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Abstract

Background: Shotgun metagenome data sets of microbial communities are highly diverse, not only due to the

natural variation of the underlying biological systems, but also due to differences in laboratory protocols, replicate

numbers, and sequencing technologies. Accordingly, to effectively assess the performance of metagenomic analysis

software, a wide range of benchmark data sets are required.

Results: We describe the CAMISIM microbial community and metagenome simulator. The software can model

different microbial abundance profiles, multi-sample time series, and differential abundance studies, includes real and

simulated strain-level diversity, and generates second- and third-generation sequencing data from taxonomic profiles

or de novo. Gold standards are created for sequence assembly, genome binning, taxonomic binning, and taxonomic

profiling. CAMSIM generated the benchmark data sets of the first CAMI challenge. For two simulated multi-sample

data sets of the human and mouse gut microbiomes, we observed high functional congruence to the real data. As

further applications, we investigated the effect of varying evolutionary genome divergence, sequencing depth, and

read error profiles on two popular metagenome assemblers, MEGAHIT, and metaSPAdes, on several thousand small

data sets generated with CAMISIM.

Conclusions: CAMISIM can simulate a wide variety of microbial communities and metagenome data sets together

with standards of truth for method evaluation. All data sets and the software are freely available at https://github.

com/CAMI-challenge/CAMISIM

Keywords: Metagenomics software, Microbial community, Benchmarking, Simulation, Metagenome assembly,

Genome binning, Taxonomic binning, Taxonomic profiling, CAMI

Introduction
Extensive 16S rRNA gene amplicon and shotgun

metagenome sequencing efforts have been and are being

undertaken to catalogue the human microbiome in health

and disease [1, 2] and to study microbial communities of

medical, pharmaceutical, or biotechnological relevance

[3–8]. We have since learned that naturally occurring

microbial communities cover a wide range of organis-

mal complexities—with populations ranging from half
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a dozen to likely tens of thousands of members—can

include substantial strain level diversity and vary widely

in represented taxa [9–12]. Analyzing these diverse

communities is challenging.

The problem is exacerbated by use of a wide range of

experimental setups in data generation and the rapid evo-

lution of short- and long-read sequencing technologies

[13, 14]. Owing to the large diversity of generated data,

the possibility to generate realistic benchmark data sets

for particular experimental setups is essential for assessing

computational metagenomics software.

CAMI, the initiative for the Critical Assessment of

Metagenome Interpretation, is a community effort aiming

to generate extensive, objective performance overviews of
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computational metagenomics software [15]. CAMI orga-

nizes benchmarking challenges and encourages the devel-

opment of standards and reproducibility in all aspects,

such as data generation, software application, and result

interpretation [16].

We here describe CAMISIM, which was originally writ-

ten to generate the simulated metagenome data sets

used in the first CAMI challenge. It has since been

extended into a versatile and highly modular metagenome

simulator. We demonstrate the usability and utility of

CAMISIM with several applications. We generated com-

plex, multi-replicate benchmark data sets from taxo-

nomic profiles of human and mouse gut microbiomes

[1, 17]. We also simulated thousands of small “minimally

challenging metagenomes” to characterize the effect of

varying sequencing coverage, evolutionary divergence of

genomes, and sequencing error profiles on the popular

MEGAHIT [18] and metaSPAdes [19] assemblers.

The CAMISIM software
CAMISIM allows customization of many properties of the

generated communities and data sets, such as the over-

all number of genomes (community complexity), strain

diversity, the community genome abundance distribu-

tions, sample sizes, the number of replicates, and sequencing

technology used. For setting these options, a configura-

tion file is needed, which is described in Additional file 1.

Simulation with CAMISIM has three stages (Fig. 1):

1 Design of the community, which includes selection

of the community members and their genomes, and

assigning them relative abundances,

2 Metagenome sequencing data simulation, and

3 Postprocessing, where the binning and assembly gold

standards are produced.

Community design

In this step, the community genome abundance profiles,

called Pout, are created. These also represent the gold

standard for taxonomic profiling and, from the strain

to the superkingdom rank, specify the relative abun-

dances of individual strains (genomes) or their parental

taxa in percent. In addition, a genome sequence col-

lection for the strains in Pout is generated. Both Pout
and the genome sequence collection are needed for

the metagenome simulation in step 2. The taxonomic

composition of the simulated microbial community is

either determined by user-specified taxonomic profiles or

generated de novo by sampling from available genome

sequences.

Profile-based design

Taxonomic profiles can be provided in BIOM (Biological

Observation Matrix) format [20]. With input profiles, the

NCBI complete genomes [21] are used as the sequence

collection for creating metagenome data sets. Optionally,

the user can choose to also include genomes marked as

“scaffold” or “contig” by the NCBI. Input genomes are

split at positions with multiple occurrences of ambiguous

bases, such that no reads spanning contig borders within

larger scaffolds are simulated.

Profiles can include bacterial, archaeal, and eukary-

otic taxa, as well as viruses. The taxonomic identifiers

of BIOM format are interpreted as free text scientific

names and are mapped to NCBI taxon IDs (algorithm in

Additional file 1). The so generated input profile Pin spec-

ifies pairs (t, abt) of taxon IDs t and taxon abundances

abt ∈ R≥0. The profile taxa are usually defined at higher

ranks than strain and thus have to be mapped approx-

imately to the genome sequence collection for creating

Pout.

Given an ordered list of ranks R = (species, genus, family,

order, class, phylum, superkingdom), CAMISIM requires

as an additional parameter a highest rank rmax ∈ R. We

define the binary operator ≺ based on the ordering of the

ranks in R. Given two ranks, ri, rj ∈ R, we write ri ≺ rj, if

ri appears before rj in R, and we say ri is below rj. Related

complete genomes are searched for all ranks below rmax.

Fig. 1 UML diagram of the CAMISIM workflow. CAMISIM starts with the “community design” step, which can either be de novo, requiring a taxon

mapping file and reference genomes or based on a taxonomic profile. This step produces a community genome and taxon profile which is used for

the metagenome simulation using one of currently four read simulators (ART, wgsim, PBsim, NanoSim). The resulting reads and bam-files mapping

the reads to the original genomes are used to create the gold standards before all the files can be anonymized and shuffled in the post-processing

step
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By default, this is the family rank. Another parameter is

the maximum number of strains m that are included for

an input taxon in a simulated sample.

To create Pout from Pin, the following steps are per-

formed: let Gin be the set of taxon IDs of the genome

collection at the lowest annotated taxonomic rank, usu-

ally species or strain. For all t ∈ Gin, the refer-

ence taxonomy specifies a taxonomic lineage of taxon

IDs (or undefined values) across the considered ranks

in R. We use these to identify a collection of sets

F = {Gt | t = lineage taxon represented by ≥
1 complete genome}, which specifies for each lineage

taxon the taxon IDs of available genomes from the genome

collection. F is used as input for Algorithm 1.

Algorithm 1: Creating a community genome abun-

dance profile; genome-select (F, Pin,m, rmax)

input : Collection of sets F of taxonomic IDs of

available complete genomes, taxonomic

profile Pin, maximum strains per OTUm,

highest rank rmax considered for similarity

output: Community genome abundance profile Pout
1 Pout = ∅

2 foreach (t, abt) ∈ Pin do

3 get lineage path taxt from reference taxonomy

4 foreach rank r ∈ R ≺ rmax do

5 tr = taxt on rank r ; // check whether

a complete genome for taxon tr
exists

6 if tr ∈ F then

7 Gtr = set of available full genomes

corresponding to taxon tr in F

8 draw a random number X from truncated

geometric distribution (Eq. 1)

9 if X < |Gtr | then
10 Gselected = randomly select X

genomes from Gtr

11 else

12 Gselected = Gtr

13 Y = list of |Gselected| random numbers

from lognormal distribution (Eq. 2)

14 foreach i ∈ Gselected do

15 abi = Yi
∑

i∈Gselected
Yi

· abt (Eq. 3)

16 add (i, abi) to Pout
17 remove i from Gtr

18 break ; // if a complete genome

exists, continue with the

next taxon instead of rank

19 else

20 issue “Unmapped genome” warning

21 return Pout

The algorithm retrieves for each t from the tuples

(t, abt) ∈ Pin the lineage path taxt across the ranks of R

(lines 2–3). Moving from the species to the highest con-

sidered rank, rmax, the algorithm determines whether for

a lineage taxon tr at the considered rank r a complete

genome exists, that is, whetherGt �= ∅ for t = tr (lines 4–5).

If this is the case, the search ends and tr is considered

further (line 6). If no complete genome is found for a par-

ticular lineage, the lineage is not included in the simulated

community, and a warning is issued (line 20). Next, the

number of genomes X with their taxonomic IDs tr to be

added to Pout is drawn from a truncated geometric dis-

tribution (Eq. 1, line 8) with a mean of µ = m
2 and the

parameter k restricted to be less thanm.

P(X = k) =
(

1 −
1

µ

)k

·
1

µ
(1)

If |Gtr | is less than X, Gtr is used entirely as Gselected,

the genomes of tr that are to be included in the com-

munity. Otherwise X genomes are drawn randomly from

Gtr to generate Gselected (lines 9–12). It is optional to use

genomes multiple times, by default the selected genomes

g ∈ Gselected are removed from F, such that no genome is

selected twice (line 17). Based on the taxon abundances

abt from Pin, the abundances abi of the selected taxa

i ∈ Gselected for t are then inferred. First, random variables

Yi are drawn from a configurable lognormal distribution,

with by default normal mean µ = 1 and normal standard

deviation σ = 2 (Eq. 2), and then the abi are set (Eq. 3;

lines 13–15). Finally, the created pairs (i, abi) are added to

Pout (line 16) and Pout is returned (line 21).

Yi ∼ Lognormal(µ, σ)

⇔
d

dx
P(Yi ≤ x) =

1

xσ
√
2π

e
− (ln x−µ)2

2σ2
(2)

abi =
Yi

∑

j∈Gselected
Yj

· abt (3)

De novo design

A genome sequence collection to sample and a mapping

file have to be specified. The mapping file defines for

each genome a taxonomic ID (per default from the NCBI

taxonomy), a novelty category and an operational taxo-

nomic unit (OTU) ID. Grouping genomes into OTUs is

required for sampling related genomes, to increase strain-

level diversity in the simulated microbial communities.

The novelty category reflects how closely a query genome

is related to draft or complete genomes in a genome

sequence reference collection. This is used to maximize

the spread of selected genomes across the range of tax-

onomic distances to the genome reference collection,

such that there are genomes included of “novel” strains,
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species, or genera. This distinction is relevant for eval-

uating reference-based taxonomic binners and profilers,

which may perform differently across these different cat-

egories. The user can manually generate the mapping file

as described in Additional file 1 or in [15].

If controlled sampling of strains is not required, every

genome can be assigned to a different OTU ID. If no

reference-based taxonomic binners or profilers are to be

evaluated, or the provided genome sequence collection

does not vary much in terms of taxonomic distance to

publicly available genomes used as references for these

programs, all genomes can be assigned the same novelty

category.

In addition, the number of genomes greal to be drawn

from the input genome selection and the total number

of genomes gtot for the community genome abundance

profile Pout have to be specified. The greal real genomes

are drawn from the provided genome sampling collection.

An equal number of genomes is drawn for every novelty

category. If the number of genomes for a category is insuf-

ficient, proportionately more are drawn from others. In

addition, CAMISIM simulates gsim = gtot − greal genomes

of closely related strains from the chosen real genomes in

total. These genomes are created with an enhanced ver-

sion of sgEvolver [22] (Additional file 1: Methods) from a

subset of randomly selected real genomes. Given m, the

maximum number of strains per OTU, up to m − 1 sim-

ulated strain genomes are added per genome. The exact

number of genomes X to be simulated for a selected OTU

is drawn from a geometric distribution with mean µ =
0.3−1 (Eq. 1). This procedure is repeated until gsim-related

genomes have been added to the community genome

collection, comprising gtot = greal + gsim genomes [15].

Next, community genomes are assigned abundances.

The relevant user-defined parameters for this step are the

sample type and the number of samples n. In addition

to single samples, multi-sample data sets (with differen-

tial abundances, replicates or time series) have become

widely used in real sequencing studies [23–26], also due

to their utility for genome recovery using covariance-

based genome binners such as CONCOCT [27] or

MetaBAT [28]. Several options for creating multi-sample

metagenome data sets with these setups are provided:

1 If simulating a single sample data set, the relative
abundances are drawn from a lognormal distribution,

which is commonly used to model microbial

communities [29–32]. The two parameters of the

lognormal distribution can be changed. By default,

the mean is set to 1 and the standard deviation to 2

(Eq. 2). Setting the standard deviation σ to 0 results

in a uniform distribution.

2 The differential abundance mode models a

community sampled multiple times after the

environmental conditions or the DNA extraction

protocols (and accordingly the community

abundance profile) have been altered. This mode

creates n different lognormally (Eq. 2) distributed

genome abundance profiles.

3 Metagenome data sets with multiple samples with

very similar genome abundance distributions can be

created using the replicates mode. Having multiple

replicates of the same metagenome has been reported

to improve the quality for some metagenome analysis

software, such as for genome binners [23, 27, 33, 34].

Based on an initial log-normal distribution D0, n
samples are created by adding Gaussian noise to this

initial distribution (Eq. 4). The Gaussian term

accounts for all kinds of effects on the genome

abundances of the metagenomic replicates including,

but not limited to, different experimenters, different

place of extraction, or other batch effects.

Di = D0 + εwith ε ∼ N(0, 1) and

ε ∼ N(0, 1)

⇔
d

dx
P(ε ≤ x) =

1
√
2π

· e−
1
2 x

2

(4)

4 Time series metagenome data sets with multiple

related samples can be created. For these, a Markov

model-like simulation is performed, with the

distribution of each of the n samples (Eq. 5)

depending on the distribution of the previous sample

plus an additional either lognormal (Eq. 2) or

Gaussian (Eq. 4) term. This emulates the natural

process of fluctuating abundances over time and

ensures that the abundance changes to the previously

sampled metagenome do not grow very large.

Di = Di−1 + ε with

D0 ∼ Lognormal(µ, σ) and

ε ∼ N(0, 1) or

Di =
Di−1 + ε

2
with

ε ∼ Lognormal(µ, σ)

(5)

Metagenome simulation

Metagenome data sets are generated from the genome

abundance profiles of the community design step. For

each genome-specific taxon t and its abundance (t, abt) ∈
Pout, its genome size st , together with the total number of

reads n in the sample, determines the number of generated

reads nt (Eq. 6). The total number of reads n is the overall

sequence sample size divided by the mean read-length of

the utilized sequencing technology.

nt = n ·
abt · st

∑

i∈Pout abi · si
(6)
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By default, ART [35] is used to create Illumina 2 × 150

bp paired-end reads with a HiSeq 2500 error profile. The

profile has been trained on MBARC-26 [36], a defined

mock community that has already been used to bench-

mark bioinformatics software and a full-length 16S rRNA

gene amplicon sequencing protocol [37, 38], and is dis-

tributed with CAMISIM. Other ART profiles, such as

the one used for the first CAMI challenge, can also be

used. Further available read simulators are wgsim (https://

github.com/lh3/wgsim, originally part of SAMtools [39])

for simulating error-free short reads, pbsim [40] for simu-

lating Pacific Biosciences data and nanosim [41] for sim-

ulating Oxford Nanopore Technologies reads. The read

lengths and insert sizes can be varied for some simulators.

For every sample of a data set, CAMISIM generates

FASTQ files and a BAM file [39]. The BAM file speci-

fies the alignment of the simulated reads to the reference

genomes.

Gold standard creation and postprocessing

From the simulated metagenome data sets—the FASTQ

and BAM files—CAMISIM creates the assembly and bin-

ning gold standards. The software extracts the perfect

assembly for each individual sample, and a perfect co-

assembly of all samples together by identifying all genomic

regions with a coverage of at least one using SAMtools’

mpileup and extracting these as error-free contigs. This

gold standard does not include all genome sequences

available for the simulation, but the best possible assembly

of their sampled reads.

CAMISIM generates the genome and taxon binning

gold standards for the reads and assembled contigs,

respectively. These specify the genome and taxonomic

lineage that the individual sequences belong to. All

sequences can be anonymized and shuffled (but tracked

throughout the process), to enable their use in bench-

marking challenges. Lastly, files are compressed with gzip

and written to the specified output location.

Results
Comparison to the state-of-the-art

We tested seven simulators and compared them to

CAMISIM (Table 1). All generate Illumina data and

some—NeSSM [42], BEAR [43], FASTQSim [44], and

Grinder [45]—alsouse a taxonomicprofile.Novel andunique

to CAMISIM is the ability to simulate long-read data

from Oxford Nanopore, of hybrid data sets with multi-

ple sequencing technologies and multi-sample data sets,

such as with replicates, time series, or differential abun-

dances. Grinder [45] can also create multiple samples, but

only with differential abundances. In addition, CAMISIM

creates gold standards for assembly (single sample assem-

blies and multi-sample co-assemblies), for taxonomic and

genome binning of reads or contigs and for taxonomic

profiling. Finally, CAMISIM can evolve multiple strains

for selected input genomes and allows specification of the

degree of real and simulated intra-species heterogeneity

within a data set.

Effect of data properties on assemblies

We created several thousand “minimally challenging”

metagenome samples by varying one data property rel-

evant for assembly, while keeping all others the same.

Using these, we studied the effect of evolutionary diver-

gence between genomes, different error profiles, and cov-

erage on the popular metaSPAdes [19], version 3.12.0,

and MEGAHIT [18], versions 1.1.2 and 1.0.3, assem-

blers, to systematically investigate reported performance

declines for assemblers in the presence of strain-level

diversity, uneven coverage distributions, and abnormal

error profiles [15, 46, 47]. Both MEGAHIT and metaS-

PAdes work on de Bruijn graphs, which are created by

splitting the input reads into smaller parts, the k-mers,

and connecting two k-mers if they overlap by exactly k-

1 letters. For every sequencing error k erroneous k-mers

are introduced into the de Bruijn graph, which might

substantially impact assembly (Fig. 2).

Table 1 Properties of popular metagenome sequence simulators

Software De novo Profile Multi Strains Non-Illumina data Licensed Updated

MetaSim [62] � X X � 454 P, AU 03/2009

iMESS [63] � X X X 454 – 07/2014

BBMap [64] � X X X – LBL 01/2019

NeSSM [42] � � X X 454 AU 07/2013

BEAR [43] � � X X – AU 02/2017

FASTQSim [44] � � X X SOLiD, IonTorrent, PacBio GPL 05/2015

Grinder [45] � � � X Sanger, 454 GPL 04/2016

CAMISIM � � � � PacBio, ONT, . . . Apache 2.0 01/2019

Abbreviations: P, proprietary software; AU, academic use only; LBL, Lawrence Berkeley Lab

The table shows if an abundance profile can be generated by the simulator de novo and if an existing profile of a microbial community can be used as input. Further

inspected features are the ability to simulatemulti-sample data sets, strains, and non-Illumina data (e.g., long reads). Lastly, the table states if and how a software is licensed,

and the date it was last recently updated

https://github.com/lh3/wgsim
https://github.com/lh3/wgsim
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Varying genome coverage and sequencing error rates

We initially simulated samples from Escherichia coli K12

MG1655 with varying coverage and different error rates.

Reads were generated at 512× genome coverage and sub-

sampled stepwise by 50% until 2× coverage was reached,

resulting in a sample series with 512, 256, 128, 64, 32, 16,

8, 4, and 2-fold coverage, respectively. Subsampling was

employed to control variation in the sampling of different

genomic regions. To assess the effect of sequencing errors,

four read data sets were simulated: three using wgsimwith

uniform error rates of 0%, 2%, and 5%, and one using ART

with the CAMI challenge error profile (ART CAMI).

Both assemblers were run on these data sets with default

options, except for the phred-offset parameter for metaS-

PAdes, which was set to 33. Both assemblers performed

similar across all error rates and coverages, with assem-

bly quality varying substantially with coverage (Fig. 3).

Performance on the data generated with the 5% error pro-

file was worst throughout. This is an unrealistically high

error profile for Illumina data [47] that software need not

necessarily be adapted to handle well.

If coverage was low, assembly failed, generating a large

number of small (low NGA50) contigs covering only

a small genome portion (genome fraction) across all

data sets, because of uncovered regions in the genomes.

Sequencing errors (denoted ε) do not play a major role

(Fig. 2). The expected per-base error-rate Ep = cov · ε

(disregarding the biased errors in the short-read sequenc-

ing technologies) is far below 1
(

Ep ≪ 1
)

. With increasing

coverage, assembly improved consistently across the 0%,

2%, and CAMISIM ART error profile data sets and both

assemblers for all metrics (Fig. 3), and reaching an early

plateau by 8–16× coverage.

Notably, the performance of an earlier version of

MEGAHIT (1.0.3) decreased substantially (declining

genome fraction and NGA50) for more than 128× cover-

age, except for error-free reads. For instance, at 5% error

rate, MEGAHIT, version 1.0.3, generated an exponential

Fig. 2 Assembly graphs become more complex as coverage increases. MEGAHIT assembly graphs (k = 41) of an E. coli K12 genome for 2×, 32×, and

512× per-base coverage, respectively, visualized with Bandage [60]. For 2× coverage, the graph is disconnected and thus the assembly

fragmented. With increasing coverage more and more unitigs can be joined, first resulting in a decent assembly for 32× coverage, but—due to

sequencing errors adding erroneous edges to the graph—a fragmented assembly again for 512× coverage
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number of contigs at high coverages, which keeps the

genome fraction artificially high. For these high coverages

and error rates, we expectmultiple errors at every position

of the genome
(

Ep ≫ 10
)

. This creates de Bruijn graphs

with many junctions and bubbles (Fig. 2) which cannot

easily be resolved and may lead to breaking the assem-

bly apart and covering the same part of the genome with

multiple, short, and erroneous contigs (Fig. 3).

Effect of evolutionary relatedness onassembler performances

We systematically investigated the effect of related strains

on assembler performances across a wide range of taxa

and evolutionary divergences, using the genomes of 152

species from the interactive tree of life iTol [48], which

includes bacteria, archaea, and eukaryotes. For each

genome, we evolved 19 related genomes without larger

insertions and deletions and an average nucleotide iden-

tity (ANI) between 90% and 99.5% to the original one

using steps of 0.5%. For each of the 152 · 20 = 3040 pairs

of original and evolved genome sequences, we simulated

single sample minimal metagenomes at equal genome

abundances, with error-free reads at 50× coverage using

wgsim. This constitutes good coverage for the analyzed

assemblers, as shown in the previous section. For the

resulting samples, variation in assembler performance

should thus primarily be caused by differences in

ANI.

The presence of closely related genomes substantially

affected assembly quality (Fig. 4). For up to 95% ANI,

the assemblers restored high quality assemblies for both

genomes. Between 95% and 99% ANI, the genome frac-

tion and assembly size dropped substantially and contig

numbers increased. This was the case if we allowed con-

tigs to either map uniquely to one reference genome or

to both, in case of multiple optimal mappings. For more

closely related genomes, the number of contigs increased

drastically and the assembly size continued to drop. The

genome fraction remained high when considering non-

unique mappings, but decreased for unique mappings; the

explanation for this observed behavior is that for an ANI

of more than 99%, assemblers produced consensus contigs

of the two strains that mostly aligned similarly well to both

reference genomes. This was the case for all 152 genomes

and their evolved counterparts.

Simulating environment-specific data sets

To test the ability to createmetagenome data of the human

microbiome, we simulated metagenomes from taxonomic

profiles of the Human Microbiome Project [9] for differ-

ent body sites with CAMISIM. We selected 49 samples
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Fig. 4 Genome fraction calculated using unique or multiple best mappings in case of ties to the community genome collection. Left: genome

fraction for the E. coli assembly created by MEGAHIT from error-free reads (top) and with ART CAMI error profile (bottom). Right: average genome

fraction and standard deviation for all original 152 iTol genomes created by MEGAHIT from error-free reads (top) and with ART CAMI error profile

(bottom). Error bars denote 1× standard deviation

from the airways, gastrointestinal tract, oral cavity, skin

and urogenital tract, with whole genome shotgun (WGS)

and 16S rRNA gene amplicon sequence data available. We

used the published QIIME OTU table (https://hmpdacc.

org/hmp/HMQCP/) to generate 5 Gb of simulated reads

per sample with CAMISIM, resulting in a data set of

245 Gb of Illumina data, and of PacBio data, respectively.

Only genomes tagged as “complete genomes” in the NCBI

were considered in the data set generation. To decrease

the chance of OTUs not being represented by a genome,

the option of allowing multiple OTUs being represented

by a single reference genome was turned on. This can

be relevant for instance when due to sequencing errors

in 16S rRNA data, individual community genomes are

represented by multiple OTUs.

For a functional comparison of the simulated data with

the original metagenome shotgun data, we inferred KEGG

Ortholog family abundance profiles from the raw read

data sets [49]. To this end, all reads were searched with

Diamond v0.9.10 using its blastx command with default

options [50] against the KEGG GENES database (release

77, species_prokaryotes, best-hit approach) and linked

to KEGG Orthology (KO) via the KEGG mapping files.

KO profile similarity between the simulated and original

metagenome samples was calculated with Pearson’s cor-

relation coefficient (PCC) and Spearman rank correlation

(SRC), and visualized with non-metric multidimensional

scaling (NMDS) [51].

For comparison, we also created functional profiles

with PICRUSt [52], using a prediction model generated

from 3772 KEGG genomes and corresponding 16S rRNA

gene sequences according to the PICRUSt “Genome Pre-

diction Tutorial” (Additional file 1). The PCC of the

CAMISIM and original samples approached a striking

0.97 for body sites with high bacterial abundances and

many sequenced genomes available, such as the GI tract

and oral cavity, and still ranged from 0.72 to 0.91 for

airways, skin and urogenital tract samples (Fig. 5b). All

PCCs were 7–30% higher than the PCC of PICRUSt with

the original metagenome samples. Thus, CAMISIM cre-

ated metagenome samples functionally even closer to the

original metagenome samples than the functional pro-

files created by PICRUSt. The higher PCC may also partly

be due to the fact that the original and CAMISIM data

were annotated by “blasting” reads versus KEGG, while

the PICRUSt profiles were directly generated from KEGG

https://hmpdacc.org/hmp/HMQCP/
https://hmpdacc.org/hmp/HMQCP/
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a

b

Fig. 5 Comparison of CAMISIM and PICRUSt functional profiles for different body sites. a NMDS ordination of the functional predictions of individual

samples by the different methods. The different body sites are color-coded and labeled with their sample number. The original WGS is denoted by

squares, the CAMISIM result as circles and the PICRUSt result as triangles. bMean and standard deviation of Pearson and Spearman correlation to

original WGS samples per body site. C, CAMISIM; P, PICRUSt

genome annotations. The Spearman correlation of the

simulated CAMISIM samples to the original metagenome

samples was slightly lower than the PCC across all

body sites, and very similar for CAMISIM and PICRUSt

(0–6% improvement of CAMISIM over PICRUSt).

These results demonstrate the quality of the CAMISIM

samples.

The NMDS plot (Fig. 5a) showed a very distinct clus-

tering of the CAMISIM and original WGS samples by

body site, more closely than the original samples clustered

with the PICRUSt profiles. Even though the urogenital

tract samples did not cluster perfectly, the CAMISIM

samples still formed a very distinct cluster close to

the original one. Even outliers in the original samples

were, at least partly, detected and correctly simulated

(both original and simulated sample 26 of urogenital

tract cluster most closely with the gastrointestinal tract

microbiomes).

We also provide a multi-sample mouse gut data set

for software developers to benchmark against. For 64

16S rRNA samples from the mouse gut [17], we sim-

ulated 5 Gb of Illumina and PacBio reads each. The

mice were obtained from 12 different vendors and the

samples characterized by 16S V4 amplicon sequencing

(OTU mapping file in Additional file 1). Since for mouse

gut only a few complete reference genomes were avail-

able, the “scaffold” quality for downloading genomes was

chosen.
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Discussion and conclusions
CAMISIM is a flexible program for simulating a large

variety of microbial communities and metagenome sam-

ples. To our knowledge, it possesses the most complete

feature set for simulating realistic microbial communities

and metagenome data sets. This feature set includes sim-

ulation from taxonomic profiles as templates, inclusion of

both natural and simulated strain level diversity, andmod-

elling multi-sample data sets with different underlying

community abundance distributions. Read simulators are

included for short-read (Illumina) and long-read (PacBio,

ONT) sequencing technologies, allowing the generation

of hybrid data sets. This turns CAMISIM into a ver-

satile metagenome simulation pipeline, as modules for

new (or updated) sequencing technologies and emerging

experimental setups can easily be incorporated.

We systematically explored the effect of specific data

properties on assembler performances on several thou-

sand minimally challenging metagenomes. While low

coverage reduced assembly quality for both assemblers,

metaSPAdes and MEGAHIT performed generally well for

medium to high coverages and different error profiles.

Notably, MEGAHIT is computationally very efficient and

overall performed well. As noted before [15, 53], assem-

blers had problems with resolving closely related genomes

in our experiments. For an in-depth investigation, we

systematically analyzed the effect of related strains on

MEGAHIT’s performance across a wide range of taxa and

evolutionary divergences. The average nucleotide iden-

tity (ANI) between two genomes is a robust measure

of genome relatedness; an ANI value of 95% roughly

corresponds to a 70% DNA-DNA reassociation value—a

historical definition of bacterial species [54, 55]. For an

pairwise ANI below 95%, the mixture of strains could be

separated quite well and assembled into different con-

tigs. For an ANI of more than 99%, consensus contigs of

strains were produced that mostly aligned similarly well to

either reference genome. In the “twilight zone” of 95–99%

nucleotide identity, assembly performance dropped sub-

stantially andMEGAHIT’s inability to reliable phase strain

variation resulted in many small (and often redundant)

contigs. For IDBA-UD [56], another de Bruijn graph-

based metagenome assembler, a similar pattern has been

observed [57], indicating that such behavior is common to

many assemblers.

Resolving strains from metagenome shotgun data is an

open research question, though recently promising com-

putational approaches were proposed [11, 58]. The hybrid

long- and short-read simulated data sets we are provid-

ing for mouse gut and human body sites could enable the

development of new approaches for this task. CAMISIM

will facilitate the generation of further realistic bench-

marking data sets to assess their performances. With

the advent of long-read metagenomics, metagenomics

software needs to coevolve, e.g., metagenome assemblers

should support long-read and hybrid assemblies in the

future (metaSPAdes [19] is a pioneer in this regard). In

fact, hybrid data sets will be key to the second CAMI

challenge [59].

CAMISIM can also be used to study the effect of

experimental design (e.g., number of replicates, sequenc-

ing depth, insert sizes) or intrinsic community proper-

ties, such as taxonomic composition, community abun-

dance distributions, and organismal complexities, on

program performance. Due to the enormous diversity

of naturally occurring microbial communities, exper-

imental and sequencing technology setups used in

the field, such explorations are required to determine

the most effective combinations for specific research

questions.

While we tried to mimic naturally occurring data sets

as close as possible, CAMISIM, especially in the de

novo mode and when artificially simulating new strains,

requires the user to make choices about the underly-

ing evolutionary and ecological parameters. This includes

but is not necessarily limited to the organismal abun-

dance distribution and its parameters, like discussed in

[29, 30, 32], of microbial communities and the parameters

driving strain evolution. When developing metagenome

analysis tools, these should not only be entirely opti-

mized to work on individual data sets produced by

CAMISIM, but also tested with additional, optimally real

world data.

Availability and requirements
Project name: CAMISIM

Project home page: https://github.com/CAMI-challenge/
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Operating system(s): UNIX
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