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Abstract Photometric camera calibration is often required

in physics-based computer vision. There have been a num-

ber of studies to estimate camera response functions (gamma

function), and vignetting effect from images. However less

attention has been paid to camera spectral sensitivities and

white balance settings. This is unfortunate, since those two

properties significantly affect image colors. Motivated by

this, a method to estimate camera spectral sensitivities and

white balance setting jointly from images with sky regions is

introduced. The basic idea is to use the sky regions to infer

the sky spectra. Given sky images as the input and assuming

the sun direction with respect to the camera viewing direction

can be extracted, the proposed method estimates the turbid-

ity of the sky by fitting the image intensities to a sky model.

Subsequently, it calculates the sky spectra from the estimated

turbidity. Having the sky RG B values and their correspond-

ing spectra, the method estimates the camera spectral sensi-

tivities together with the white balance setting. Precomputed

basis functions of camera spectral sensitivities are used in the

method for robust estimation. The whole method is novel and

practical since, unlike existing methods, it uses sky images

without additional hardware, assuming the geolocation of the
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captured sky is known. Experimental results using various

real images show the effectiveness of the method.
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1 Introduction

Photometrically calibrating a camera is necessary, partic-

ularly when applying physics-based computer vision meth-

ods, such as photometric stereo (Woodham 1980; Ikeuchi

1981), shape from shading (Ikeuchi and Horn 1981; Zhang

et al. 1999), color constancy (Hordley 2006; Weijer et al.

2007; Tan et al. 2004; Kawakami and Ikeuchi 2009), illumi-

nation estimation (Sato et al. 2003; Li et al. 2003; Lalonde

et al. 2009), and surface reflectance estimation (Debevec et

al. 2000; Hara et al. 2005; Haber et al. 2009). There have

been a number of studies on automatic calibration of camera

response functions (or gamma function) and vignetting cor-

rection (Lin et al. 2004; Takamatsu et al. 2008; Kuthirummal

et al. 2008). These methods produce images that the intensity

values are strictly proportional to the radiance of the scenes.

In computer vision literature, less attention has been paid

to estimating camera spectral sensitivities and white balance

settings,1 despite the fact that both of them are crucial for

color calibration between different types of cameras. The

lack of attention is because physics-based methods usually

1 While a few papers propose auto-white balancing methods, this paper

estimates the white balance setting inversely from images, where an

auto-white balancing method has been applied to them. We also differ-

entiate color constancy from white balance parameter estimation, since

the former deals with illumination color and the latter deal only with

camera settings.
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(a) Canon IXY 900 IS. (b) Casio EX-Z 1050. (c) Panasonic DMC-FX 100.

Fig. 1 The color differences of images taken by different cameras.

The left, middle and right images are taken by Canon IXY 900 IS, Casio

EX-Z 1050 and Panasonic DMC-FX 100, respectively. The images were

adjusted to have the same scale of intensity values, to emphasize the

color differences. The averaged chromaticity values (r, g, b) of the red

squares are (0.45, 0.32, 0.23) for Canon, (0.39, 0.32, 0.29) for Casio,

and (0.41, 0.32, 0.27) for Panasonic. The color differences are caused

by different camera spectral sensitivities and white balance settings

assume images are captured by the same cameras; thus, the

color space used in the whole process is the same. However,

when different types of cameras are used, color calibration

becomes vital, since without it, identical scene radiance will

result in different color values.

To highlight the effects of camera spectral sensitivities and

white balance settings, Fig. 1 shows the same scene captured

by three different consumer cameras. As shown in the figure,

the colors of a scene vary, due to the different camera spectral

sensitivities and white balance settings. To further emphasize

on the differences, the caption in the figure also includes the

comparisons in terms of the chromaticity values.

The intensity formation of colored images can be modeled

as:

Ic =

∫

Ω

L(λ)qc(λ)dλ, (1)

where Ic is the intensity at channel c, with c ∈ {r, g, b}, Ω

is the range of the visible wavelengths, and L is the incom-

ing spectral radiance.2 Considering the von Kries model in

computational color constancy, we assume that for different

white balance settings, cameras automatically multiply the

intensity of each color channel with different scaling factors

(kc), namely, qc = kcq ′
c, where q ′

c and kc are the spectral sen-

sitivity and white balance for c color channel, respectively.

Based on the last equation, our goal is to estimate qc from

given Ic. This means that given image intensity values, we

intend to estimate the camera spectral sensitivities and white

balance setting together, without any intention to separate

them (qc = kcq ′
c). Note that, kc is estimated up to a scale,

and thus its relative value can be obtained from qc.

In the literature, one of the basic techniques to achieve the

goal is to use a monochromator (Vora et al. 1997), a special

device that can transmit a selected narrow band of wave-

lengths of light. The method provides accurate estimation,

2 Equation (1) ignores the camera gain.

and hence is commonly used. Other methods that do not use

a monochromator require both input images and the corre-

sponding scene spectral radiances (Hubel et al. 1994; Sharma

and Trussell 1993; Finlayson et al. 1998; Barnard and Funt

2002; Ebner 2008; Thomson and Westland 2001).

Unlike the existing methods, in this paper, we introduce a

novel method that uses only images without requiring addi-

tional devices. The basic idea of our method is, first, to esti-

mate the sky spectral radiance L(λ) through a sky image Ic,

and then to obtain the mixture of the spectral sensitivities

and white balance setting, qc(λ), by solving Eq. (1). To our

knowledge, this approach is novel, particularly the use of

images with sky regions.

To estimate the sky spectral radiance, we calculate the

turbidity of the sky from image intensities, assuming the sun

direction with respect to the camera viewing direction can

be extracted. The calculated turbidity provides the CIE chro-

maticities that can then be converted to the spectral radiance

using the formulas of the Judd daylight phases (Judd et al.

1964).

Having the input sky image and its corresponding spectra,

we estimate the camera spectral sensitivities by solving the

linear system derived from Eq. (1). However, this solution

can be unstable if the variances of the input colors are small,

which is the case for sky images. To overcome the problem,

we utilize precomputed basis functions.

The main contribution of this paper is a novel method

of spectral sensitivity and white balance estimation from

images. Other contributions are as follows. First, the improve-

ment of the sky turbidity estimation (Lalonde et al. 2010),

where a wide variety of cameras that have different spectral

sensitivities and white balance settings can be handled with-

out calibration. Second, a publicly available camera spectral

sensitivity database that consists of twelve different cameras

(Zhao 2013). Third, the application of the estimated cam-

era spectral sensitivities for physics-based color correction in

outdoor scenes, which according to our experiment, produces
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better results than those of a color transfer method (Reinhard

et al. 2001).

There are a few assumptions used in our method. First, it

assumes the presence of the sky in the input images. Ideally,

it is clear sky. However, it performs quite robustly even when

the sky is hazy or partially cloudy. Second, it assumes that the

sun direction with respect to the camera viewing direction can

be extracted. If we have the camera at hand, we can arrange

the camera in such a way that we can extract the information

from the image. However, if we do not have (e.g., we utilize

prestored collections of images, such as those available on

the Internet or in old albums), the EXIF tag (the time when

the image is taken), the site geolocation and the pose of a ref-

erence object in the site can be used to determine the camera

viewing- and the sun directions. While the requirement of

a known geolocation and a reference object sounds restric-

tive, if we apply the method for landmark objects (such as

the Statue of Liberty, the Eiffel Tower, etc.), such informa-

tion can normally be obtained. Moreover, online services like

Google Earth or Google Maps can also be used to determine

the geolocation of the site. Third, we share the assumption

that is used in the sky model (Preetham et al. 1999): the

atmosphere can be modeled using sky turbidity, which is the

ratio of the optical thickness of haze versus molecules.3

The rest of the paper is organized as follows: Sect. 2 briefly

reviews the related work. Section 3 describes the sky tur-

bidity estimation and calculation from turbidity to spectral

radiance. Section 4 explains the estimation of camera spec-

tral sensitivity using basis functions. Section 5 provides the

detailed implementation. Section 6 shows the experimental

result, followed by Sect. 7, which introduces an application

that corrects colors between different cameras based on the

estimated camera spectral sensitivities. Section 8 discusses

the limitation and the accuracy of the method. Finally, Sect. 9

concludes our paper.

2 Related Work

Most of the existing methods of camera spectral sensitiv-

ity estimation (Barnard and Funt 2002; Thomson and West-

land 2001) solve the linear system derived from Eq. (1),

given a number of spectra and their corresponding RG B

values. However, such estimation is often unstable, since

spectral representations of materials and illumination live in

a low-dimensional space (Slater and Healey 1998; Parkki-

nen et al. 1989), which implies that the dimension of spec-

tra is insufficient to recover high-dimensional camera spec-

3 Here, molecules refer to those less than 0.1λ in diameter, whose scat-

tering can be modeled by Rayleigh scattering. The term haze, often

referred to as a haze aerosol, is for much bigger particles, whose scat-

tering is modeled by Mie scattering (McCartney 1976).

tral sensitivity information. To make the estimation stable,

further constraints are required in the optimization process,

and the existing methods mostly differ in the constraints

they use.

Pratt and Mancill (1976) impose a smoothing matrix on

pseudo-matrix inversion, compare it with the Wiener estima-

tion, and claim that the Wiener estimation produces better

results. Hubel et al. (1994) later confirm that Wiener estima-

tion does provide smoother results than those of the pseudo-

matrix inversion. Sharma and Trussell (1993) use a formula-

tion based on set theory and introduce a few constraints on

camera spectral sensitivities, such as non-negativity, smooth-

ness, and error variance. Finlayson et al. (1998) represent

camera spectral sensitivities by a linear combination of the

first 9 or 15 Fourier basis functions, and use a constraint that a

camera spectral sensitivity must be uni- or bimodal. Barnard

and Funt (2002) use all the constraints, replace the absolute

intensity error with the relative intensity error, and estimate

the camera spectral sensitivities and response function at

once. Ebner (2008) uses an evolution strategy along with

the positivity and the smoothness constraints. Thomson and

Westland (2001) use the Gram–Charlier expansion (Frieden

1983) for basis functions to reduce the dimensions of cam-

era spectral sensitivities. Nonlinear fitting is performed in the

method.

The main limitation of the mentioned methods is the

requirement of the spectral radiance, which is problematic

if the camera is not at hand, or if no additional devices (such

as a monochromator or spectrometer) are available. In con-

strast, our method does not require known scene spectral

radiance. Moreover, in computing the camera spectral sensi-

tivities we do not use an iterative technique that is required

in the existing methods, although in the sub-process of esti-

mating turbidity, we do use an optimization process.

It should be noted that several methods of computer vision

have utilized the radiometric sky model. Yu and Malik (1998)

use the Perez et al.’s sky model (1993) to calculate the sky

radiance from photographs, in the context of recovering the

photometric properties of architectural scenes. Lalonde et al.

(2010) exploit the visible portion of the sky and estimates

turbidity to localize clouds in sky images, which are similar

to the technique we use. However, the method cannot be used

directly for our purpose, since its optimization is based on

xyY color space. To convert image RG B into xyY, a linear

matrix must be estimated from known camera sensitivities

and white balance setting, which are obviously unknown in

our case. Thus, instead of using xyY, we assume that the

relative intensity (i.e., the ratio of a sample point’s intensity

over a reference point’s intensity) is independent from cam-

eras up to a global scale factor. By fitting the relative intensity

between pixels to that of the sky model, our method can esti-

mate the turbidity, which we consider to be an improvement

over the method of Lalonde et al. (2010).
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3 Estimating Sky Spectra

Camera spectral sensitivities can be estimated if both image

RG B values and the corresponding spectra, respectively Ic

and L(λ) in Eq. (1), are known. However, in our problem

setting, only pixel values Ic are known. To overcome this,

our idea is to infer spectra L(λ) from pixel values using sky

images. Since, from sky images, turbidity can be estimated,

and from turbidity, sky spectra can be obtained. This sec-

tion will focus on this process. Later, having obtained the

sky spectra and the corresponding RG B values, the camera

spectral sensitivities can be calculated from Eq. (1).

3.1 Sky Turbidity Estimation

The appearance of the sky, e.g. the color and the clearness,

is determined by the scattering and absorption of the solar

irradiance caused by air molecules, aerosols, ozone, water

vapor and mixed gases, where some of them change accord-

ing to the climate conditions (Chaiwiwatworakul and Chi-

rarattananon 2004). Aerosols are attributed to many factors,

such as volcanic eruptions, forest fires, etc., and difficult

to characterize precisely. However, a single heuristic para-

meter, namely turbidity, has been studied and used in the

atmospheric sciences (Preetham et al. 1999). Higher turbid-

ity implies more scattering and thus whiter sky.

To estimate turbidity, our basic idea is to match the bright-

ness distribution between an actual image and the sky model

proposed by Preetham et al. (1999). The model describes the

correlation between the brightness distribution and the sky

turbidity based on the simulations of various sun positions

and turbidity values. According to it, the luminance Y of the

sky in any viewing direction with respect to the luminance

at the zenith Yz is given by:

Y =
F(θ, γ )

F(0, θs)
Yz, (2)

where F(., .) is the sky brightness distribution function of

turbidity developed by Perez et al. (1993), θs is the zenith

angle of the sun, θ is the zenith angle of the viewing direction,

and γ is the angle of the sun direction with respect to the

camera viewing direction, as shown in Fig. 2. More details

of calculating the sky luminance are provided in Appendix A.

Hence, to estimate turbidity (T ), our method minimizes

the following error function:

Err =

n
∑

i=1

∣

∣

∣

∣

Yi (T )

Yre f (T )
−

Ji

Jre f

∣

∣

∣

∣

, (3)

where n represents the number of sample points and Y/Yre f

is the luminance ratio of the sky, which can be calculated

from F(θ, γ )/F(θre f , γre f ), given the sun direction and

the turbidity. Yre f is the luminance of a reference point, and

Fig. 2 The coordinates for specifying the sun position and the viewing

direction in the sky hemisphere

we found that it can be the zenith as in Eq. (2), or any other

point in the visible sky portion. J is the total intensity of a

pixel:

J = Ir + Ig + Ib, (4)

where Ic is the image intensity defined in Eq. (1). Jre f is

the total intensity of a reference pixel. Since we assume the

camera gamma function is linear, the image intensity ratio

(Ji/Jre f ) is proportional to the luminance ratio of the sky

(Yi/Yre f ), regardless of the camera sensitivities and white

balance setting. The error function is minimized by Particle

Swarm Optimization (Kennedy and Eberhart 1995), which is

generally more robust than the Levenberg–Marquardt algo-

rithm when there are several local minima.

To minimize the error function, the sun- and the camera

viewing directions are required. With this respect, we con-

sider two cases:

(1) The easier case is when a single image is taken using a

fish-eye lens or an omnidirectional camera, since, assum-

ing the optical axis of the camera is perpendicular to the

ground, we can fit an ellipse to saturated pixels, and find

its center as the sun position in the sky hemisphere shown

in Fig. 2.

(2) The harder case is when the sky is captured by a normal

lens, and the sun is not visible in the input image. In this

circumstance, we search images that include a reference

object with a known pose and geolocation. The pose and

geolocation of a reference object (particularly a landmark

object) are in many cases searchable on the Internet. The

camera viewing direction can, then, be recovered using a

few images that include the reference object by using SfM

(structure from motion). The sun position is estimated

from the time stamp in the EXIF tag and the geolocation

of the object. The details of calculating the sun direction

when the sun is not visible in the image are given in

Appendix B.
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Aside from the two cases above, when clouds are present

in the input image, the turbidity estimation tends to be erro-

neous. To tackle this, our method employs a RANSAC type

approach, where it estimates the turbidity from sample sky

pixels, repeats this procedure, and finds the turbidity that has

the largest inliers with the smallest error.

3.2 Sky Spectra from Turbidity

Preetham et al. (1999) also introduce the correlation of turbid-

ity and the CIE chromaticity (x and y). The CIE chromaticity

can be calculated as follows:

x = xz

F(θ, γ )

F(0, θs)
, and y = yz

F(θ, γ )

F(0, θs)
, (5)

where xz and yz represent the zenith chromaticities, and are

functions of turbidity. For computing x and y in detail, see

Appendix C.

Having obtained x and y in Eq. (5), the sky spectra can be

calculated using the known basis functions of daylights (Judd

et al. 1964; Wyszecki and Stiles 1982). The sky spectrum

SD(λ) is given by a linear combination of the mean spectrum

and the first two eigenvector functions:

SD(λ) = S0(λ) + M1S1(λ) + M2S2(λ), (6)

where scalar coefficients M1 and M2 are determined by chro-

maticity values x and y. Computing M1 and M2 from x

and y is also given in Appendix C. Three basis functions

S0(λ), S1(λ) and S2(λ) can be found in Judd et al. (1964),

Wyszecki and Stiles (1982).

4 Estimating Camera Spectral Sensitivity

Given a number of input image RG B values and the cor-

responding spectra, the camera spectral sensitivities can be

computed using Eq. (1), of which the matrix notation is

expressed as

I = qt L, (7)

where I is a 3×n pixel matrix, L is a w×n spectral matrix, and

q is a w×3 camera-sensitivity matrix. n represents the num-

ber of pixels, and w represents the number of wavelengths.

Provided sufficient data for I and L, we can estimate q by

operating IL+, where L+ is the pseudo-inverse of L.

Unfortunately, the rank of the matrix L has to be at least

w, to calculate the pseudo-inverse L+ stably. In our case, the

representation of the sky spectral radiance is three dimen-

sional (3D) since we calculate the spectral radiance using the

basis functions in Eq. (6). This means that the direct matrix

inversion method would produce erroneous results.

To solve the problem, we propose to use a set of basis

functions computed from known camera spectral sensitivi-

ties (Zhao et al. 2009). In many cases, camera spectral sensi-

tivities have different distribution functions but the variances

will not be extremely large, meaning that their representation

may lie in a low-dimensional space, similar to the illumina-

tion basis functions (Slater and Healey 1998). Since basis

functions can reduce dimensionality and thus the number of

unknowns, this method generally provides robust and more

accurate results than the direct matrix inversion method.

4.1 Estimation Using Basis Functions

Representing the camera spectral sensitivities using a linear

combination of basis functions is expressed as:

qc(λ) =

d
∑

i=1

bc
i Bc

i (λ), (8)

where d is the number of the basis functions, bc
i is the coef-

ficient and Bc
i (λ) is the basis function with c ∈ {r, g, b}. By

substituting this equation into Eq. (1), we can have:

Ic =

d
∑

i=1

bc
i

∫

Ω

L(λ)Bc
i (λ)dλ. (9)

By using Ec
i to describe the multiplication of the spectral

radiance and the basis function of a camera spectral sensitiv-

ity: Ec
i =

∫

Ω
L(λ)Bc

i (λ)dλ, we can obtain

Ic =

d
∑

i=1

bc
i Ec

i . (10)

Now, let us suppose that we have n sets of data (n image

pixels and the corresponding spectral radiance); then, we

can describe the last equation as I = bE, where I is a 1

by n matrix, b is a 1 by d coefficient matrix, and E is a d

by n matrix. Consequently, this coefficient matrix b can be

expressed as follows: b = IE+, where E+ is the pseudo-

inverse of E.

4.2 Basis Functions from a Database

The rank of the multiplication matrix (E) has to be larger than

the number of the basis functions (d) to make the estimation

robust. Since the estimated spectral radiance is at most rank

three, we use 3D basis functions for the camera spectral sen-

sitivity estimation.

To extract the basis functions, we collected several digi-

tal cameras to make a database and measured their spectral

sensitivities, including a few spectral sensitivities taken from

the literature (Vora et al. 1997; Buil 2005). Cameras included

in the database are Sony DXC 930, Kodak DCS 420, Sony

DXC 9000, Canon 10D, Nikon D70, and Kodak DCS 460.

Those used for testing are not included. This camera spectral

sensitivity database is publicly available at our website (Zhao

2013). We obtain the basis functions from the database by

using the principal component analysis.
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Table 1 The values of the first four eigenvalues of the basis functions

extracted from our camera spectral sensitivity database, and the per-

centage of those eigenvalues in capturing the distributions of all the

cameras

Eigenvalues Percentage

R G B R G B

6.52 8.58 6.60 68.1 73.6 61.7

1.81 1.54 1.98 19.0 13.2 18.4

0.50 0.72 1.22 5.18 6.16 11.3

0.34 0.36 0.44 3.57 3.08 4.07

The percentages of eigenvalues for each color channel are

shown in Table 1. The sum of the first three eigenvalues is

about 93 % for all three channels; thus, the first three vectors

cover 93 % information of the database. Based on this, the

first three eigenvectors are used as basis functions, which are

shown in Fig. 3.

5 Implementation

The flowchart of the algorithm is shown in Fig. 4. If the

input image is captured by an omnidirectional camera, where

the optical axis is perpendicular to the ground, and the sun

appears in the image, then an ellipse is fitted to the saturated

pixels, and the sun position is considered to be the center of

that ellipse. Subsequently, the angle between the sun and the

camera is computed. However, if the image is taken using

an ordinary camera, and we cannot directly know the sun

position in the image, then the sun position and the camera

viewing direction need to be estimated.

The sun position is estimated through a known geoloca-

tion (e.g., using Google Earth) and EXIF tag (the time stamp).

The camera viewing direction is estimated using the Bundler

(Snavely et al. 2006) and the pose of a reference object. This

pose of a reference object can be estimated using Google

Earth, where the orientation angle is calculated by drawing a

line between two specified points, as shown in Fig. 5. How-

ever, this estimation is less accurate than the actual on-site

measurement (which for some landmark objects, is avail-

able on the Internet). The inaccuracy in the camera viewing

angle is 6◦ in this case, which, in turn, decreases the accu-

racy of estimating the camera spectral sensitivities approxi-

mately 3 %.

To estimate the sun position in an image, one might con-

sider Lalonde et al.’s method (2009). However, for a typical

image shown in Fig. 11g, the method produced the estimated

angular errors 10◦ for θ and 16◦ for φ, which are considerably

large. Therefore, instead of using the method, we used the

geolocation and time stamp to estimate the sun position. Note

that, according to the psychophysical test by Lopez-Moreno

et al. (2010), the human visual system cannot spot an anom-
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(a) Red channel. (b) Green channel. (c) Blue channel.

Fig. 3 The extracted basis functions of red, green and blue channels from our sensitivity database

Fig. 4 The flowchart of the implementation. If the input image is from

omnidirectional camera, the algorithm directly estimate the sun posi-

tion in the image. Otherwise, the algorithm will calculate the sun direc-

tion through the EXIF tag, and calculate the camera parameters from a

structure-from-motion method (using images of the same scene as the

input image). Then, it samples the sky pixels (i.e., view directions in

a geodesic dome) and estimates the turbidity. Having the turbidity, it

calculates the sky spectral radiance, which can be used to calculate the

camera spectral sensitivity and the white balance setting. The details of

the flowchart can be found in Sect. 5
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Fig. 5 Estimating the orientation angle by Google Earth
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Fig. 6 The relation between the number of images used for SfM and

estimated camera angles. The top and bottom figures shows estimated

elevation (θ) and azimuth (φ) angles with respect to the number of input

images. The labels around the plotted data are the number of images

used

alously lit object with respect to the rest of the scene, when

the divergence between the coherent and the anomalous light

is up to 35◦. Thus, the error of Lalonde et al. (2009) may be

tolerable in some applications.

We also evaluated how many images can be used for con-

sistent estimation of the viewing angles of a specific camera

by the Bundler (Snavely et al. 2006). The result is shown in

Fig. 6, where we tried as many as 300 images and the SfM

algorithm produces consistent results after approximately 50

images.

Having determined the sun position and camera viewing

direction, a few pixels in the sky, which correspond to points

in the sky hemisphere, are sampled uniformly. To ensure the

uniformity, a geodesic dome is used to partition the sky hemi-

sphere equally, and sample some points in each partition. For

omnidirectional images, the corresponding sky pixels can be

obtained directly from the sample points generated using the
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Fig. 7 The verification of correlation between the sky luminance and

image intensity for two cameras

geodesic dome. For perspective images, we first calculate the

camera’s field of view from the image dimension and focal

length. Then, the sample geodesic points lying on the cam-

era’s field of view are used to calculate the coordinates of the

corresponding sky pixels.

Turbidity is estimated from the intensity ratios of these

sampled sky pixels using Particle Swarm Optimization.

RANSAC is used to remove the outliers. The spectral

radiance is converted from chromaticity values (x and y),

which are calculated from the turbidity. Finally, the cam-

era spectral sensitivities together with the white balance set-

ting are estimated using the precomputed basis functions,

the calculated sky spectra, and their corresponding RG B

values.

6 Experimental Results

In our experiments, we used both raw images, which are

affected by minimal built-in color processing, and images

downloaded from the Internet. We assume those images were

taken with the gamma function off or have been radiometri-

cally calibrated.

Before evaluating our method, we verified the assumption

used in the sky turbidity estimation, namely, image intensities

are proportional to the sky luminance. We used two cameras:

Nikon D1x and Canon 5D attached with a fish-eye lens. The

images are shown in Fig. 8d, g. We sampled about 120 points

uniformly distributed on the sky hemisphere. Figure 7 shows

the results, where the image intensities of both cameras are

linear with respect to the sky luminance values of the sky

model.
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Ladybug2.

(d) Clear. (e) Hazy plus “Daylight” white balance. (f) Hazy plus “Cloudy” white balance.

Canon 5D.

(a) Clear. (b) Partially cloudy. (c) Thin cloudy.

(g) Clear. (h) Significantly cloudy. (i) Rectified image.

Nikon D1x. Ladybug2.

Fig. 8 Various sky conditions captured by three different omnidirectional cameras: the top row shows the images of Ladybug2, the second row

shows the images of Canon 5D. The first two images of the bottom row are captured by Nikon D1x and the third one is rectified from image (a)

6.1 Raw Images

6.1.1 Omnidirectional Images

A number of clear sky images were taken almost at the same

time using three different cameras: Ladybug2, Canon 5D,

and Nikon D1x, where the latter two cameras were attached

with a fish-eye lens, as shown in Fig. 8a, d, g. To show

the effectiveness of the proposed method, we compared it

with Barnard and Funt (2002). In the comparison, we used

the same inputs, i.e., the estimated sky spectra and the cor-

responding sky pixels. Figure 9a, d, g show the estimated

results. The ground-truth of these cameras was measured by

using a monochromator. The proposed method was able to

estimate the same sky turbidity, around 2.2 ± 0.02 through

different cameras with different RG B values.

The mean error and RMSE of both proposed and Barnard

and Funt’s methods are shown in Table 2. Here, the maximum

values of the estimated camera spectral sensitivities were

normalized to 1.0. The largest mean error of the proposed

method was less than 3.5 %, while that of Barnard et al.’s

was 7 %. The proposed method also had a smaller standard

deviation.

The method was also evaluated for different sky conditions

as shown in Fig. 8: (b) partially cloudy sky, (c) thin cloudy

sky, (e) hazy sky, and (h) significantly cloudy sky. For Fig. 8b,

c, RANSAC was used to exclude the outliers (cloud pixels).

For other images, we estimated the sky turbidity from the

sampled sky pixels using the Particle Swarm Optimization.

The estimated turbidity for those weather conditions were

about 2, 3, 4 and 12, respectively. The recovered camera

spectral sensitivities are shown in Fig. 9b, c, e, h. A large

error occurs in (h), because the whole sky was covered by

thick clouds that did not fit Preetham et al.’s model.

In the experiment, we also verified whether the proposed

method is effective to estimate the white balance settings

by using two images taken from the same camera (thus

the same camera spectral sensitivities) but different white
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(d) Clear.

(g) Clear.
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(e) Hazy plus “Daylight” White balance. (f) Hazyplus “Cloudy” White balance.

(h) Extremely cloudy. (i) Rectified image.

Ladybug2.Nikon D1x.

Fig. 9 The sensitivity estimation results using the input images shown in Fig. 8. Ground-truth (GT), estimated sensitivities of our method

(Estimated), and the method of Barnard and Funt (2002) (Barnard) are shown for three different cameras: Ladybug2, Canon 5D and

Nikon D1x

Table 2 The evaluation of estimated camera spectral sensitivity from

omnidirectional images: mean error and RMSE

Different cameras Mean error RMSE

Proposed Barnard’s Proposed Barnard’s

Canon 5D(R) 0.0235 0.0469 0.0317 0.0734

Canon 5D(G) 0.0190 0.0380 0.0247 0.0594

Canon 5D(B) 0.0085 0.0276 0.0140 0.0411

Ladybug2(R) 0.0193 0.0378 0.0258 0.0621

Ladybug2(G) 0.0120 0.0462 0.0225 0.0525

Ladybug2(B) 0.0145 0.0341 0.0203 0.0512

Nikon D1x(R) 0.0343 0.0701 0.0359 0.0921

Nikon D1x(G) 0.0136 0.0285 0.0168 0.0431

Nikon D1x(B) 0.0162 0.0311 0.0263 0.0401

balance settings. Figure 8e, f show such images. The esti-

mated camera spectral sensitivities are shown in Fig. 9e, f.

As expected, the shapes of the camera spectral sensitivities

were the same, and different only in the magnitude.

6.1.2 Perspective Images

We tested our method for perspective images (images rec-

tified from omnidirectional images) and images taken from

ordinary cameras. First, to show that the narrower field of

view also works with the method, we used the rectified spher-

ical image shown in Fig. 8i. This image is part of Fig. 8a. The

recovered sensitivity is shown in Fig. 9i. The performance did

not change significantly compared to Fig. 8a, although only

the partial sky was visible. We tested three different direc-

tions in Fig. 8a, and had similar results. The estimated sun

position in Fig. 8a was used here.

Second, to show that the method can handle images

where the sun is not visible and the camera poses are

unknown, we captured images with a reference object with-

out knowing its pose and geolocation, shown in Fig. 10a.

We captured 16 images in total, and recovered each cam-

era pose with respect to the reference object. The sun posi-

tion was estimated from the time stamp on the EXIF tag.
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(b) Estimated result.(a) Rectilinear images.

Fig. 10 The rectilinear images with a reference object from multiple views of Nikon D1x and the estimated camera spectral sensitivity

The estimated camera spectral sensitivities are shown in

Fig. 10b.

6.2 In-camera Processed Images

General images such as those available on the Internet are

much more problematic compared with the images we tested

in Sect. 6.1, since the gamma function has to be estimated and

the images were usually taken by cameras that have built-in

color processing (Ramanath et al. 2005).

Nevertheless, we evaluated our method with those images,

which were captured by three different cameras: Canon EOS

Rebel XTi, Canon 5D, Canon 5D Mark II. Figure 11 shows

the images of the Statue of Liberty downloaded from a pho-

tosharing site. These images were JPEG compressed and

taken with internal camera processing. Chakrabarti et al.

(2009) introduce an empirical camera model, which con-

verts a JPEG image back to a raw image. We implemented

the method to photometrically calibrate the camera (to esti-

mate the response function and internal color processing).

The camera pose and the sun direction were estimated in the

same manner as in the previous experiment (Fig. 10a). As

many as 187 images were used. The method was also eval-

uated by different sky conditions: clear sky (Fig. 11a, g, i),

cloudy sky (Fig. 11c, e), and hazy sky (Fig. 11k).

The estimated camera spectral sensitivities are also shown

in Fig. 11. The error evaluation is summarized in Table 3.

The mean error for RG B channels is larger than the results

from omnidirectional images because of the residual errors of

the internal color processing, the estimation of the response

function, and the data compression.

We used the Macbeth color chart to evaluate the accuracy

of the estimated camera spectral sensitivities. Specifically,

we captured the spectral radiance of the first 18 color patches

and used the estimated camera spectral sensitivities to pre-

dict the image intensities. The predicted and captured image

intensities are plotted onto a 2D space. We found that if the

error of the estimated camera spectral sensitivities is less than

5 %, then the plotted data forms an almost perfect straight

line.

7 Application: Color Correction

One of the applications of estimating camera spectral sen-

sitivities and white balance setting is to correct the colors

between different cameras. The purpose of this color correc-

tion is similar to the color transfer (Reinhard et al. 2001).

Hence, we compared the results of color correction using

our estimated camera spectral sensitivities and white balance

with those of the color transfer.

Before showing the comparisons, here we briefly discuss

our color correction technique. By discretizing Eq. (1) and

using matrix notation, we can rewrite it as follows:

In×3 = Ln×wQw×3B3×3 = En×3B3×3, (11)

where I is the intensity matrix, L is the matrix of the spectral

radiance, Q is the matrix of the basis functions for the camera

spectral sensitivities, B is the coefficient matrix, and E is the

multiplication of L and Q. Note that, the basis functions used

here are different from those extracted in Sect. 4.2, where

now we use the same basis for the three color channels. n

is the number of surfaces, and w is the number of sampled

wavelengths.

Suppose we have an image captured by one camera,

denoted as I1 = EB1; then the same scene captured by

another camera is expressed as

I2 = EB2 = I1B−1
1 B2. (12)

Since B1 and B2 are computable if both camera spectral sen-

sitivities are known, the color conversion from one image

to another is possible via the last equation. Figure 12 shows

the extracted basis functions that are common for the three

channels.
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(d) Result from Input 2.

Canon EOS Rebel XTi.

(e) Input 3.
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(f) Result from Input 3.

(g) Input 4.
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(h) Result from Input 4.
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(i) Input 5.
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(j) Result from Input 5.

(k) Input 6.
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Canon 5D Mark II.

Fig. 11 The sensitivity estimation results for images downloaded from

the Internet. Three different cameras were tested: the top row shows the

images of Canon EOS Rebel XTi, the second row shows those of Canon

5D, and the bottom row shows those of Canon 5D Mark II. (a, c, e, g,

i, k) are the input images, and (b, d, f, h, j, l) are the corresponding

results. All input images are downloaded from the Internet. (“GT”) in

the graphs refers to the ground-truth, and (“Estimated”) refers to the

estimated sensitivities

The color correction result of the Statue of Liberty is

shown in Fig. 13. In the figure, (a) and (b) show the source and

target images, and (d) is the result of the proposed method. We

also implemented Reinhard et al.’s color transfer algorithm

(2001) to have an idea how a color transfer method performs

for color correction. Reinhard et al. (2001) transforms one

color cluster in RG B space into the other by the combina-

tion of translation and scaling, assuming that the two clusters

follow the Gaussian distribution. The result of Reinhard et

al.’s method is shown in Fig. 13c.

Since the proposed method is based on the physical cam-

eras’ characteristics, and it uses affine transformation shown
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Table 3 The evaluation of the estimated camera spectral sensitivity

from Internet images: mean error and RMSE

Different input images Mean error RMSE

Canon Rebel XTi 1(R) 0.0359 0.0501

Canon Rebel XTi 1(G) 0.0161 0.0230

Canon Rebel XTi 1(B) 0.0108 0.0142

Canon Rebel XTi 2(R) 0.0370 0.0511

Canon Rebel XTi 2(G) 0.0121 0.0181

Canon Rebel XTi 2(B) 0.0097 0.0146

Canon 5D 1(R) 0.0414 0.0579

Canon 5D 1(G) 0.0175 0.0262

Canon 5D 1(B) 0.0151 0.0351

Canon 5D 2(R) 0.0410 0.0578

Canon 5D 2(G) 0.0223 0.0327

Canon 5D 2(B) 0.0151 0.0348

Canon 5D Mark II 1(R) 0.0406 0.0642

Canon 5D Mark II 1(G) 0.0220 0.0329

Canon 5D Mark II 1(B) 0.0176 0.0237

Canon 5D Mark II 2(R) 0.0388 0.0634

Canon 5D Mark II 2(G) 0.0206 0.0326

Canon 5D Mark II 2(B) 0.0175 0.0235
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Fig. 12 The extracted basis functions common for all three channels

from our sensitivity database

in Eq. (12) which is more general than the combination of

translation and scaling, it produces visually better results,

e.g., in the chest area, or in the platform of the statue, as

shown in Fig. 13b–d. The proposed method can determine

the transformation once the camera sensitivities are obtained,

which is beneficial for color correction applications.

The quantitative evaluation is shown in Fig. 13e–g. We

sampled six pixels as shown in Fig. 13a, and compared the

chromaticity of those pixels of the three images (b)–(d).

In those figures, “target image,” “color transfer,” and “our

method” represent the chromaticity of the target image, the

result of color transfer, and the proposed color correction.

The chromaticity values of the proposed method are close to

those of the target image, except for the point 4, which lies

in the shadow region of the target image.

Note that, while Fig. 13b was captured only 1 h later

than Fig. 13a, their color appears significantly different. By

assuming that the illumination did not change significantly,

the difference should be caused by camera properties, such

as spectral sensitivities and white balance settings. Thus, the

proposed method would be useful for applications where

color calibration between cameras is necessary.

Other two examples of color correction are shown in

Figs. 14 and 15. In both figures, (a) and (b) are the gamma-

corrected images of Fig. 1, and (c) shows the result of the pro-

posed color correction for two different cameras. The quan-

titative evaluations are also shown in the figures. “Casio,”

“Pana,” “Pana2Casio,” “Canon” and “Canon2Casio” repre-

sent the chromaticity values of Casio, Panasonic, color cor-

rected from Panasonic to Casio, Canon, and color corrected

from Canon to Casio, respectively. The performance was

evaluated on the four sampled pixels as shown in (d)–(f) in

each figure.

8 Discussion

8.1 Accuracy of the Sky Model

The sky model (Preetham et al. 1999) might pose an accuracy

issue in estimating camera spectral sensitivities, therefore

we evaluated it by comparing the intensity produced by the

model with the actual sky intensity.

The result is shown in Fig. 16, where (a) shows the actual

sky image captured by the Canon 5D camera, and (b) is the

simulated sky image. The image intensity in (b) was adjusted

in such a way that their average became equal to that in (a),

although the red ellipse part was excluded from the averaging,

since we considered it to be affected by the scattering at

the aperture. We took six sample pixels and compared the

chromaticity values, which are summarized in Fig. 16c–e.

8.2 Robustness to the Sun Direction Estimation

We tested the robustness of the camera spectral sensitivity

estimation by adding noise to the sun direction. With 5◦, 10◦,

and 15◦ errors, the mean error of three channels of Nikon D1x

and Canon 5D were about 3, 7, and 11 %, respectively. This

implies that the error increases linearly to the angular error

of the sun direction.

8.3 Comparison of Two Sky Turbidity Estimation Methods

We compared the proposed sky turbidity estimation method

with Lalonde et al. (2010). Our method is based on bright-

ness, while Lalonde et al.’s is based on the xyY color space.

Supposing we capture the same scene by two different cam-

eras or with two different white balance settings, then the
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Chromaticity comparison.

(d) Proposed color(c) Color transfer(b) Target.(a) Source.

correction.(Reinhard et al, 2001).

(g) Blue channel.(f) Green channel.(e) Red channel.

Fig. 13 Color correction between different cameras are shown in (a–

d). (a) The source image captured by Canon 5D. (b) The target image

captured by Canon EOS Rebel XTi. (c) The result of color transfer

(Reinhard et al. 2001). (d) The result of our color correction method.

Chromaticity evaluation between images are shown in (e–g), where “tar-

get image,” “color transfer,” and “our method” represent chromaticities

of (b–d). The result of our method is close to the target image except

for the point 4, because it lies in the shadow region of the target image

(b)

calculated xyY values are different according to different

RG B values. Therefore, using Lalonde et al. (2010), the

estimated sky turbidity values are different, which cannot

be correct since the scene is exactly the same. The pro-

posed method can handle this problem by assuming the image

brightness or intensity stays proportional. We conducted an

experiment to verify this. Using the two methods, we fitted

the sky model to images and the estimated sky turbidity val-

ues. The result is shown in Fig. 17, where (a) and (b) are

the input images simulated from the sky model whose sky

turbidity was manually set to 2.0, and their white balance

settings were set to “Daylight” and “Fluorescent,” respec-

tively. The estimated sky turbidity values by the proposed

method are 2.03 for both input images, while the sky tur-

bidity values by Lalonde et al.’s method are 2.32 and 1.41.

The simulated sky appearance from the estimated sky tur-

bidity values are shown in Fig. 17c–f. The proposed method

can estimate turbidity independent from the white balance

settings.

8.4 Limitations of the Proposed Method

Many images, particularly those available on the Internet,

have been processed further by image processing software,

such as the Adobe Photoshop. To verify the limitation of the

method, we created such modified images. We changed the

color balance for the first image (by multiplying each color

channel by a constant), adjusted the hue manually for the

second image (by increasing the pixel values of the green

channel to make it greenish), and then estimated the cam-

era spectral sensitivities from them. The result is shown in

Fig. 18, where (a) shows the original image, (b) shows the

manually color balanced image, (c) shows the manually hue-

adjusted image, (d) and (e) show the estimated results. The

estimated camera spectral sensitivities from Fig. 18b was

close to the ground-truth. However, the estimated camera

spectral sensitivities from Fig. 18c had large errors compared

to the ground-truth, since the sky turbidity was deviated by

the hue modification. There are some operations performed
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Fig. 14 Color correction between different cameras are shown in (a–

c). (a) The target image captured by Casio, (b) the source image cap-

tured by Panasonic, (c) the color correction result from Panasonic (b)

to Casio (a). The chromaticity evaluation between images are shown in

(d–f). “Casio,” “Pana,” and “Pana2Casio” represent chromaticity values

of (a–c). The performance is evaluated on four points
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Fig. 15 Color correction between different cameras are shown in (a–

c). (a) The target image captured by Casio, (b) the source image captured

by Canon, (c) the color correction result from Canon (b) to Casio (a).

Chromaticity evaluation between images are shown in (d–f). “Casio,”

“Canon,” and “Canon2Casio” represent chromaticities of (a–c). The

performance is evaluated on four points
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Fig. 16 The top row shows the comparison of captured and simulated

images of the sky, where the camera used was Canon 5D. The chro-

maticities of the six pixels are shown in (c–e)

on images by the Photoshop that conflict with the camera

spectral sensitivity estimation, and in future work we will

consider how to automatically filter out such contaminated

images.

9 Conclusion

In this paper, we have proposed a novel method to estimate

camera spectral sensitivities and white balance setting from

images with sky regions. The proposed method could signif-

icantly benefit physics-based computer vision or computer

vision in general, particularly for future research where the

images on the Internet become valuable. To conclude, our

contributions in this paper are (1) the novel method that uses

images for camera spectral sensitivity and white balance esti-

mation, (2) the database of camera spectral sensitivities that is

publicly available, (3) the improved sky turbidity estimation

that handles a wide variety of cameras, and (4) the camera

spectral sensitivity-based color correction between different

cameras.
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Appendix A : Calculating the Sky Luminance (Y ) from

Sky Turbidity (T ) (Preetham et al. 1999)

The sky luminance is calculated by using Eq. (2), where

F(θ, γ ) is Perez et al.’s sky radiance distribution function

(1993), and it is described as

F(θ, γ )=

(

1+ AeB/ cos θ
) (

1+CeDγ +E cos2 γ

)

, (13)
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(a) Original. (b) Manual color balance. (c) Manual color

Fig. 18 Manually processed image and estimated camera spectral sen-

sitivities for Canon EOS Rebel XTi. (a) The original image. (b) Manu-

ally processed image by changing color balance. (c) Manually processed

image by increasing the pixel value of green channel. (d) The estimated

camera spectral sensitivities from (b). (e) The estimated camera spectral

sensitivities from (c)

where A, B, C, D, and E are the five distribution coeffi-

cients, and θ and γ are shown in Fig. 2. The coefficients

A, B, C, D, and E are linearly related to turbidity T,

according to Preetham et al. (1999), while each of the linear

transformations depends on x, y and Y. The coefficients for

Y are as follows:

⎡

⎢

⎢

⎢

⎢

⎣

AY

BY

CY

DY

EY

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

0.1787 −1.4630

−0.3554 0.4275

−0.0227 5.3251

0.1206 −2.5771

−0.0670 0.3703

⎤

⎥

⎥

⎥

⎥

⎦

[

T

1

]

. (14)

The ratio of sky luminance between a viewing direction and

the reference direction in Eq. (3) is calculated as

Y (T )

Yre f (T )
=

F(θ, γ )

F(θre f , γre f )

=
(1+ AeB/ cos θ )(1+CeDγ +E cos2 γ )

(1+ AeB/ cos θre f )(1 + CeDγre f + E cos2 γre f )
.

(15)

Appendix B: Sun Position from Perspective Image

For completeness, we include all the formulas derived in

Preetham et al. (1999). The sun direction denoted by the

zenith (θs) and azimuth angle (φs) can be computed from the

following equations:

θs =
π

2
− arcsin

(

sin l sin δ − cos l cos δ cos
π t

12

)

, (16)

φs = arctan

(

− cos δ sin π t
12

cos l sin δ − sin l cos δ cos π t
12

)

, (17)

where l is the site latitude in radians, δ is the solar declination

in radians, and t is the solar time in decimal hours. δ and t

are calculated as follows:

δ = 0.4093 sin

(

2π(J − 81)

368

)

, (18)

t = ts +0.170 sin

(

4π(J −80)

373

)

−0.129 sin

(

2π(J −8)

355

)

+
12(SM − L)

π
, (19)

where J is Julian date, the day of the year as an integer in the

range from 1 to 365. ts is the standard time in decimal hours.

J and ts are derived from the time stamp in the image. SM

is the standard meridian for the time zone in radians, and L

is the site longitude in radians. The longitude l, latitude L

and the standard meridian SM can be either given from the

reference object location, or from the GPS information in the

image.
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Appendix C: Calculating the Sky Chromaticity from Sky

Turbidity (Preetham et al. 1999)

The correlation between the five distribution coefficients for

the sky chromaticity values (x and y) and the turbidity T are

as follows:

⎡

⎢

⎢

⎢

⎢

⎣

Ax

Bx

Cx

Dx

Ex

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

−0.0193 −0.2592

−0.0665 0.0008

−0.0004 0.2125

−0.0641 −0.8989

−0.0033 0.0452

⎤

⎥

⎥

⎥

⎥

⎦

[

T

1

]

, (20)

⎡

⎢

⎢

⎢

⎢

⎣

Ay

By

Cy

Dy

Ey

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

−0.0167 −0.2608

−0.095 0.0092

−0.0079 0.2102

−0.0441 −1.6537

−0.0109 0.0529

⎤

⎥

⎥

⎥

⎥

⎦

[

T

1

]

. (21)

The zenith chromaticity xz and yz can also be determined
by turbidity T as:

xz =
[

T 2 T 1
]

⎡

⎣

0.0017 −0.0037 0.0021 0.000

−0.0290 0.0638 −0.0320 0.0039

0.1169 −0.2120 0.0605 0.2589

⎤

⎦

⎡

⎢

⎢

⎣

θ3
s

θ2
s

θs

1

⎤

⎥

⎥

⎦

,

(22)

yz =
[

T 2 T 1
]

⎡

⎣

0.0028 −0.0061 0.0032 0.000

−0.0421 0.0897 −0.0415 0.0052

0.1535 −0.2676 0.0667 0.2669

⎤

⎦

⎡

⎢

⎢

⎣

θ3
s

θ2
s

θs

1

⎤

⎥

⎥

⎦

,

(23)

where θs is the sun direction. Thus, the sky chromaticity x

and y can be calculated only from the turbidity and the sun

direction using Eq. (5). T usually ranges from 2.0 to 30.0.

The parameters M1 and M2 to determine the spectra from

the CIE chromaticity x and y can be calculated as follows:

M1 =
−1.3515 − 1.7703x + 5.9114y

0.0241 + 0.2562x − 0.7341y
, (24)

M2 =
0.0300 − 31.4424x + 30.0717y

0.0241 + 0.2562x − 0.7341y
. (25)
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