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Figure 1: Examples from our COD10K dataset. Camouflaged objects are concealed in these images. Can you find them?

Best viewed in color and zoomed-in. Answers are presented in the supplementary material.

Abstract

We present a comprehensive study on a new task named

camouflaged object detection (COD), which aims to iden-

tify objects that are “seamlessly” embedded in their sur-

roundings. The high intrinsic similarities between the target

object and the background make COD far more challeng-

ing than the traditional object detection task. To address

this issue, we elaborately collect a novel dataset, called

COD10K, which comprises 10,000 images covering cam-

ouflaged objects in various natural scenes, over 78 object

categories. All the images are densely annotated with cat-

egory, bounding-box, object-/instance-level, and matting-

level labels. This dataset could serve as a catalyst for pro-

gressing many vision tasks, e.g., localization, segmentation,

and alpha-matting, etc. In addition, we develop a simple

but effective framework for COD, termed Search Identifi-

cation Network (SINet). Without any bells and whistles,

SINet outperforms various state-of-the-art object detection

baselines on all datasets tested, making it a robust, gen-

eral framework that can help facilitate future research in

COD. Finally, we conduct a large-scale COD study, eval-

uating 13 cutting-edge models, providing some interesting

findings, and showing several potential applications. Our

research offers the community an opportunity to explore

more in this new field. The code will be available at: http-

s://github.com/DengPingFan/SINet/

1. Introduction

Can you find the concealed object(s) in each image of

Fig. 1? Biologists call this background matching camou-

* Corresponding author: Jianbing Shen (shenjianbingcg@gmail.com).

(a) Image (b) Generic
object

(c) Salient
object

(d) Camouflaged
object

Figure 2: Given an input image (a), we present the ground-truth

for (b) panoptic segmentation [30] (which detects generic object-

s [39,44] including stuff and things), (c) salient instance/object de-

tection [16, 33, 61, 76] (which detects objects that grasp human at-

tention), and (d) the proposed camouflaged object detection task,

where the goal is to detect objects that have a similar pattern (e.g.,

edge, texture, or color) to the natural habitat. In this case, the

boundaries of the two butterflies are blended with the bananas,

making them difficult to identify.

flage [9], where an animal attempts to adapt their body’s

coloring to match “perfectly” with the surroundings in or-

der to avoid recognition [48]. Sensory ecologists [57] have

found that this camouflage strategy works by deceiving the

visual perceptual system of the observer. Thus, addressing

camouflaged object detection (COD) requires a significan-

t amount of visual perception [60] knowledge. As shown

in Fig. 2, the high intrinsic similarities between the target

object and the background make COD far more challenging

than the traditional salient object detection [1, 5, 17, 25, 62–

66, 68] or generic object detection [4, 79].

In addition to its scientific value, COD is also beneficial

for applications in the fields of computer vision (for search-

and-rescue work, or rare species discovery), medical image

segmentation (e.g., polyp segmentation [14], lung infection

segmentation [18, 67]), agriculture (e.g., locust detection to

prevent invasion), and art (e.g., for photo-realistic blend-

ing [21], or recreational art [6]).

Currently, camouflaged object detection is not well-
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Figure 3: Various examples of challenging attributes from our COD10K. See Tab. 2 for details. Best viewed in color, zoomed in.

studied due to the lack of a sufficiently large dataset. To

enable a comprehensive study on this topic, we provide t-

wo contributions. First, we carefully assembled the novel

COD10K dataset exclusively designed for COD. It differs

from current datasets in the following aspects:

• It contains 10K images covering 78 camouflaged ob-

ject categories, such as aquatic, flying, amphibians,

and terrestrial, etc.

• All the camouflaged images are hierarchically anno-

tated with category, bounding-box, object-level, and

instance-level labels, facilitating many vision tasks,

such as localization, object proposal, semantic edge

detection [42], task transfer learning [69], etc.

• Each camouflaged image is assigned with challeng-

ing attributes found in the real-world and matting-

level [73] labeling (requiring ∼60 minutes per image).

These high-quality annotations could help with provid-

ing deeper insight into the performance of algorithms.

Second, using the collected COD10K and two exist-

ing datasets [32, 56] we offer a rigorous evaluation of 12

state-of-the-art (SOTA) baselines [3, 23, 27, 32, 35, 40, 51,

68, 75, 77, 78, 82], making ours the largest COD study.

Moreover, we propose a simple but efficient framework,

named SINet (Search and Identification Net). Remarkably,

the overall training time of SINet is only ∼1 hour and it

achieves SOTA performance on all existing COD dataset-

s, suggesting that it could be a potential solution to COD.

Our work forms the first complete benchmark for the COD

task in the deep learning era, bringing a novel view to object

detection from a camouflage perspective.

2. Related Work

As suggested in [79], objects can be roughly divided into

three categories: generic objects, salient objects, and cam-

ouflaged objects. We describe detection strategies for each

type as follows.

2.1. Generic and Salient Object Detection

Generic Object Detection (GOD). One of the most pop-

ular directions in computer vision is generic object detec-

tion [11, 30, 37, 55]. Note that generic objects can be either

Dataset Year #Img. #Cls. Att. BBox. Ml. Ins. Cate. Spi. Obj.

CHAMELEON [56] 2018 76 - X

CAMO [32] 2019 2,500 8 X X X

COD10K (Ours) 2020 10,000 78 X X X X X X X

Table 1: Summary of COD datasets, showing COD10K offers

much richer labels. Img.: Image. Cls.: Class. Att.: Attributes.

BBox.: Bounding box. Ml.: Alpha-matting [73] level annotation

(Fig. 7). Ins.: Instance. Cate.: Category. Obj.: Object. Spi.:

Explicitly split the Training and Testing Set.

salient or camouflaged; camouflaged objects can be seen as

difficult cases (the 2nd and 3rd row in Fig. 9) of generic

objects. Typical GOD tasks include semantic segmentation

and panoptic segmentation (see Fig. 2 b).

Salient Object Detection (SOD). This task aims to iden-

tify the most attention-grabbing object(s) in an image and

then segment their pixel-level silhouettes [28, 38, 72, 77].

Although the term “salient” is essentially the opposite of

“camouflaged” (standout vs. immersion), salient object-

s can nevertheless provide important information for cam-

ouflaged object detection, e.g. by using images containing

salient objects as the negative samples. That is, positive

samples (images containing a salient object) can be utilized

as the negative samples in a COD dataset.

2.2. Camouflaged Object Detection

Research into camouflaged objects detection, which has

had a tremendous impact on advancing our knowledge of

visual perception, has a long and rich history in biology and

art. Two remarkable studies on camouflaged animals from

Abbott Thayer [58] and Hugh Cott [8] are still hugely influ-

ential. The reader can refer to Stevens et al.’s survey [57]

for more details about this history.

Datasets. CHAMELEON [56] is an unpublished dataset

that has only 76 images with manually annotated object-

level ground-truths (GTs). The images were collected from

the Internet via the Google search engine using “camou-

flaged animal” as a keyword. Another contemporary dataset

is CAMO [32], which has 2.5K images (2K for training,

0.5K for testing) covering eight categories. It has two sub-

dataset, CAMO and MS-COCO, each of which contains

1.25K images.

Unlike existing datasets, the goal of our COD10K is to
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Figure 4: Statistics and camouflaged category examples from COD10K dataset. (a) Taxonomic system and its histogram distribution. (b)

Image resolution distribution. (c) Word cloud distribution. (d) Object/Instance number of several categories. (e) Examples of sub-classes.

provide a more challenging, higher quality, and densely an-

notated dataset. To the best of our knowledge, COD10K is

the largest camouflaged object detection dataset so far, con-

taining 10K images (6K for training, 4K for testing). See

Tab. 1 for details.

Types of Camouflage. Camouflaged images can be rough-

ly split into two types: those containing natural camouflage

and those with artificial camouflage. Natural camouflage

is used by animals (e.g., insects, cephalopods) as a survival

skill to avoid recognition by a predator. In contrast, artificial

camouflage is usually occurs in products (so-called defects)

during the manufacturing process, or is used in gaming/art

to hide information.

COD Formulation. Unlike class-dependent tasks such as

semantic segmentation, COD is a class-independent task.

Thus, the formulation of COD is simple and easy to define.

Given an image, the task requires a camouflaged object de-

tection approach to assign each pixel i a confidence pi ∈
[0,1], where pi denotes the probability score of pixel i. A

score of 0 is given to pixels that don’t belong to the cam-

ouflaged objects, while a score of 1 indicates that a pixel is

fully assigned to the camouflaged objects. This paper fo-

cuses on the object-level COD task, leaving instance-level

COD to our future work.

Evaluation Metrics. Mean absolute error (MAE) is widely

used in SOD tasks. Following Perazzi et al. [49], we also

adopt the MAE (M ) metric to assess the pixel-level accura-

cy between a predicted map C and ground-truth G. Howev-

er, while useful for assessing the presence and amount of er-

ror, the MAE metric is not able to determine where the error

occurs. Recently, Fan et al. proposed a human visual per-

ception based E-measure (Eφ) [13], which simultaneously

evaluates the pixel-level matching and image-level statistic-

s. This metric is naturally suited for assessing the overall

and localized accuracy of the camouflaged object detection

results. Since camouflaged objects often contain complex

shapes, COD also requires a metric that can judge struc-

tural similarity. We utilize the S-measure (Sα) [12] as our

alternative metric. Recent studies [12, 13] have suggested

that the weighted F-measure (Fw
β ) [43] can provide more

reliable evaluation results than the traditional Fβ ; thus, we

also consider this metric in the COD field.

3. Proposed Dataset

The emergence of new tasks and datasets [7, 11, 36, 47,

81] has led to rapid progress in various areas of computer

vision. For instance, ImageNet [52] revolutionized the use

of deep models for visual recognition. With this in mind,

our goals for studying and developing a dataset for COD

are: (1) to provide a new challenging task, (2) to promote

research in a new topic, and (3) to spark novel ideas. Ex-

emplars of COD10K are shown in Fig. 1&3, and Fig. 4 (e).

We will describe the details of COD10K in terms of three

key aspects, as follows. The COD10K is available at here.

3.1. Image Collection

As suggested by [17, 50], the quality of annotation and

size of a dataset are determining factors for its lifespan as

a benchmark. To this end, COD10K contains 10,000 im-

ages (5,066 camouflaged, 3,000 background, 1,934 non-

camouflaged), divided into 10 super-classes, and 78 sub-
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Figure 5: Left: Co-attributes distribution over COD10K. The

number in each grid indicates the total number of images. Right:

Multi-dependencies among these attributes. A larger arc length in-

dicates a higher probability of one attribute correlating to another.

Attr Description

MO Multiple Objects. Image contains at least two objects.

BO Big Object. Ratio (τbo) between object area and image area ≥0.5.

SO Small Object. Ratio (τso) between object area and image area ≤0.1.

OV Out-of-View. Object is clipped by image boundaries.

OC Occlusions. Object is partially occluded.

SC Shape Complexity. Object contains thin parts (e.g., animal foot).

IB Indefinable Boundaries. The foreground and background areas

around the object have similar colors (χ2 distance τgc between

RGB histograms less than 0.9).

Table 2: Attribute descriptions (see examples in Fig. 3).

classes (69 camouflaged, nine non-camouflaged) which are

collected from multiple photography websites.

Most camouflaged images are from Flicker and have

been applied for academic use with the following keyword-

s: camouflaged animal, unnoticeable animal, camouflaged

fish, camouflaged butterfly, hidden wolf spider, walking

stick, dead-leaf mantis, bird, sea horse, cat, pygmy sea-

horses, etc. (see Fig. 4 e) The remaining camouflaged im-

ages (around 200 images) come from other websites, in-

cluding Visual Hunt, Pixabay, Unsplash, Free-images, etc.,

which release public-domain stock photos, free from copy-

right and loyalties. To avoid selection bias [17], we also

collected 3,000 salient images from Flickr. To further en-

rich the negative samples, 1,934 non-camouflaged images,

including forest, snow, grassland, sky, seawater and other

categories of background scenes, were selected from the In-

ternet. For more details on the image selection scheme, we

refer to Zhou et al. [80].

3.2. Professional Annotation

Recently released datasets [10, 15, 16] have shown that

establishing a taxonomic system is crucial when creating

a large-scale dataset. Motivated by [45], our annotations

(obtained via crowdsourcing) are hierarchical (category ֌

bounding box ֌ attribute ֌ object/instance).

• Categories. As illustrated in Fig. 4 (a), we first cre-

ate five super-class categories. Then, we summarize the 69

most frequently appearing sub-class categories according to

our collected data. Finally, we label the sub-class and super-

class of each image. If the candidate image doesn’t belong

to any established category, we classify it as ‘other’.
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Figure 6: Comparison between the proposed COD10K and ex-

isting datasets. COD10K has smaller objects (top-left), contains

more difficult camouflage (top-right), and suffers from less center

bias (bottom-left/right).

• Bounding boxes. To extend COD10K for the camou-

flaged object proposal task, we also carefully annotate the

bounding boxes for each image.

• Attributes. In line with the literature [17, 50], we label

each camouflaged image with highly challenging attributes

faced in natural scenes, e.g., occlusions, indefinable bound-

aries. Attribute descriptions are provided in Tab. 2, and the

co-attribute distribution is shown in Fig. 5.

• Objects/Instances. We stress that existing COD

datasets focus exclusively on object-level labels (Tab. 1).

However, being able to parse an object into its instances is

important for computer vision researchers to be able to edit

and understand a scene. To this end, we further annotate

objects at an instance-level, like COCO [36], resulting in

5,069 object-level masks and 5,930 instance-level GTs.

3.3. Dataset Features and Statistics

• Object size. Following [17], we plot the normalized

object size in Fig. 6 (top-left), i.e., the size distribution from

0.01%∼ 80.74% (avg.: 8.94%), showing a broader range

compared to CAMO-COCO, and CHAMELEON.

• Global/Local contrast. To evaluate whether an object

is easy to detect, we describe it using the global/local con-

trast strategy [34]. Fig. 6 (top-right) shows that objects in

COD10K are more challenging than those in other datasets.

• Center bias. This commonly occurs when taking a

photo, as humans are naturally inclined to focus on the cen-

Pass Reject

Figure 7: Alpha-matting [73] for high-quality annotation.
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identification stages of animal predation. SA = search attention function described in [68]. See § 4 for details.

ter of a scene. We adopt the strategy described in [17] to

analyze this bias. Fig. 6 (bottom) shows that our dataset

suffers from less center bias than others.

• Quality control. To ensure high-quality annotation, we

invited three viewers to participate in the labeling process

for 10-fold cross-validation. Fig. 7 shows examples that

were passed/rejected. This instance-level annotation costs

∼ 60 minutes per image on average.

• Super/Sub-class distribution. COD10K includes five

super-classes (terrestrial, atmobios, aquatic, amphibian,

other) and 69 sub-classes (e.g., bat-fish, lion, bat, frog, etc.).

Examples of the wordcloud and object/instance number for

various categories are shown in Fig. 4 c&d, respectively.

• Resolution distribution. As noted in [70], high-

resolution data provides more object boundary details for

model training and yields better performance when testing.

Fig. 4 (b) presents the resolution distribution of COD10K,

which includes a large number of Full HD 1080p images.

• Dataset splits. To provide a large amount of training

data for deep learning models, COD10K is split into 6,000

images for training and 4,000 for testing, randomly selected

from each sub-class.

4. Proposed Framework

Motivation. Biological studies [22] have shown that, when

hunting, a predator will first judge whether a potential prey

exists, i.e., it will search for a prey; then, the target animal

can be identified; and, finally, it can be caught.

Overview. The proposed SINet framework is inspired by

the first two stages of hunting. It includes two main mod-

ules: the search module (SM) and the identification module

(IM). The former (§ 4.1) is responsible for searching for a

camouflaged object, while the latter (§ 4.2) is then used to

precisely detect it.

4.1. Search Module (SM)

Neuroscience experiments have verified that, in the hu-

man visual system, a set of various sized population Re-

ceptive Fields (pRFs) helps to highlight the area close to

the retinal fovea, which is sensitive to small spatial shift-

s [41]. This motivates us to use an RF [41, 68] component

to incorporate more discriminative feature representations

during the searching stage (usually in a small/local space).

Specifically, for an input image I ∈ R
W×H×3, a set of fea-

tures {Xk}
4
k=0

is extracted from ResNet-50 [24]. To retain

more information, we modify the parameter of stride = 1

to have the same resolution in the second layer. Thus, the

resolution of each layer is {[H
k
, W

k
], k = 4, 4, 8, 16, 32}.

Recent evidence [78] has shown that low-level features

in shallow layers preserve spatial details for constructing

object boundaries, while high-level features in deep layers

retain semantic information for locating objects. Due to this

inherent property of neural networks, we divide the extract-

ed features into low-level {X0,X1}, middle-level X2, high-

level {X3,X4} and combine them though concatenation,

up-sampling, and down-sampling operations. Unlike [78],

our SINet leverages a densely connected strategy [26] to

preserve more information from different layers and then

uses the modified RF [41] component to enlarge the re-

ceptive field. For example, we fuse the low-level features

{X0,X1} using a concatenation operation and then down-

sample the resolution by half. This new feature rfx1x2
4 is

then further fed into the RF component to generate the out-
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put feature rfs
4 . As shown in Fig. 8, after combining the

three levels of features, we have a set of enhanced features

{rfs
k , k = 1, 2, 3, 4} for learning robust cues.

Receptive Field (RF). The RF component includes five

branches {bk, k = 1, . . . , 5}. In each branch, the first con-

volutional (Bconv) layer has dimensions 1×1 to reduce the

channel size to 32. This is followed by two other layers: a

(2k − 1) × (2k − 1) Bconv layer and a 3 × 3 Bconv lay-

er with a specific dilation rate (2k − 1) when k > 2. The

first four branches are concatenated and then their channel

size is reduced to 32 with a 1× 1 Bconv operation. Finally,

the 5th branch is added in and the whole module is fed to a

ReLU function to obtain the feature rfk.

4.2. Identification Module (IM)

After obtaining the candidate features from the previous

search module, in the identification module, we need to pre-

cisely detect the camouflaged object. We extend the partial

decoder component (PDC) [68] with a densely connected

feature. More specifically, the PDC integrates four levels of

features from SM. Thus, the coarse camouflage map Cs can

be computed by

Cs = PDs(rf
s
1 , rf

s
2 , rf

s
3 , rf

s
4 ), (1)

where {rfs
k = rfk, k = 1, 2, 3, 4}. Existing litera-

ture [40, 68] has shown that attention mechanisms can ef-

fectively eliminate interference from irrelevant features. We

introduce a search attention (SA) module to enhance the

middle-level features X2 and obtain the enhanced camou-

flage map Ch:

Ch = fmax(g(X2, σ, λ), Cs), (2)

where g(·) is the SA function, which is actually a typical

Gaussian filter with standard deviation σ = 32 and kernel

size λ = 4, followed by a normalization operation. fmax(·)
is a maximum function that highlights the initial camouflage

regions of Cs.

To holistically obtain the high-level features, we further

utilize PDC to aggregate another three layers of features,

enhanced by the RF function, and obtain our final camou-

flage map Ci

Ci = PDi(rf
i
1, rf

i
2, rf

i
3), (3)

where {rf i
k = rfk, k = 1, 2, 3}. The difference between

PDs and PDi is the number of input features.

Partial Decoder Component (PDC). Formally, given fea-

tures {rf c
k , k ∈ [m, . . . ,M ], c ∈ [s, i]} from the search

and identification stages, we generate new features {rf c1
k }

using the context module. Element-wise multiplication

is adopted to decrease the gap between adjacent features.

Specifically, for the shallowest feature, e.g., rfs
4 , we set

rf c1
M = rf c2

M when k = M . For the deeper feature, e.g.,

rf c1
k , k < M , we update it as rf c2

k :

rf c2
k = rf c1

k ⊗ΠM
j=k+1Bconv(UP (f c1

j )), (4)

where k ∈ [m, . . . ,M − 1], Bconv(·) is a sequential op-

eration that combines a 3 × 3 convolution followed by

batch normalization, and a ReLU function. UP (·) is an up-

sampling operation with a 2j−k ratio. Finally, we combine

these discriminative features via a concatenation operation.

Our loss function for training SINet is the cross entropy [77]

loss LCE . The total loss function L is:

L = Ls
CE(Ccsm, G) + Li

CE(Ccim, G), (5)

where Ccsm and Ccim are the two camouflaged object maps

obtained after Cs and Ci are up-sampled to a resolution of

352×352.

4.3. Implementation Details.

SINet is implemented in PyTorch and trained with the

Adam optimizer [29]. During the training stage, the batch

size is set to 36, and the learning rate starts at 1e-4. The

whole training time is only about 70 minutes for 30 epochs

(early-stop strategy). The running time is measured on the

platform of Intelr i9-9820X CPU @3.30GHz × 20 and TI-

TAN RTX. The inference time is 0.2s for a 352×352 image.

5. Benchmark Experiments

5.1. Experimental Settings

Training/Testing Details. To verify the generalizability of

SINet, we provide three training settings, using the train-

ing sets (camouflaged images) from: (i) CAMO [32], (i-

i) COD10K, and (iii) CAMO + COD10K + EXTRA. For

CAMO, we use the default training set. For COD10K, we

use the default training camouflaged images. We evaluate

our model on the whole CHAMELEON [56] dataset and

the test sets of CAMO, and COD10K.

Baselines. To the best of our knowledge, there is no deep

network based COD model that is publicly available. We

therefore select 12 deep learning baselines [3,23,27,32,35,

40, 51, 68, 75, 77, 78, 82] according to the following crite-

ria: (1) classical architectures, (2) recently published, (3)

achieve SOTA performance in a specific field, e.g., GOD

or SOD. These baselines are trained with the recommended

parameter settings, using the (iv) training setting.

5.2. Results and Data Analysis

Performance on CHAMELEON. From Tab. 3, com-

pared with the 12 SOTA object detection baselines, our

SINet achieves the best performances across all metric-

s. Note that our model does not apply any auxiliary

edge/boundary features (e.g., EGNet [77], PFANet [78]),

preprocessing techniques [46], or post-processing strategies

(e.g., CRF [31], graph cut [2]).

Performance on CAMO. We also test our model on the

recently proposed CAMO [32] dataset, which includes var-

ious camouflaged objects. Based on the overall perfor-

mances reported in Tab. 3, we find that the CAMO dataset
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CHAMELEON [56] CAMO-Test [32] COD10K-Test (Ours)

Baseline Models Sα ↑ Eφ ↑ Fw
β ↑ M ↓ Sα ↑ Eφ ↑ Fw

β ↑ M ↓ Sα ↑ Eφ ↑ Fw
β ↑ M ↓

2017 FPN [35] 0.794 0.783 0.590 0.075 0.684 0.677 0.483 0.131 0.697 0.691 0.411 0.075

2017 MaskRCNN [23] 0.643 0.778 0.518 0.099 0.574 0.715 0.430 0.151 0.613 0.748 0.402 0.080

2017 PSPNet [75] 0.773 0.758 0.555 0.085 0.663 0.659 0.455 0.139 0.678 0.680 0.377 0.080

2018 UNet++ [82] 0.695 0.762 0.501 0.094 0.599 0.653 0.392 0.149 0.623 0.672 0.350 0.086

2018 PiCANet [40] 0.769 0.749 0.536 0.085 0.609 0.584 0.356 0.156 0.649 0.643 0.322 0.090

2019 MSRCNN [27] 0.637 0.686 0.443 0.091 0.617 0.669 0.454 0.133 0.641 0.706 0.419 0.073

2019 BASNet [51] 0.687 0.721 0.474 0.118 0.618 0.661 0.413 0.159 0.634 0.678 0.365 0.105

2019 PFANet [78] 0.679 0.648 0.378 0.144 0.659 0.622 0.391 0.172 0.636 0.618 0.286 0.128

2019 CPD [68] 0.853 0.866 0.706 0.052 0.726 0.729 0.550 0.115 0.747 0.770 0.508 0.059

2019 HTC [3] 0.517 0.489 0.204 0.129 0.476 0.442 0.174 0.172 0.548 0.520 0.221 0.088

2019 EGNet [77] 0.848 0.870 0.702 0.050 0.732 0.768 0.583 0.104 0.737 0.779 0.509 0.056

2019 ANet-SRM [32] ‡ ‡ ‡ ‡ 0.682 0.685 0.484 0.126 ‡ ‡ ‡ ‡

SINet’20 Training setting (i) 0.737 0.737 0.478 0.103 0.708 0.706 0.476 0.131 0.685 0.718 0.352 0.092

SINet’20 Training setting (ii) 0.846 0.871 0.691 0.050 0.665 0.662 0.470 0.128 0.758 0.796 0.517 0.054

SINet’20 Training setting (iii) 0.869 0.891 0.740 0.044 0.751 0.771 0.606 0.100 0.771 0.806 0.551 0.051

Table 3: Quantitative results on different datasets. The best scores are highlighted in bold. See § 5.1 for training details: (i) CAMO, (ii)

COD10K, (iii) CAMO + COD10K + EXTRA. Note that the ANet-SRM model (only trained on CAMO) does not have a publicly available

code, thus other results are not available (’‡’). ↑ indicates the higher the score the better. Eφ denotes mean E-measure [13]. Baseline

models are trained using the training setting (iv). Evaluation code: https://github.com/DengPingFan/CODToolbox

is more challenging than the previous datasets. Again,

SINet obtains the best performance, further demonstrating

its robustness.

Performance on COD10K. With the test set (2,026 im-

ages) of our COD10K dataset, we again observe that the

proposed SINet is consistently better than other competitors.

This is because its specially designed search and identifi-

cation modules can automatically learn rich high-/middle-

/low-level features, which are crucial for overcoming chal-

lenging ambiguities in object boundaries (see Fig. 9).

GOD vs. SOD Baselines. One noteworthy finding is that,

among the top-3 models, the GOD model (i.e., FPN [35])

performs worse than the SOD competitors, CPD [68], EG-

Net [77], suggesting that the SOD framework may be better

suited for extension to COD tasks. Compared with either

the GOD [3,23,27,35,75,82] or the SOD [38,40,51,68,77,

78] models, SINet significantly decreases the training time

(e.g., SINet: 1 hour vs. EGNet: 48 hours) and achieves

the SOTA performance on all datasets, showing that it is a

promising solution for the COD problem.

Cross-dataset Generalization. The generalizability and d-

ifficulty of datasets play a crucial role in both training and

assessing different algorithms [61]. Hence, we study these

aspects for existing COD datasets, using the cross-dataset

analysis method [59], i.e., training a model on one dataset,

and testing it on others. We select two datasets, including

CAMO [32], and our COD10K. Following [61], for each

dataset, we randomly select 800 images as the training set

and 200 images as the testing set. For fair comparison, we

train SINet on each dataset until the loss is stable.

Tab. 4 provides the S-measure results for the cross-

Trained on:

Tested on: CAMO

[32]

COD10K

(Ours)
Self

Mean

others
Drop↓

CAMO [32] 0.803 0.702 0.803 0.678 15.6%

COD10K (Ours) 0.742 0.700 0.700 0.683 2.40%

Mean others 0.641 0.589

Table 4: S-measure↑ [12] results for cross-dataset generalization.

SINet is trained on one (rows) dataset and tested on all datasets

(columns). “Self”: training and testing on the same (diagonal)

dataset. “Mean others”: average score on all except self.

dataset generalization. Each row lists a model that is trained

on one dataset and tested on all others, indicating the gen-

eralizability of the dataset used for training. Each column

shows the performance of one model tested on a specific

dataset and trained on all others, indicating the difficulty

of the testing dataset. Please note that the training/testing

settings are different from those used in Tab. 3, and thus the

performances are not comparable. As expected, we find that

our COD10K is the most difficult (e.g., the last row Mean

others: 0.589). This is because our dataset contains a va-

riety of challenging camouflaged objects (see § 3). We can

see that our COD10K dataset is suitable for more challeng-

ing scenes.

Qualitative Analysis. Fig. 9 presents qualitative compar-

isons between our SINet and two baselines. As can be seen,

PFANet [78] is able to locate the camouflaged objects, but

the outputs are always inaccurate. By further using edge

features, EGNet [77] achieves a relatively more accurate lo-

cation than PFANet. Nevertheless, it still misses the fine

details of objects, especially for the fish in the 1st row. For

all these challenging cases (e.g., indefinable boundaries, oc-

clusions, and small objects), SINet is able to infer the real
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Figure 9: Qualitative results of our SINet and two top-performing baselines on COD10K. Refer to the supplementary material for details.
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Figure 10: More applications. (a) Polyp detection/segmentation

results. (b) Search and rescue system working in a disaster area.

camouflaged object with fine details, demonstrating the ro-

bustness of our framework.

6. Potential Applications

Camouflage detection systems (CDS) have various pos-

sible applications. Here, we envision two potential uses.

More details are shown on our website.

Medical Image Segmentation. If a medical image seg-

mentation method was equipped with a CDS trained for

specific objects, such as polyp, it could be used to automati-

cally segment polyps (Fig. 10 a), in nature to find & protect

rare species, or even in disaster areas for search and rescue.

Search Engines. Fig. 11 shows an example of search result-

s from Google. From the results (Fig. 11 a), we notice that

the search engine cannot detect the concealed butterfly, and

thus only provides images with similar backgrounds. Inter-

estingly, when the search engine is equipped with a CDS

(here, we just simply change the keyword), the engine can

identify the camouflaged object and then feedback several

butterfly images (Fig. 11 b).

7. Conclusion

We have presented the first complete benchmark on ob-

ject detection from a camouflage perspective. Specifical-

(b)

(a)

Figure 11: Internet search engine application equipped without

(a)/with (b) a CDS.

ly, we have provided a new challenging and densely anno-

tated COD10K dataset, conducted a large-scale evaluation,

developed a simple but efficient end-to-end SINet frame-

work, and provided several potential applications. Com-

pared with existing cutting-edge baselines, SINet is com-

petitive and generates more visually favorable results. The

above contributions offer the community an opportunity to

design new models for the COD task. In future work, we

plan to extend COD10K dataset to provide input of vari-

ous forms, for example, RGB-D camouflage object detec-

tion (similar to RGB-D salient object detection [19,71,74]),

among others. New techniques such as weakly supervised

learning [53, 54], zero-shot learning [83], VAE [84], and

multi-scale backbone [20] could also be explored.
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