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ABSTRACT

Photography on a mobile camera provides access to addi-

tional sensors. In this paper, we estimate the absolute ori-

entation of a planar object with respect to the ground, which

can be a valuable prior for many vision tasks. To find the

planar object orientation, our novel algorithm combines in-

formation from a gravity sensor with a planar homography

that matches a region of an image to a training image (e.g.,

of a company logo). We demonstrate our approach with an

iPhone application that records the gravity direction for each

captured image. We find a homography that maps the train-

ing image to the test image, and propose a novel homography

decomposition to extract the rotation matrix.

We believe this is the first paper to estimate absolute pla-

nar object orientation by combining the inertial sensor infor-

mation with vision algorithms. Experiments show that our

proposed algorithm performs reliably.

Index Terms— Image processing, Image motion analy-

sis, Image detection

1. INTRODUCTION

Many mobile phones are equipped with inertial sensors, such

as accelerometers and gyroscopes, to provide relatively accu-

rate measurements of the phone’s position, such as the orien-

tation of the phone with respect to the ground. This informa-

tion is usually used to improve user interaction, for example,

showing an application window in landscape when a user ro-

tates the mobile phone horizontally.

In this paper, we combine the mobile device’s camera with

a gravity sensor and show that the gravity sensor data can es-

timate not only the position of the phone itself, but also the

orientation of a planar object captured by the camera. One

example is shown in Fig. 1: given a planar target object to de-

tect (in Fig. 1 (a), the training view) and the gravity direction

with respect to the camera (Fig. 1 (b)), we match the object in

the test image (in Fig. 1 (c), the test view), and estimate the

orientation of the object with respect to the ground through a

special homography decomposition, shown in Fig. 1 (d).

To our knowledge, we are the first to combine a vision

algorithm (planar matching) with the inertial sensor to deter-

mine the orientation of the object. The orientation of an object

is a useful prior for many vision tasks. For example, even with
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Fig. 1. (a) The training view (frontal, no distortion) of the

target. (b) The testing setup. (c) The test image containing

the target. (d) The homography from the training image to

the testing image. We compute the absolute orientation of the

planar object, e.g. θ = 15◦, indicating the angle between the

target artwork and the ground plane.

the same image shown in Fig. 1 (a), if the image is displayed

vertically (θ = 90◦), it is more likely to be a painting hang-

ing on the wall; if it is horizontal (θ = 0◦), then it may be a

picture in a book on a table.

Related work: Hoiem et. al [1] show that estimating surface

orientation helps occlusion boundary detection, depth estima-

tion and object recognition. Further applications of estimat-

ing the camera position, vanishing lines and the horizon are

presented in [2]. This prior work proposes a learning-based

approach to find the surface orientation, and roughly classify

these surfaces into ‘vertical’ or ’horizontal’. Our algorithm

predicts the object orientation more precisely in degree, and

incorporates a gravity sensor with pixel data. In addition,

there are other applications with different goals that combine

inertial sensors with images for matching, photo enhancement

and robotics, such as [3], [4] and [5], but none combine ho-



Fig. 2. Two views introduced by a homography with the grav-

ity vector.

mography matching with gravity sensors to accurately mea-

sure planar surface absolute orientation.

Our work is closely related to homography decomposi-

tion presented in [6] [7] [8] and [9]. However, our setting and

task is different. These algorithms use the camera intrinsic

matrices for decomposition. In our case, although the mo-

bile phone for testing can be calibrated, the training images

containing targets to match have no camera information: they

can be images downloaded from Internet, as shown in Fig. 1

(a). Our derivation shows that we can synthesize the cam-

era matrix for the training view and get the target orientation,

as long as the training image is frontal with no distortion, a

usually valid assumption. We believe we are the first to com-

bine this decomposition with a gravity sensor to estimate the

planar object orientation.

2. ALGORITHM

We introduce our definition of the variables in Fig. 2: we have

two cameras (camera 0, which captures the training target im-

age, and camera 1, which captures the test image) related by

a planar homography. The intrinsic matrices are K0 for the

training view, and K1 for the test image; the world coordinate

is defined as camera 0’s axis, i.e., camera 0 has no rotation

and zero translation. The planar object is placed at distant d

with normal direction n. The extrinsic matrix for camera 1
is
[

R t
]

. The gravity vector g is provided in the camera

1’s coordinates during testing. The goal is to find the projec-

tion of the surface normal n in camera 1’s coordinates, and

then compute its angle with the gravity vector g. To do this,

we must find the rotation matrix R from camera 0 to camera

1, despite the challenge that camera 0 has unknown internal

parameters.

2.1. Two-view geometry with planar homography

For a homography H that maps points x0 in the image of

camera 0 to points x1 in the image of camera 1, i.e., x1 =
Hx0 , [6] shows that the induced planar homography H for

the plane [nT , d]T between the two cameras is:

H = K1(R−
tnT

d
)K−1

0
, (1)

We define H∗ as:

H∗ = K−1

1
HK0 = R−

tnT

d
. (2)

Unfortunately, we cannot directly decompose H into R and

t to get the position of the target ([8] and [10]), because al-

though we have the camera parameter K1 for the testing view

(camera 1), the training view’s intrinsics, K0, are unknown.

2.2. Depth and intrinsic matrix K0

With unknown intrinsic matrix K0, we make use of our as-

sumptions about the training images 1) they are frontal views

of a planar object; 2) the camera has zero-skew; 3) it also

has square pixels. These assumptions hold for most planar

targets, such as paintings, logos, book or CD covers online.

Then K0 becomes:

K0 =





f 0 cx
0 f cy
0 0 1



 . (3)

For any 3D point X that lies on the plane [nT , d]T , since

the camera is taking the frontal view of the plane object, then

X = [x, y, d, 1]T . By definition, camera 0 has identity rota-

tion and zero translation, then the extrinsic matrix for camera

0 is
[

I3×3 0
]

. In homogeneous coordinates, the 2D pro-

jection x0 of 3D point X to camera 0 is :

x0 = K0

[

I3×3 0
]

[x, y, d, 1]T

=





1 cx
1 cy

1









x

y
d
f





(4)

We can rewrite K0 as K∗

0
:

K∗

0
=





1 0 cx
0 1 cy
0 0 1



 =

[

I2×2

0
c

]

, (5)

where c = [cx, cy, 1]
T , and represent the depth d as d∗ :

d∗ =
d

f
. (6)

For a frontal view of a planar object, the depth and the fo-

cal length are related: we get the exact same image results



if we increase the focal length of the camera, and move the

object further away. With this derivation, the equation for the

homography H in ( 2 )becomes :

H∗ = K−1

1
H

[

I2×2

0
c

]

= R−
ftnT

d
, (7)

2.3. Decompose H to R

To decompose H∗, we define the vectors u and v as:

u =





1
0
0



 , v =





0
1
0



, (8)

and multiply them by H∗ in ( 7). For u, on the left side of ( 7)

we have:

H∗u = K−1

1
H

[

I2×2

0
c

]





1
0
0



 = K−1

1
Hu. (9)

On the right side, since nTu = 0, (remember, in camera 0
the frontal view of the planar object has n = [0,0,−1]T) we

have:

(R−
ftnT

d
)u = Ru (10)

Therefore by combining ( 9) and ( 10) we have

K−1

1
Hu = Ru. (11)

Following the same derivation for vector v, we also have

K−1

1
Hv = Rv. (12)

Since R is a rotation matrix and [u,v,u× v] = I3×3, thus

[Ru, Rv, (Ru)× (Rv)] = R[u,v,u× v] = R

= [K−1

1
Hu,K−1

1
Hv, (K−1

1
Hu)× (K−1

1
Hv)].

(13)

In practice, due to the noise in computing H and K1, the

final rotation matrix R may not be orthogonal. We approxi-

mate R to the nearest orthogonal matrix R by the Frobenius

norm, i.e., by taking SVD of the Eq. 13, R = UΣV T , and

then the final R = UV T .

Eq. 13 shows that, under our assumptions for the train-

ing images (frontal view, no distortion), the rotation matrix R

is independent of the camera center c and the focal length f

of camera 0, the depth d and the translation t. Once we re-

trieve the homography H between the two views and know

the intrinsic parameter K1 for the testing camera 1, we can

determine the rotation matrix R from camera 0 to camera 1.

2.4. Planar object orientation θ

During testing, the gravity direction g is in camera 1’s coordi-

nates. To compute the planar object orientation θ with respect

Fig. 3. Sample frontal views of our planar object images

tested.

(a) θgt = 72.5◦ (b) θgt = 0◦, 30◦ respectively

Fig. 4. Experiment setting with (a) fixed object orientation,

and different camera positions, and (b) gradually increasing

object orientation from 0◦ to 75◦.

to the ground, we compute the projection of plane’s normal

vector n in camera 1’s projection, i.e., Rn, and calculate its

angle to the gravity vector g. This gives the orientation θ.

More formally, define angle α as by applying Eq. 13:

α = arccos(Rn · g), (14)

θ =

{

α , 0 ≤ α ≤
π
2

π − α , π
2
< α < π

. (15)

3. EXPERIMENTS

An iPhone 4 is used for the experiments. The camera is cal-

ibrated to find K1, and the inertial sensor data is recorded

while capturing images. We assume the coordinates of the

gravity vector are aligned with the camera axis, and directly

use the gravity vector from the inertial sensor as g.

We use several different types of planar images, all down-

loaded, for experiments. We choose five famous paintings

(Mona Lisa, The Girl with a Pearl Earring, Marriage of

Arnolfini, The Music Lesson and Birth of Venus), a logo

(Starbucks), and a CD cover (Beatles). We render the image

on an iPad as the testing target, and capture the scene with the

calibrated iPhone 4 camera to estimate the absolute orienta-

tion of the iPad. The ground truth angle of the planar object

is manually measured by a protractor. The homography is

computed through SIFT point matching [11] and RANSAC

algorithm with DLT [6].

Three types of experiments are performed (see Fig. 4 for

the first two): 1) we keep the planar object at a fixed angle

with respect to the ground, and take images with different

camera positions; 2) we keep the camera at a fix angle, and



Fig. 5. Experiment result of different object orientations.

gradually rotate the planar object from 0◦ to 75◦ with respect

to the ground; 3) we capture images in the real-world to show

some qualitative results.

Fixed object, different camera positions: In this setting we

keep the object at a fixed angle, and take images from differ-

ent position. One example is shown in Fig. 4 (a). We take 10
images for each planar object at a certain angle. For each im-

age, we compute homography 30 times using RANSAC, and

compute the angle θ through each homography. The experi-

ment results are shown in Fig. 5. The dashed lines indicates

the ground-truth angle. Different colors indicate different im-

ages at a specific angle. Because RANSAC produces a differ-

ent homography each time, the error bar shows the standard

deviation of θ.

Our proposed algorithm predicts the angle of the planar

object with small errors, that may be introduced by misalign-

ment of the gravity vector axes, calibration of K1, and espe-

cially by the quality of homography. One example is shown

in Fig. 6. A good homography gives much smaller error in

estimating the planar object’s orientation.

Fixed camera, different object orientations: In another test

we keep the camera roughly fixed, but gradually increase the

orientation angle θ of the planar object from 0◦ to 75◦. One

example is shown in Fig. 4 (b). The results are shown in Table

1. Our proposed algorithm still robustly estimates the object

orientation in this case. For these two scenarios, overall 88%
of the testing cases are within 5◦ from the ground truth, and

98% of them are within 10◦ from the ground truth.

Real world example: We also test on real-world images with

a Starbucks logo for qualitative results, shown in Fig. 7. Our

proposed algorithm predicts the logo orientation θ accurately

in different situations.

4. CONCLUSION

This paper estimates the absolute orientation of a planar ob-

ject using the gravity sensor with a mobile camera. We made

gt 0◦ 15◦ 30◦ 45◦ 60◦ 75◦

obj1-mean 4.6◦ 17.1◦ 29.8◦ 44.3◦ 61.2◦ 76.8◦

obj1-var 2.4◦ 2.7◦ 3.0◦ 3.2◦ 4.3◦ 3.5◦

obj2-mean 7.7◦ 13.8◦ 29.0◦ 45.0◦ 56.8◦ 72.2◦

obj2-var 3.5◦ 4.4◦ 4.1◦ 2.4◦ 2.1◦ 1.8◦

Table 1. Results when having one object rotating from 0◦ to

75◦. gt is the ground-truth angle. obj1 is the Starbuck logo,

and obj2 is the Beatles CD cover. The table shows the mean

and variance (var) for each image by sampling homographies

with RANSAC.

(a) θgt = 42.5◦ (b) θ = 43.0◦ (c) θ = 55.1◦

Fig. 6. Homography quality affects the orientation θ. The

ground-truth orientation (in (a)) is 42.5◦. A good homogra-

phy in (b) has a better prediction than a worse one in (c).

weak assumptions about the training image, e.g., frontal view,

zero skew and no distortion. During testing we estimated the

rotation through a special homography decomposition, and

calculated the projection of the normal vector of the planar

object, and its angle between the gravity vector as the object

orientation. Experiments showed that our proposed algorithm

robustly predicts the object orientation in different scenarios.

Future applications can be achieved based on this algo-

rithm, e.g., correcting the homography or improving object

detection. Since we find the rotation matrix of the testing

camera, our algorithm can also estimate the in-plane rotation

of the planar object. This can be used for other applications,

e.g. to predict if the object is up-side down.

(a) θ = 87.5◦ (b) θ = 30.7◦ (c) θ = 6.6◦

Fig. 7. Predicting the angle of Starbucks logo in real-world

images: a) A Starbucks logo outside the Cafe. The ground-

truth θgt = 90◦. b) A bag of coffee in hand. θgt should be in

between of 0◦ and 90◦. c) A menu on the table. θgt = 0. θ

under each figure is the prediction from our algorithm.
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