9) gives 
'
kggkgk APa =α

                                    
(11) 

Where 
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gkα is a nonzero scale factor that is used to realized the 

transition between equality with a scale factor ∼to precise 

equality =. The value of gkα is determined from expression 
(11). 

Therefore, formula (11) leads to: 
'''

kggkgk APa =α                         (12) 
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Expression (12) gives: 
1'''~ −

kgkg AaP                               (13) 

Expressions (6) and (8) give: 
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The previous formula leads to: 
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According to the formula (15) we have: 
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Where 1)( −= T
ggg KKω is the image of the absolute conic, 
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Expressions (13) and (16) give: 
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The previous expression gives: 











−−

g
T
gg

T
g

g
T
g

TT

gg
T

g ttMRt
tRMMM

AaAa '

'''
1''

1
'

1
1''

1
'
1 ~)()( ω          (18) 











−−

g
T
gg

T
g

g
T
g

TT

gg
T

g ttMRt
tRMMM

AaAa '

'''
1''

2
'

2
1''

2
'

2 ~)()( ω
         

(19) 











−−

g
T
gg

T
g

g
T
g

TT

gg
T

g ttMRt
tRMMM

AaAa '

'''
1''

3
'

3
1''

3
'

3 ~)()( ω           20) 











−−

g
T
gg

T
g

g
T
g

TT

gg
T

g ttMRt
tRMMM

AaAa '

'''
1''

4
'

4
1''

4
'

4 ~)()( ω
         

(21) 

The expressions (18), (19), (20) and (21) give: 
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Therefore, the formula (22) with the previous gives: 



























===

===

===

===

=

=

=

=

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

g

e
e

d
d

c
c

b
b

e
e

d
d

c
c

b
b

e
e

d
d

c
c

b
b

e
e

d
d

c
c

b
b

e

d

c

b

33

23

33

23

33

23

33

23

23

22

23

22

23

22

23

22

22

13

22

13

22

13

22

13

13

11

13

11

13

11

13

11

12

12

12

12

,0

,0

,0

,0

                         

(23) 

The previous equations contain twenty eight equations 
with five unknowns that are the elements of gω . This system 
is non-linear. So to solve it, we try to minimize the objective 
function with the genetic algorithms: 
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VI. MINIMIZATION AND INITIALIZATION OF THE NON-
LINEAR OBJECTIVE FUNCTION 

To solve the equations (24), in practice there isn’t a direct 
method to solve them. So to solve this problem, we minimized 
the following non-linear objective function: 

∑
= +∂++++++++++++

++++++++++++++++++++
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With n is the number of images, 
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To solve the non-linear objective function (25), we used 
genetic algorithms [29] which require an important 
initialization step which is to calculate the unknowns 
assuming certain conditions were verified. Replacing at the 
end these parameters in the system of equations (24) allows 
the estimation of the intrinsic camera parameters. 

The initialization values are selected such that each 
parameter of the camera belongs to a specific interval: 

TABLE I. VARIATION INTERVAL OF THE CAMERA SETTING 

 Variation 
interval 

fg [800  2000] 

gε  [0   1] 

τ  [0   1] 

gu0  [200  300] 

gv0  [200  300] 

VII. EXPERIMENTATION 
1) Real Data 
In this section, a sequence of two images of a 

checkerboard pattern is simulated to test the performance and 
robustness of the present approach. After the detection of 
interests points by the Harris algorithm [26], the matches 
between each pair of images are determined by the correlation 
function ZNCC [27]. The pattern is projected in images taken 
from different views with Gaussian noise of standard 

deviation σ, which is added to all image pixels. The projection 
of the four points in the image planes allows formulating the 
linear equations, and the solution of these equations gives the 
projection matrices. The determination of a relationship 
between the four points and their projections in the image   g 
and the relationships between images of the absolute conic can 
define a non linear cost function. The minimization of this 
function by the genetic algorithms [29] allows estimating the 
intrinsic parameters of the cameras used. 

To achieve our theoretical idea and have a practical result, 
we based on open source tools to offer an application that 
implements the algorithms used in our article. 

The tools used are: 

• A robust programming language in the field, object-
oriented open source such as Java. 

• Sophisticated and open source APIs to solve 
mathematical complexities such as JAMA, Jscientific 
and JAI. 

• The Swing API for loading images and the realization 
of different graphical interfaces. 

A pair of images is loaded into our application (Figure 3), 
after the interests points are computed in each image, using 
the implementation of Harris algorithm (Figure 4), and then 
the matching of interest points is calculated in the phase 
matching by implementing the correlation algorithm ZNCC 
(Figure 5). 
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Fig. 3. loading apair of images 

 
Fig. 4. detection ofInterest pointsfor each image 

 
Fig. 5. Matching Interest points by the Correlation algorithm ZNCC 
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To estimate the intrinsic parameters of each camera by our 
approach two phases must be implemented initialization to 
provide a initial solution and the minimization of cost function 
(24) to find an optimal solution (Table 2). 

VIII. RESULTS AND COMPARAISON OF OUR METHOD WITH 
OTHER 

TABLE II. THE RESULTS OF THE INTRINSIC CAMERA PARAMETERS 
ESTIMATED BY THE THREE METHODS 

  Optimal solution 
 cameras f  ε  0u  0v  τ  

O
ur

 
ap

pr
oa

c
h 

Camera1 1487 0,98 257 263 0,03 
Camera2 1480 0,97 261 258 0,02 
Camera3 1483 0,93 258 261 0,05 
Camera4 1484 0,95 260 255 0,07 

Ji
an

g 

Camera1 1477 1 263 258 0 
Camera2 1472 0,98 260 263 0,12 
Camera3 1474 0,92 254 261 0,15 
Camera4 1471 0,94 257 255 0,13 

El
 

ak
ka

d 

Camera1 1492 0,95 240 260 0,05 
Camera2 1490 0,92 248 255 0,06 
Camera3 1491 0,97 253 258 0,04 
Camera4 1489 0,93 252 262 0,03 

In order to show the performance and robustness of our 
method presented in this paper, the simulation results are 
compared to those obtained by several efficient methods of 
Jiang [14], and El akkad [50]. 

The loading of images is shown in Figure 3, the corner 
points and the matches between these two images are shown 
in Figure 4, 5 and the intrinsic parameters estimated by three 
methods(the present method, El akkad [50], and Jiang’s [14]) 
are shown in Table 2below. 

After comparing the results on the synthetic data, the 
results of the present approach on real data are compared to 
those obtained by El akkad [50] and Jiang [14] on the same 
data. The reading and the analysis of the intrinsic camera 
parameters presented in Table 2show that the results of the 
present approach are a little different from those obtained by 
Jiang and El akkad. Therefore, this method provides a robust 
performance, and it is very close to the other well-established 
methods. In addition, this method has several advantages: it is 
based only on the data of the first image without the use the 
data of the second image for the estimation of the intrinsic 
camera parameters, the use of any camera and the use of an 
unknown3D scene. 

 
Fig. 6. The execution time according to the number of images 

Figure 6 shows that the execution time of the different 
methods increases, and finally it shows the effect of the use of 
a large image number. 

IX. CONCLUSION 
In this paper, a robust method of camera self-calibration by 

an unknown three-dimensional scene is presented. The lack of 
information about the scene requires to be based on 
mathematical complexities to find the camera settings. This 
new method is based on the determination of a relationship 
between two points and oppositely relative to the X axis in the 
3D scene and their projections in the planes of the images g 
and d and between the relationships between the images of the 
absolute conic. These relationships give a nonlinear cost 
function, and the minimization of this function provides the 

intrinsic parameters of the cameras used. Our technology is 
used to provide more information about the scene which 
makes the calculation of the parameters in images very simple. 

Our method allows easily and without the use or of the data of 
the second image or the geometrical entities defined between 
the pair of images estimating the intrinsic parameters of each 
camera independently from each other. The robustness, the 
power and the rapidity ofthis method is shown by the results 
of the experiments andthe simulations conducted. 
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